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Abstract— We identify and formalize a novel join operator for
two spatial pointsets P and Q. The common influence join (CIJ)
returns the pairs of points (p, q), p ∈ P, q ∈ Q, such that there
exists a location in space, being closer to p than to any other point
in P and at the same time closer to q than to any other point
in Q. In contrast to existing join operators between pointsets
(i.e., ε-distance joins and k-closest pairs), CIJ is parameter-
free, providing a natural join result that finds application in
marketing and decision support. We propose algorithms for the
efficient evaluation of CIJ, for pointsets indexed by hierarchical
multi-dimensional indexes. We validate the effectiveness and the
efficiency of these methods via experimentation with synthetic
and real spatial datasets. The experimental results show that
a non-blocking algorithm, which computes intersecting pairs of
Voronoi cells on-demand, is very efficient in practice, incurring
only slightly higher I/O cost than the theoretical lower bound
cost for the problem.

I. INTRODUCTION

Given a dataset P of points, we can define the influence
region of each point p in P as the set of locations that are
closer to p than to any other point in P . Geometrically, this
region corresponds to the Voronoi cell V (p, P ) of p in the
Voronoi diagram [1] V or(P ) of P . In this paper, we define and
study the common influence join (CIJ), an interesting spatial
data analysis operation related to Voronoi diagrams. Given two
pointsets P and Q, CIJ computes all pairs (p, q), p ∈ P ,
q ∈ Q, such that there exists a common location r inside both
V (p, P ) and V (q, Q). Figure 1a illustrates two datasets P and
Q on the same map. The solid lines define V or(P ), whereas
the dotted ones form V or(Q). CIJ(P,Q) consists of pairs
of points whose Voronoi cells intersect: {(p1, q1), (p1, q2),
(p2, q1), (p2, q3), (p3, q1), (p3, q2), (p3, q3), (p3, q4), (p4, q3),
(p4, q4)}.

Traditional join operations on spatial pointsets are the
distance join [2] and the closest pairs join [3], [4]. Given
two pointsets P and Q, the ε-distance join returns all pairs
(p, q) ∈ P ×Q with their distance dist(p, q) at most ε. The k-
closest pairs join finds the k pairs in P ×Q with the smallest
distance. In contrast to the above operations, CIJ results do
not necessarily have distance bounds or distance ordering
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Fig. 1. Examples of CIJ results

constraints. For example, in Figure 1a, p2 is closer to q2 than to
q3, however, (p2, q3) is in CIJ(P,Q), whereas (p2, q2) is not.
Also, in the example of Figure 1b, p1 joins with q1, although
p1 is the furthest neighbor of q1 in P (and vice versa); whether
(p, q) is a CIJ pair does not depend solely on the distance
between the two points, but also on the distances and relative
locations of p (q) to other points in P (Q). Thus, CIJ cannot be
reduced to distance-related spatial joins. Also, CIJ evaluation
is more challenging due to the necessity of expensive Voronoi
cell computations. Another important difference is that the
CIJ result is parameter-free, unveiling the inherent relationship
between P and Q. On the other hand, the results of distance
joins and closest pairs joins are affected by parameters ε and
k, respectively. Setting appropriate values to these parameters
imposes a burden on the data analyst, who may seek for point
pairs that have a natural join relationship. Applications of CIJ
are illustrated below.

Collaborative Promotion Consider a set of restaurants
P and a set of cinemas Q. An advertisement company can
compute CIJ(P,Q) and direct collaborative advertisements
to the residents in the common influence region of each CIJ
pair (p, q); e.g., p offers 5% dinner discount for customers
who watched movies in q and q offers free pop-corn to



customers who dined in p, within the same week. For example,
for the pair (p1, q1) of Figure 1b, such a promotion can be
directed to region R(p1, q1). In addition, for each (p, q) ∈
CIJ(P,Q), by analyzing R(p, q) (i.e., the intersection of
V (p, P ) and V (q, Q)), we can target a specific marketing
focus. For example, if area R(p1, q1) in Figure 1b corresponds
to a neighborhood where residents have high average age, the
joint promotion of p1 and q1 for R(p1, q1) could be on gourmet
food and classic movies.

Decision Support Following the example above, assume
that an investor wants to choose a particular cinema to run.
By examining the CIJ results, she could assess the potential of
each cinema q ∈ Q with respect to the quality or peculiarities
of restaurants in P having common influence with q. If for
example the restaurants which join with a cinema q have low
revenue or bad service, she may decide not to select q, after
inferring that customers may avoid the neighborhood around
q. Or, the investor may decide to choose q, based on the fact
that restaurants pairing with it lack a popular service, which
she might add into the cinema’s facilities.

Grouped Nearest Neighbors Typically, the set L of houses
on a map is much larger than the set P (Q) of hospitals
(parks). A data analyst may be interested in searching, for
each house, the nearest hospital and the nearest park. A related
GROUP-BY analysis operation is to find, for each hospital-
park pair, the number of houses having them as their nearest
neighbors. These problems can be solved by two All Nearest
Neighbor (AllNN) joins [5] of L with P and Q, respectively;
however, this is very expensive. An alternative solution is to
compute the CIJ between P and Q, and then find the points
of L falling in each CIJ region. This is more efficient because
(i) not all hospital-park combinations participate in the result
(i.e., pairs not in the CIJ result definitely do not appear in
the GROUP-BY result) and (ii) post-processing (grouping) the
numerous AllNN results is avoided. In fact, previous work [6]
has shown that intersection of Voronoi diagrams can compute
fast location-allocation decision support queries.

Customized Multi-objective Search Personalized filtering
can be applied on CIJ pairs to obtain customized results.
Examples include (i) a tourist office finds CIJ regions R(p, q)
such that both restaurant p and cinema q are above three star, to
recommend hotels there and (ii) a tenant searches for housing
only in CIJ regions R(p, q), such that hospital p has a coronary
intensive care unit and park q has a pool.

Bandwidth Allocation The CIJ between the communication
cells of different wireless service providers can be post-
processed to design appropriate sharing of bandwidth inside
the CIJ regions.

Note that CIJ computation cannot be reduced to simple NN
or RNN queries [7] using only P and Q. For instance, it is
not clear how one can derive the (distant) CIJ pair (p1, q1) of
Figure 1b, by applying NN or RNN queries on P ∪ Q only.
Therefore, there is a need for direct CIJ computation algo-
rithms. An intuitive approach is to compute the intersection
join of two Voronoi diagrams that have been pre-computed
and indexed. However, such a method has high maintenance

cost, especially in applications where data updates are frequent
compared to CIJ computations. In this paper, we study the
problem for the more typical case, where the join inputs P
and Q are pointsets indexed by hierarchical spatial access
methods,1 like the R-tree [8]. We propose and evaluate three
CIJ algorithms. The first method is an intuitive one that
computes V or(P ) and V or(Q); the Voronoi diagrams of P
and Q. It then creates R-tree indexes for them, and finally
joins them using an off-the-shelf spatial join algorithm [9].
The construction of each Voronoi diagram and the creation
of the corresponding index are performed at low disk access
cost, by exploiting the existing R-trees on pointsets P and
Q. The second algorithm computes and indexes the Voronoi
diagram of P only, and, while computing the Voronoi cells
for the points of Q, it probes them at the index of V or(P )
to retrieve their CIJ pairs, in a block index nested loops
fashion. Our third algorithm avoids the materialization of
complete Voronoi diagrams, but while computing the Voronoi
cells for the points of Q, it performs a specialized probing
at the R-tree that indexes P , generates only a small subset
of V or(P ) on-demand, and computes CIJ pairs using it.
As we demonstrate by experimentation, the third algorithm
outperforms the other solutions by a wide margin and its I/O
cost is close to the lowest possible. The contributions of this
paper are summarized as follows:

• We identify the common influence join (CIJ) as a natural
join operation for pointsets and demonstrate its applica-
bility.

• We propose and evaluate efficient on-demand algorithms
to process CIJ for pointsets indexed by R-trees.

• As a side contribution, we develop an optimized R-
tree based algorithm for Voronoi cell computation, which
subsumes earlier techniques [7], [10] for this problem.

The rest of the paper is organized as follows. Section II pro-
vides background and reviews related work to CIJ. Section III
presents our optimized algorithm for computing the Voronoi
cell for a single point (or a group of points) by applying a
single tree traversal. In addition, it describes two intuitive CIJ
algorithms that rely on computation and materialization of one
or both Voronoi diagrams. Section IV proposes the third and
most efficient CIJ algorithm, which evaluates the join directly
on the existing trees. A thorough experimental evaluation of
our methods is conducted in Section V. Finally, Section VI
concludes the paper.

II. BACKGROUND AND RELATED WORK

The Common Influence Join is equivalent to a spatial
intersection join between two Voronoi diagrams. Therefore,
our work is related to spatial join evaluation and computation
techniques for Voronoi diagrams and Voronoi cells. In this
section, we review work related to these problems and provide
the essential background for our CIJ evaluation techniques that
follow.

1Spatial access methods can be updated much more efficiently compared to
Voronoi diagrams and at the same time they are useful for additional spatial
operations like range queries and conventional spatial joins.



A. Evaluation of Spatial Joins

Given two datasets R and S and a spatial predicate θ, the
spatial join R 1θ S is defined as the subset of the Cartesian
product R×S, such that for each pair (r, s) ∈ R 1θ S, r θ s is
true. The typical predicate for spatial joins between two sets of
objects with extent is intersection. The most efficient method
that computes the intersection join between two datasets (R
and S) indexed by R-trees (RR and RS , respectively) is the
Synchronous Traversal (ST) algorithm [9]. The idea is to
traverse both trees concurrently following entry pairs whose
minimum bounding rectangles (MBRs) intersect; if a non-leaf
entry eR from RR is disjoint with a non-leaf entry eS from
RS , then there can be no pair of objects (r, s) that intersect,
such that r (s) is in the subtree pointed to by eR (eS).

For joins between pointsets P and Q, θ is most commonly
a distance constraint ε; the ε-distance join returns the pairs
of points (p, q), p ∈ P, q ∈ Q, such that dist(p, q) ≤ ε,
where dist() is a distance metric (i.e., usually Euclidean
distance). Assuming that P and Q are indexed by two R-
trees, we can adapt the synchronous traversal algorithm of
[9] (described above) to follow entry pairs (eP , eQ) with
mindist(eP , eQ) ≤ ε. Here, mindist(eP , eQ) denotes the
minimum possible distance between any pair of points p ∈
MBR(eP ) and q ∈ MBR(eQ). Another popular join between
pointsets is the closest pairs join [3], [4], which takes as input
a number k and returns the k pairs (p, q) with the smallest
distance. This problem can be solved by combining ideas from
nearest neighbor search algorithms [11] with the synchronous
traversal join algorithm [9].

Previous work on spatial join computation cannot directly
be applied for CIJ evaluation. The main challenge to address
is that whether a point p ∈ P participates in a CIJ result
depends not only on the locations of points in Q, but also on
the locations of other points in P .

B. Computation of Voronoi Diagrams and Cells

Given two points pi and pj on the plane, the halfplane
⊥pi

(pi, pj) is defined by the locations closer to pi than pj :

⊥pi
(pi, pj) = { a | dist(pi, a) ≤ dist(pj , a) } (1)

The Voronoi cell of pi in pointset P is defined by the
intersection of all halfplanes with other points in P :

V (pi, P ) =
⋂

pj∈P,pj 6=pi

⊥pi
(pi, pj) (2)

The Voronoi diagram [1] V or(P ) of P is the space par-
titioning formed by the cells V (pi, P ) of all pi ∈ P . Figure
2a shows V or(P ) for a set P of six points. Observe that
the border between two adjacent cells corresponds to their
perpendicular bisector and each Voronoi cell is a convex
polygon. The Voronoi diagram can be computed in main
memory in O(n log n) time [1]. For large pointsets that do
not fit in memory, the Voronoi diagram can be computed by
a complex 3D convex hull algorithm with same asymptotic
cost as external sorting [12]. Isenburg et al. [13] showed

how to compute the Delaunay Triangulation of a pointset
P (convertible to V or(P )) at only three passes over P .
Although this method exploits spatial properties to reduce
memory consumption, its peak memory size depends on the
data distribution and is not known apriori.
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Fig. 2. Voronoi cell computation

Our CIJ evaluation techniques use single Voronoi cell com-
putation as a building block, so we discuss work related to this
problem in detail. According to Equation 2, a simple method
is to scan all data points p ∈ P and take the intersection
of halfplanes ⊥pi(pi, pj) for all pj 6= pi. This approach is
impractical since only the points surrounding pi contribute
to V (pi, P ) (on the average the number of such points is
only 6). [14] proposed a main-memory method for computing
an approximation of V (pi, P ) with asymptotic bounds on
approximation quality and space complexity. Assuming that
the pointset P is indexed by an R-tree, [7] developed a
method for computing Vc(pi), an approximation (superset) of
V (pi, P ), by finding the nearest neighbors of pi at each of
the four quadrants defined by rectilinear lines passing pi. This
can be done by issuing four concurrent constrained nearest
neighbor queries. Vc(pi) is then defined by taking the bisectors
of pi and its NN at each quadrant.

[10] proposed a technique for exact computation of
V (pi, P ). First, an approximation Vc(pi) of V (pi, P ) is ini-
tialized to the whole space domain. As Figure 2b illustrates,
a time-parameterized nearest neighbor (TPNN) query [15] is
issued towards a vertex (e.g., bottom-right corner) of Vc(p0), to
find the NN of p0 along that direction. In our example, point
p3 is discovered and used to refine Vc(p0) (by intersecting
the current Vc(p0) with ⊥p0(p0, p3)). The above procedure is
repeated for other vertices of Vc(p0). In Figure 2c, a TPNN
query is issued towards the bottom-left corner of Vc(p0), and
the retrieved point p2 is used to refine Vc(p0). After TPNN
queries have been issued towards all vertices in Vc(p0), the
algorithm returns Vc(p0) as the exact V (p0, P ). Note that,
during the refinement of Vc(p0), the next TPNN queries to
be issued depend on the results of previous TPNN queries
(since the vertices of Vc(p0) change after iteration). Thus,
these operations cannot be combined to a single traversal of
the R-tree. As a result, the algorithm requires multiple R-tree
traversals, one for each TPNN query.

III. MULTI-STAGE CIJ COMPUTATION

In this section, we first propose an R-tree based Voronoi cell
computation algorithm, which has better performance than the



methods in [7], [10]. We then extend the technique for batch
Voronoi cell computation of a group of points close to each
other. Finally, we propose two algorithms for CIJ based on
the computation of Voronoi diagram(s) using our Voronoi cell
computation technique.

A. Efficient Voronoi Cell Computation

As discussed in Section II-B, existing R-tree based algo-
rithms for Voronoi cell computation are either approximate [7]
or require multiple tree traversals [10]. Our goal is to compute
the exact V (pi, P ) for a point pi ∈ P at a single traversal of
the R-tree RP , i.e., accessing each tree node of RP at most
once. We propose an algorithm that achieves this goal at low
I/O cost.

The idea is to start with an approximation Vc(pi) of
V (pi, P ) (initially Vc(pi) is set to the whole space domain)
and progressively refine it to the exact cell. While traversing
RP , we should determine, for each visited entry e, whether
the subtree pointed to by e may contain points that potentially
refine Vc(pi). Let Γc(pi) be the set of vertices of the current
Vc(pi). The following lemma utilizes a geometric observation
to determine whether a point pj ∈ P can refine the current
Vc(pi):

Lemma 1: Given a point pj ∈ P (pi 6= pj), if ∀γ ∈ Γc(pi),
dist(pj , γ) ≥ dist(γ, pi), then the current Vc(pi) cannot be
refined by pj .

Proof: Observe that the polygon of Vc(pi) is the convex
hull of all vertices γ ∈ Γc(pi). According to Theorem 1 of Ref.
[16], for any point pj inside Vc(pi), there exists a vertex γ ∈
Γc(pi) such that dist(pj , γ) ≤ dist(γ, pi). Thus, any point
pj satisfying the condition of this lemma, must fall outside
Vc(pi).

Since ∀γ ∈ Γc(pi), dist(pj , γ) ≥ dist(γ, pi), all vertices of
Vc(pi) must be included in the refined V ′

c (pi) by pj . Thus the
refined cell V ′

c (pi) is a convex polygon, containing all vertices
in Vc(pi). Combining this with the property V ′

c (pi) ⊆ Vc(pi),
we conclude that V ′

c (pi) = Vc(pi).
The above lemma can be generalized to determine whether a
non-leaf entry e of RP (and any point in the subtree pointed
to by e) can refine Vc(pi). Let mindist(e, p) be the minimum
possible distance between a point p and any point in the MBR
of an R-tree entry e.

Lemma 2: Given a non-leaf entry e of RP , if ∀γ ∈ Γc(pi),
mindist(e, γ) ≥ dist(γ, pi), then Vc(pi) cannot be refined by
any point in e.

Proof: True, due to Lemma 1 and lower-bounding
property of mindist: ∀ pj ∈ e, dist(pj , γ) ≥ mindist(e, γ).

In addition, we should set an appropriate order for visiting
nodes that would minimize the I/O cost. We decide to prioritize
the visit of entries e according to mindist(e, pi) (i.e., in
the same order as the best-first incremental NN algorithm
of [11]). This way, it becomes more likely to discover early
points near pi that refine Vc(pi) to a tight approximation of
V (pi, P ). Algorithm 1 puts everything together to a method
for computing the exact V (pi, P ) efficiently, by accessing each

tree node at most once and minimizing the number of accessed
nodes. Initially, Vc(pi) is set to the space domain U. The
algorithm then browses the tree entries in ascending order
of their distances from pi. Whenever a point is discovered,
it is used to refine Vc(pi). In addition, our pruning technique
is incorporated at Line 7, for entries (and their subtrees) that
cannot refine Vc(pi) further. The method continues to examine
the next entry until H becomes empty. Eventually, Vc(pi) is
returned as the exact Voronoi cell V (pi, P ).

Algorithm 1 Single Voronoi Cell Computation
algorithm SingleVoronoi(Point pi, R-Tree RP )

1: H:=new min-heap (mindist from pi as the key);
2: Vc(pi):=the space domain U; . current Voronoi cell
3: for all entries e ∈ RP .root do
4: insert 〈e, mindist(e, pi)〉 into H;
5: while H is not empty do
6: deheap 〈e, mindist(e, pi)〉 from H;
7: if ∃ γ ∈ Γc(pi), mindist(e, γ) < dist(γ, pi) then
8: if e is a point pj then
9: update Vc(pi) by ⊥pi(pi, pj); . update cell

10: else
11: read the child node N ′ pointed to by e;
12: for all entries e′ ∈ N ′ do
13: insert 〈e′, mindist(e′, pi)〉 into H;
14: return Vc(pi);

B. Batch Voronoi Cell computation

Suppose that we need to compute the Voronoi cells for a
subset G of P with closely located points. A simple solution
is to invoke Algorithm 1 for each point in G. However, this
may result in accessing some nodes of the tree multiple times,
since Voronoi cells of nearby points are defined by points in
the same region. In order to avoid this redundancy, we propose
Algorithm 2, a batch method for computing the Voronoi cells
of all points in G concurrently.

Algorithm 2 Batch Voronoi Cell Computation
algorithm BatchVoronoi(Set G, R-Tree RP )

1: G:=centroid of all points in G;
2: H:=new min-heap (mindist from G as the key);
3: for all points pi ∈ G do
4: Vc(pi):=the space domain U; . current Voronoi cell
5: for all entries e ∈ RP .root do
6: insert 〈e, mindist(e, G)〉 into H;
7: while H is not empty do
8: deheap 〈e, mindist(e, G)〉 from H;
9: if ∃pi ∈ G, ∃γ ∈ Γc(pi), mindist(e, γ) < dist(γ, pi) then

10: if e is a point pj then
11: for all points pi ∈ G do
12: if ∃γ ∈ Γc(pi), dist(pj , γ) ≤ dist(γ, pi) then
13: update Vc(pi) by ⊥pi(pi, pj);
14: else
15: read the child node N ′ pointed to by e;
16: for all entries e′ ∈ N ′ do
17: insert 〈e′, mindist(e′, G)〉 into H;
18: return Vc(pi), ∀pi ∈ G;

BatchVoronoi has the following modifications compared to
Algorithm 1. First, entries e are deheaped from H in ascending



distance order from G, the centroid of all points in G. Second,
an entry e is pruned when it cannot lead to the refinement of
the Voronoi cell of any point pi ∈ G. Third, before updating
the Voronoi cell of a point pi ∈ G (at Line 13), we check
whether e may refine such a cell (not all points could use e
for their refinement). Next, we show how this algorithm is
used by two intuitive CIJ evaluation techniques.

C. Computing CIJ pairs

Our first solutions for CIJ evaluation are based on the
intuitive idea of first computing the Voronoi diagrams for the
datasets P and Q, and then their intersection join.

Full materialization Algorithm 3 is the pseudo-code of
a full materialization CIJ algorithm (FM-CIJ). First, FM-CIJ
performs depth-first traversal on the tree RP of P . For each
leaf node NP encountered, the exact Voronoi cells of all
points in NP are computed concurrently, using Algorithm 2.
Afterwards, these Voronoi cells are inserted into another R-
tree R′

P . The same procedure is applied for creating R′
Q; an

R-tree that indexes the Voronoi diagram of Q. Finally, the
intersection join algorithm of [9] is performed between R′

P

and R′
Q to obtain intersecting pairs of Voronoi cells, which

correspond to the CIJ result.

Algorithm 3 Full Materialization Algorithm
algorithm FM-CIJ(R-Tree RP , R-Tree RQ)

1: R′
P :=new R-tree; R′

Q:=new R-tree;
2: apply depth-first traversal to RP ;
3: for all visited leaf nodes NP do
4: GP :={p ∈ NP };
5: VP :=BatchVoronoi(GP , RP );
6: insert contents of VP into R′

P ;
7: apply depth-first traversal to RQ;
8: for all visited leaf nodes NQ do
9: GQ:={q ∈ NQ};

10: VQ:=BatchVoronoi(GQ, RQ);
11: insert contents of VQ into R′

Q;
12: perform intersection join between R′

P and R′
Q;

Partial materialization Algorithm 4 is the pseudo-code of
a partial materialization CIJ algorithm (PM-CIJ). Unlike FM-
CIJ, this method saves I/O accesses by building only one
R-tree (instead of two). First, PM-CIJ performs depth-first
traversal on RP , computes the Voronoi cells of all points in
P and indexes them by a tree R′

P (i.e., exactly like FM-CIJ).
Then, it traverses RQ, and for each leaf node NQ ∈ RQ,
the Voronoi cells of the set of points GQ in it are computed
in batch. However, instead of inserting them to another tree
R′

Q, PM-CIJ immediately probes them to R′
P to find their

CIJ join pairs in P . The latter operation is performed as a
single range query to R′

P , with the query region enclosing
all Voronoi cells of GQ. Thus, PM-CIJ operates like a block
index nested loops algorithm, performing probes to R′

P , for
batches of Voronoi cells from Q. Intuitively, if consecutive
probes have high spatial locality and an LRU buffer is used,
PM-CIJ will be cheaper than FM-CIJ.

Optimized construction of R′
P and R′

Q We now discuss
the construction of Voronoi R-trees R′

P (and R′
Q), which are

Algorithm 4 Partial Materialization Algorithm
algorithm PM-CIJ(R-Tree RP , R-Tree RQ)

1: R′
P :=new R-tree;

2: apply depth-first traversal to RP ;
3: for all visited leaf nodes NP do
4: GP :={p ∈ NP };
5: VP :=BatchVoronoi(GP , RP );
6: insert contents of VP into R′

P ;
7: apply depth-first traversal to RQ;
8: for all visited leaf nodes NQ do
9: GQ:={q ∈ NQ};

10: VQ:=BatchVoronoi(GQ, RQ);
11: apply batch range search on R′

P , using VQ;

used by FM-CIJ and PM-CIJ. We avoid individual insertion
of the computed cells into the trees, in order to reduce the
construction cost. Note that each cell has at least three vertices
and not all cells have the same number of vertices. In order
to create leaf nodes (for R′

P ) of fixed page size, we tune the
depth-first traversal of RP , so that the entries are accessed in
the order of Hilbert values [17] of their centroids. This way,
successively created Voronoi cells are close in space. These
Voronoi cells are sequentially packed into leaf nodes of the
tree R′

P so as to bulk-load the tree in a bottom-up fashion. This
technique has several advantages: (i) expensive node splits for
R′

P are avoided and the I/O cost of tree construction is exactly
the cost of writing the nodes of R′

P to disk, (ii) disk space
is fully utilized, and (iii) packed leaf nodes contain Voronoi
cells close in space and the tree has good search performance
(similar to Hilbert R-tree [18]).

IV. NON-BLOCKING CIJ COMPUTATION

The techniques proposed in the previous section are block-
ing in the sense that they require the creation of at least
one complete Voronoi diagram (i.e., V or(P )), which is then
indexed by an R-tree (i.e., R′

P ). In this section, we propose a
more efficient and non-blocking technique for CIJ evaluation.
Its main innovation is that, unlike PM-CIJ, it does not create
V or(P ); instead, for each computed Voronoi cell V (q, Q) of
a q ∈ Q, it determines the CIJ pairs that include q by probing
the cell V (q, Q) to the original R-tree RP that indexes P .
In Section IV-A, we elaborate on this probing methodology.
Then, in Section IV-B, we describe our third CIJ algorithm,
which is founded on this operation.

A. Voronoi Cell Intersection Search

Assume that we know the Voronoi cell T = V (q, Q) of a
point q in Q and that we want to find the points in pi ∈ P
for which V (pi, P ) intersects T (i.e., (pi, q) is a CIJ result).
Figure 3a exemplifies T and a pointset P . We can distinguish
three cases depending on the position of pi with respect to T
and other points in P .

1) pi is inside T . In this case, V (pi, P ) must intersect
T . For such point (e.g., p1 in Figure 3a) we report
(p1, q) as a CIJ result without extra computation.

2) pi is outside T and exists pj ∈ P , such that
⊥pi

(pi, pj) does not contain T . Note that ⊥pi
(pi, pj)



is a superset of V (pi, P ) (see Eq. 2). If T lies outside
⊥pi

(pi, pj) then pi can be pruned, since V (pi, P )
cannot intersect T . In Figure 3a, T lies outside the
halfplane region ⊥p4(p4, p3), therefore q does not join
with p4.

3) pi is outside T and there does not exist pj ∈ P , such
that ⊥pi

(pi, pj) does not intersect T . In this case,
(pi, q) may be a CIJ result (depending on the locations
of other points in P ). For example, points p2, p3, and
p5 of Figure 3a may form join pairs with q.
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The last case is the most expensive to verify exactly; it is
actually more expensive than computing V (pi, P ) (e.g., using
our method from Section III-A). Given T = V (q, Q), our goal
is to traverse the R-tree RP that indexes P and identify the
CIJ pairs that include q with as few node accesses to RP as
possible. We perform this search in two phases. During the
filter phase, we traverse RP and eliminate points and subtrees
that cannot contain points that join with q (falling in case 2
above), while constructing a set CP of candidate points p ∈ P
may join with q. In the second, refinement phase, we compute
the exact Voronoi cells for the points in CP and test them for
intersection against T (except from the points that fall in Case
1 above). During the filter phase, CP is used to prune points
from RP as follows. Let p be a newly examined point (not
in CP ). We compute V (p, CP ); the approximate (superset)
Voronoi cell of p using only the points in CP (recall that this
is a spatial superset of the actual V (p, P ), since CP ⊆ P ). If
V (p, CP ) does not intersect T , then the point p is eliminated.
Otherwise, we include p in CP , since it may be necessary
to compute the exact V (p, P ) in order to check whether it
intersects T .

Pruning subtrees of RP We now elaborate on the pruning
of entries from RP during the filter phase. Given the MBR e
of a non-leaf entry e that indexes a subset of points from P ,
our goal is to determine whether e may contain some point
whose Voronoi cell intersects region T = V (q, Q). Consider
the example in Figure 3b where e1 and e2 are non-leaf entries
of RP . If a non-leaf entry (e.g., e1) intersects T , then it may
contain some points inside T (these definitely join with q).
Thus, the entry cannot be pruned; we need to access its child
node.

In case a non-leaf entry e (e.g., e2 in Figure 3b) does not
intersect T , we know that all points in it must be outside T . In
this case, we check only the MBR of e, to determine whether
the subtree pointed to by e may contain a point p with V (p, P )

intersecting T . This can be done with the help of other points
p seen from RP so far (i.e., the candidate set CP ). Figure
4a shows an entry e ∈ RP and another point p from P . For
any point a ∈ e, region ⊥a′(a′, p) always encloses ⊥a(a, p),
where a′ is the intersection of segment ap with the boundary
of e. Therefore, the Voronoi cells of potential points on the
boundary of e represent the largest possible extent of Voronoi
cells of points in e, and we confine our study to these points
only.
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Fig. 4. Pruning a non-leaf entry e

Given a single side L of e, we define region Φ(L, p), as the
set of all locations closer to p than to any location on L:

Φ(L, p) = { b | dist(p, b) ≤ mindist(L, b) } (3)

Figure 4b shows a point p, a line segment L = l1l2, and
the region Φ(L, p). The dotted lines are perpendicular to L
and divide the space domain into three partitions A1, A2, and
A3. Note that any point in A1 (A3) has l1 (l2) as its closest
location on L. Thus, in A1 (A3), Φ(L, p) is bounded by the
perpendicular bisector between p and l1 (l2). Inside partition
A2, Φ(L, p) is bounded by the parabolic bisector of p and
line L. Overall, the boundary of Φ(L, p) can be represented
by a piecewise function: a quadratic function in A2 and two
linear functions in A1 and A3. Thus, we can check whether
any point t falls in Φ(L, p) in constant time, by evaluating
the corresponding function depending on the region where
t falls (e.g., A2 for the example of Figure 4c). To find out
whether a convex polygon T completely falls in Φ(L, p), we
can perform the check for each of its vertices as the following
lemma suggests:

Lemma 3: Given a convex polygon T , a point p, and a line
segment L, if each vertex of T falls in Φ(L, p), then every
location in T falls in Φ(L, p).

Proof: True, since both Φ(L, p) and T are convex.
Lemma 3 can be used to verify whether a non-leaf entry e

(from RP ) can contain points whose Voronoi cells intersect
T ; if it cannot, it is pruned from search. Recall that during
the filter phase of the search, we maintain a set of candidate
points CP , which are likely to form join pairs with q. If there
exists a point p ∈ CP such that T falls in Φ(L, p) for all sides
L of e, then we can safely prune e, since the Voronoi cell of
any point in e cannot intersect T .

The algorithm Algorithm 5 is a pseudocode for the pro-
cedure that implements the filter phase of our search. Condi-
tionalFilter computes a candidate set CP of points p from RP ,
for which V (p, P ) possibly intersects a convex polygon T . It



employs a heap like the incremental NN search [11] algorithm,
in order to retrieve the points p ∈ P in ascending order of their
distances from T , the centroid of T . When a leaf entry of RP

is deheaped (i.e., a point p ∈ P ), we compute its approximate
Voronoi cell V (p, CP ) using only the current contents of CP .
Point p is inserted into CP only when V (p, CP ) intersects T .
When a non-leaf entry e is deheaped, we attempt to prune
e using the geometric checking technique described in the
previous paragraph. If e cannot be pruned, its child node N ′

is loaded and all entries of N ′ are inserted into H . When H
becomes empty, CP contains the set of points that pass the
filter step. In the refinement phase, we examine the entries
in CP and test whether their exact Voronoi cells intersect T .
Points from CP falling in T are immediately reported as true
hits without further processing. The exact Voronoi cells of the
remaining candidates need to be computed (by Algorithm 1)
in order to check whether they intersect T .

Algorithm 5 Conditional Filter
algorithm ConditionalFilter(Polygon T , R-Tree RP )

1: T :=centroid of T ;
2: H:=new min-heap (mindist from T is the key);
3: CP :=∅; . set of candidate points
4: for all entries e ∈ RP .root do
5: insert 〈e, mindist(e, T )〉 into H;
6: while H is not empty do
7: deheap 〈e, mindist(e, T )〉 from H;
8: if e is a point p then
9: compute the approximate Voronoi cell V (p, CP );

10: if V (p, CP ) intersects T then
11: insert p into CP ;
12: else
13: if ∃p ∈ CP ,∀L ∈ e, T completely falls in Φ(L, p) then
14: go to Line 6; . e is pruned
15: read the child node N ′ pointed to by e;
16: for all entries e′ ∈ N ′ do
17: insert 〈e′, mindist(e′, T )〉 into H;
18: return CP ;

Batch conditional filter In Section III-B we extended the
Voronoi cell computation algorithm to apply for a set of points.
Likewise, for a group G of convex polygons (i.e., Voronoi cells
from V or(Q)), we can apply a BatchConditionalFilter(G, RP )
process, which computes a subset CP of P , containing points
whose Voronoi cells may intersect any polygon in G. For this,
we make three modifications to Algorithm 5. First, the entries
are deheaped from H in ascending order of their distances
from G, the centroid of all polygons in G. Second, at Lines
10–11, p is inserted into CP when it intersects any polygon
in G. Third, the non-leaf entry e is pruned at Line 13 when
all polygons T ∈ G fall in Φ(L, p) for all L at the boundary
of e.

B. Computing CIJ pairs

Algorithm 6 is a pseudocode of our no materialization CIJ
method (NM-CIJ), which is based on the (batch) Voronoi cell
intersection search operation. NM-CIJ is similar to PM-CIJ, in
that it traverses RQ and for each leaf node NQ it encounters,
it computes the Voronoi cells of all points q ∈ NQ (in batch)

and finds the CIJ pairs that include these points by probing the
group to an index of P . However (unlike PM-CIJ), NM-CIJ
neither computes nor indexes the complete Voronoi diagram
of P , but finds the CIJ pairs by searching RP directly, using
the two-phase approach described in Section IV-A. Therefore,
NM-CIJ avoids the preprocessing of P and the creation of the
R′

P index at the expense of on-demand (potentially multiple)
computations of Voronoi cells of points in P .

Algorithm 6 No Materialization Algorithm
algorithm NM-CIJ(R-Tree RP , R-Tree RQ)

1: apply depth-first traversal to RQ;
2: for all visited leaf nodes NQ do
3: GQ:={q ∈ NQ};
4: VQ:=BatchVoronoi(GQ, RQ);
5: CP :=BatchConditionalFilter(VQ,RP ); . filter phase
6: BatchVoronoi(CP , RP ); . refinement phase
7: for all q∈GQ, p∈CP such that V (p, P ) intersects V (q, Q)

do
8: report (p, q) as a CIJ result;

Reuse of Voronoi cells in NM-CIJ A careful examination
of Algorithm 6 reveals that even though the Voronoi cell of
each point in Q is computed exactly once, Voronoi cells of
points in P may be repeatedly computed, if they are used by
points in Q at different leaf nodes NQ of RQ. We observed
that nearby leaf nodes in RQ share a fraction of common
items in their candidate sets CP . In order to take advantage of
this observation, we employ a buffer B which maintains the
Voronoi cells of CP from the previous loop. If the exact cell
V (p, P ) of a point p ∈ CP at the current loop already resides
in B, we avoid computing it again. B is updated to contain
the cells of the current CP , in order to be used in the next
loop.

V. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the efficiency of
CIJ algorithms on synthetic and real datasets. Uniform syn-
thetic datasets were generated by assigning random locations
to points. We obtained real datasets of geographical features
from the U.S. Board on Geographic Names2; their descriptions
are shown in Table I. Attribute values of all datasets are
normalized to the interval [0, 10000]. Each dataset is indexed
by an R-tree with a disk page size of 1K bytes. By default,
both P and Q have n = 100K points each. We used an LRU
memory buffer whose default size is set to 2% of the data
size on disk. All algorithms (FM-CIJ, PM-CIJ, and NM-CIJ)
were implemented in C++. Experiments were performed on a
Pentium D 2.8GHz PC with 1GB memory.

A. Voronoi Cell Computation

In the first experiment, we compare our single-traversal
technique BF-VOR (Algorithm 1) against the multiple-
traversal method TP-VOR [10], on a synthetic (uniform)
dataset P with 100K points indexed by an R-tree. Figure
5a shows the R-tree node accesses incurred for computing

2http://geonames.usgs.gov/index.html



TABLE I
REAL DATASETS OF US

Dataset Contents Data cardinality
PP Populated Places 177983
SC Schools 172188
CE Cemeteries 124336
LO Locales 128476
PA Parks 58312

the Voronoi cells of individual queries (100 query points
randomly chosen from the dataset). BF-VOR outperforms
TP-VOR and has stable performance across different query
instances because BF-VOR accesses a tree node at most once
and employs an effective pruning rule to discard early entries
unqualified for refining the Voronoi cell of the query point.
Figure 5b displays the CPU cost of the algorithms, which is
directly proportional to the node accesses.
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Next, we test the following methods for Voronoi diagram
computation on a uniform dataset P (indexed by an R-tree
RP ): (i) an ITER method, which traverses RP in depth-
first order and for each point p computes its V (p, P ), using
Algorithm 1, and (ii) a BATCH method which computes
Voronoi cells of points in the same leaf node concurrently,
using Algorithm 2. The comparison also includes LB, which
represents the lowest possible I/O cost bound of these meth-
ods; that of just traversing the complete RP .

Figure 6 shows the cost of all Voronoi cell computation as
a function of the datasize. ITER and BATCH have similar I/O
cost as LB. Both of them have much lower I/O cost than ex-
ternal memory Voronoi diagram computation algorithms (the
theoretical one [12] and the practical one [13]), which require
multiple reads and writes on the data (i.e., with I/O cost as a
few times of LB). Regarding CPU cost, the performance gap
between ITER and BATCH widens as the datasize increases.
Table II shows the performance of BATCH on computing the
Voronoi diagrams of the real datasets. Observe that the I/O cost
of BATCH may vary between datasets of similar sizes (e.g.,
PP and SC). The algorithm is slightly more expensive when
adjacent Voronoi cells have large size deviation in area. In
such cases, the points located close to the boundary between
small and large Voronoi cells are frequently accessed. Still,
BATCH is I/O-efficient for all tested datasets. In addition, the

CPU cost of BATCH scales well with the size of real datasets.
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TABLE II
PERFORMANCE OF BATCHVORONOI

Dataset Page accesses CPU (s)
PP 10177 57.3
SC 13220 56.0
CE 10504 37.0
LO 8134 41.0
PA 6406 20.3

B. CIJ Computation

The next set of experiments compare the performance of
the three CIJ algorithms (FM-CIJ, PM-CIJ, and NM-CIJ)
for a wide range of settings. We first examine the case of
joining uniform synthetic datasets. Figure 7 shows the cost
breakdown of I/O and CPU cost of the algorithms for the
default setting (i.e., |Q| = |P | = 100K, buffer size at 2%).
The three methods have similar I/O costs for JOIN (join
processing cost) but different costs for MAT (materialization
cost). The results show that NM-CIJ saves the creation and
materialization of the Voronoi R-trees, at no I/O penalty to
its join cost. Regarding CPU cost, the three methods have
similar performance, with PM-CIJ being slightly cheaper than
the other methods. NM-CIJ is expected to have the highest
CPU time since it uses more sophisticated techniques for
pruning (i.e., the BatchVoronoiFilter method). Nevertheless,
its significant savings in terms of I/O compensate this slight
computational cost overhead. Note that (if we charge a typical
10ms for each random disk page access), the algorithms are
I/O sensitive, with the exception of NM-CIJ whose I/O cost
(at the presence of a buffer) is very low and similar to the
computational cost of all algorithms.

As the basis for comparison, in the following experiments
we include the I/O cost of LB, i.e., the cost of traversing both
trees once, which provides a theoretical lower bound I/O cost
of CIJ computation using R-trees.3 Figure 8a shows the I/O
performance of the algorithms as a function of the buffer size
(%). NM-CIJ outperforms its competitors, for the reasons we
already explained. As the buffer size increases, more nodes

3Every point in P and Q should participate in the CIJ (since each p ∈ P
is contained in a cell of V or(Q) and vice-versa). Therefore it is essential to
visit all points in P and Q during CIJ computation.
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can be effectively cached, thus the I/O cost of all methods
decreases. The cost of NM-CIJ converges rapidly to that of
LB; at 2% buffer size the difference is only 30%. NM-CIJ
incurs low I/O cost because it makes excellent use of the
buffer, by (i) visiting the leaf nodes of Q in an order with high
locality and (ii) computing Voronoi cells and their join pairs
by examining only nearby nodes of RQ and RP , which exist
in the buffer with high probability. Figure 8b plots the cost of
the algorithms with respect to the datasize n. All algorithms
scale well for large datasets. NM-CIJ has the lowest I/O cost,
which is very close to LB. The CPU time of NM-CIJ is only
slightly higher than that of PM-CIJ and FM-CIJ. Their relative
CPU-time difference (graph omitted) remains constant. In the
remaining experiments we do not plot the CPU cost, since
all three algorithms have similar computational performance
with the CPU cost of NM-CIJ being only slightly (10%-20%)
higher.
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Figure 9a shows the I/O cost of the algorithms as a function
of the cardinality ratio |Q| : |P | for a constant number of total
points |Q|+|P | =200K. As the cardinality ratio increases, |P |
decreases and PM-CIJ incurs less I/O cost on materializing the
Voronoi cells of points in P . For FM-CIJ, the total number
of materialized Voronoi cells remains constant for different
cardinality ratios. As we will verify in another experiment, the
ratio does not have much impact on the number of redundant
Voronoi cell computations in NM-CIJ, which remains constant
as well. Figure 9b plots the number of CIJ results produced
by the algorithms, as a function of their current I/O cost
(progressiveness). Both FM-CIJ and PM-CIJ are blocking;
they generate CIJ pairs after one or two Voronoi R-trees are
built. On the other hand, NM-CIJ is a non-blocking algorithm,

starting to produce CIJ pairs immediately.
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The effectiveness of the filter step (Line 5 of Algorithm
6) directly affects the performance of NM-CIJ. At the i-th
loop of NM-CIJ (indicating the i-th leaf node NQ of RQ),
let si be the size of CP and s′i be the number of candidates
that actually join with at least one Voronoi cell of a point
in NQ. The false hit ratio of the filter step is defined as:
FHR =

Pm
i=1 si−

Pm
i=1 s′

iPm
i=1 s′

i
, where m is the total number of

leaf nodes in RQ. Figure 10a shows that the FHR is very low
and not sensitive to the join input size. Figure 10b plots the
false hit ratio with respect to the cardinality ratio |Q| : |P |,
for |Q| + |P |=200K. For small |Q| : |P |, |P | is large and
many points in P lie close to border of Voronoi cells in Q;
these cannot be pruned and result in redundant computations of
the corresponding Voronoi cells, increasing the overall FHR.
Nevertheless, the filter step of NM-CIJ is still effective as the
false hit ratio for all cases remains below 0.1.
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We now study the benefit of reusing Voronoi cells in NM-
CIJ (see Section IV-B). Figure 11 plots the number of exact
Voronoi cells computed for points in P by two versions
of NM-CIJ: (i) REUSE, the standard version, and (ii) NO-
REUSE, which does not reuse exact Voronoi cells of P
computed in the last batch. The figure shows these numbers
in parallel to the total number of points in P ; the number of
redundant cell computations in REUSE and NO-REUSE can
be viewed as the difference between their lines and that of |P |
in the plots. Note that the relative benefit of REUSE over NO-
REUSE is insensitive to the database size and the cardinality
ratio. In general, the REUSE heuristic proves valuable, since
it reduces by 50% (on the average) the redundant Voronoi cell
computations of NO-REUSE.
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Table III shows the join output size and the I/O costs of the
CIJ algorithms on various pairs of real datasets. In general, the
results are consistent with the experiments on synthetic data;
NM-CIJ outperforms PM-CIJ which, in turn, is more efficient
than FM-CIJ. The relative difference between the algorithms
is not stable, for instance, at CE 1 LO the relative difference
between NM-CIJ and PM-CIJ is not as high as at PA 1 PP.
Observe that the join output size is comparable to input data
size and not overwhelmingly large. In general, the number of
join pairs increases slightly with the data skew.

TABLE III
RESULT SIZE AND PAGE ACCESSES OF CIJ

Page accesses
Q P CIJ pairs FM-CIJ PM-CIJ NM-CIJ
SC PP 583169 60476 40644 26613
CE LO 422986 45310 28602 23160
CE SC 426516 54885 41021 29082
LO PP 623989 50754 36495 21992
PA SC 344771 43468 36989 22612
PA PP 383518 41334 34863 19744

VI. CONCLUSIONS

In this paper we identified a natural spatial join operation
between pointsets; the common influence join (CIJ), which
finds application in practical spatial data analysis tasks. Nev-
ertheless, CIJ cannot be computed from traditional distance
joins, due to the essential computation of Voronoi cells. We
proposed an optimized technique for computing the Voronoi
cell of a given point and extended it for batch computa-
tion. Based on this module, we develop three efficient CIJ
algorithms that operate on pointsets indexed by R-trees. An
experimental evaluation with synthetic and real datasets shows
that our NM-CIJ algorithm is highly efficient, incurring only
slightly higher I/O cost than the theoretical lower bound cost
for the problem. Yet another advantage of NM-CIJ is that it
is non-blocking; it starts producing CIJ pairs after few disk
pages are accessed.

In the future, we will extend our solutions for 3D points,
with the intuition that, the convex polygon Vc(pi) (of Lemma
1) in 2D space is analogous to a convex polyhedron in
3D space. Also, we plan to generalize CIJ computation for
multiple pointsets and develop multiway CIJ algorithms.
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