
Lattice Histograms: a Resilient Synopsis Structure

Panagiotis Karras #, Nikos Mamoulis ∗

#Department of Informatics, University of Zurich
CH-8050 Zurich, Switzerland

karras@ifi.uzh.ch
∗Department of Computer Science, University of Hong Kong

Pokfulam Road, Hong Kong, China
nikos@cs.hku.hk

Abstract— Despite the surge of interest in data reduction
techniques over the past years, no method has been proposed to
date that can always achieve approximation quality preferable
to that of the optimal plain histogram for a target error metric.
In this paper, we introduce the Lattice Histogram: a novel
data reduction method that discovers and exploits any arbi-
trary hierarchy in the data, and achieves approximation quality
provably at least as high as an optimal histogram for any data
reduction problem. We formulate LH construction techniques
with approximation guarantees for general error metrics. We
show that the case of minimizing a maximum-error metric can
be solved by a specialized, memory-sparing approach; we exploit
this solution to design reduced-space heuristics for the general-
error case. We develop a mixed synopsis approach, applicable
to the space-efficient high-quality summarization of very large
data sets. We experimentally corroborate the superiority of
LHs in approximation quality over previous techniques with
representative error metrics and diverse data sets.

I. INTRODUCTION

A variety of data management applications call for the

quick and efficient reduction of a very large amount of

data into a compact synopsis that achieves high accuracy

of approximation. Specific applications that give rise to a

sustained interest in the area include OLAP/DSS systems [1],

approximate query answering [2], [3], [4], [5], cost-based

query optimization [6], time-series indexing [7], data mining

[8] and, most recently, distributed stream monitoring [9]. In all

problem formulations, the goal is to minimize an approxima-

tion error over the original data within a given space budget.

Past research has led the way from conventional approximation

techniques such as histograms [10], [11], [12], [13], [14],

[4], [3], [15], [16], [17], [18], [19] and Haar wavelets [6],

[1], [5], [20], [21], [22], [23], [24], [25], [18], [26], [27] to

more sophisticated structures such as compact hierarchical

histograms [9] and the Haar+ tree [28]. However, existing

research has largely neglected a cardinal question of the area,

well expressed in a call to arms by Ioannidis [29]: the interac-

tion between histograms and indices presents opportunities but

also several technical challenges that need to be investigated.

The main advantage of a plain histogram in relation to an

index structure is its freedom to choose the most appropriate

bucket boundaries for the data at hand. Still, the strength of an

index structure is its ability to exploit an underlying hierarchy

in the summarized data set, looking beyond local interrela-

tions. Recent research has attempted to create less restrictive

synopsis structures in two independent routes [9], [28]; both

experimentally demonstrate that the structures they propose

can, in certain circumstances, achieve higher approximation

quality than an optimal histogram. Yet their results are valid

only for data with particular characteristics. The quality of

approximation they achieve in relation to an optimal histogram

is not provably superior for any data set; indeed, as we show,

it can be much worse. Besides, both [9] and [28] impose an ad

hoc predefined hierarchy on the data, by default a hierarchy

of dyadic intervals. Such a hierarchy may not be the most

appropriate.

In this paper, we introduce Lattice Histograms (LH): a

resilient index structure for data compaction that addresses

the above shortcomings. It allows for the detection of a most

suitable hierarchy in the data set under compaction and the

derivation of a high-accuracy approximation based on that

hierarchy; hence it is superior to fixed-hierarchy methods [9];

moreover, it achieves approximation quality at least as high

as an optimal plain histogram. We propose an approximation

scheme and a reduced-memory heuristic for synopsis con-

struction with this structure, and we experimentally verify the

advantage of LH over previous techniques.

II. BACKGROUND AND RELATED WORK

Past research has established two principal methods for the

construction of high-quality data approximations with deter-

ministic guarantees. The former, histograms, creates buckets

of contiguous values that are approximated by a representative

value. The latter utilizes an appropriate hierarchical data struc-
ture for concise data representation. Under both approaches,

given an n-size data vector D = 〈d0, d1, . . . , dn−1〉, the

problem is to devise a representation D̂ of D using at most B
space, so that a given error metric in the approximation is mini-

mized. A normalized, weighted Minkowski-norm error metric,

Lw
p (D̂,D) =

(∑
i

(wi|d̂i−di|)p

n

) 1
p

, covers most practically

interesting point-wise error metrics; d̂i is the reconstructed

value for di and wi a related weight; for relative error, wi =
1

max{|di|,S} , where S > 0 is a sanity bound that prevents small

values from dominating the result [20], [22]. The techniques

in this paper are applicable to any monotonic distributive error

metric, defined as in [22], [28].

A. Plain One-dimensional Histograms
A plain histogram divides D into B � n disjoint inter-

vals [bi, ei], 1 ≤ i ≤ B called buckets or segments and

attributes a single value vi to each of them that approximates

all consecutive values therein, dj , j ∈ [bi, ei]. In a dense
histogram these intervals are successive; in a sparse histogram

there may be void areas between them. A single bucket

(segment) can be expressed by the triplet si = {bi, ei, vi}.

Given a target metric, the best value of vi is defined as a

function1 of the data in [bi, ei]. 3B numbers suffice to represent

a sparse B-bucket histogram; 2B values represent a dense

B-bucket histogram. Initial work on histograms focused on

heuristics [11], [12], [13]. [14] presented an O(n2B) dynamic-

programming scheme that derives L2-error-optimal (dense)

bucket boundaries. Its basic observation is that the b-optimal

histogram for a data vector D can be recursively derived from

the space of (b−1)-optimal partitionings of all prefix vectors

of D. In fact, the solution of [14] is a special case of the line-

segmentation algorithm introduced in [30]. We emphasize that,

for an arbitrary error metric, this algorithm needs O(n3B)
time, higher than the O(n2B) of the L2 case; this issue re-

appears in Table II, Section V-E. Still, [17] proposed efficient

methods specialized for several specific metrics. Later, [18]

introduced a generic space-efficiency paradigm applicable on

these histogram construction algorithms.

B. Hierarchical Synopsis Structures
Alternative research has studied index structures that repre-

sent the data in consecutive hierarchical levels of detail.
1) The Haar Wavelet Hierarchy: The Haar wavelet hierar-

chy can be visualized through a complete binary tree, the Haar
tree [6]. The coefficient in the Haar tree root node contains

the overall average value and each other coefficient value ci

contributes the value +ci to all data values (leaves) in its left
sub-tree and −ci to those in its right sub-tree. Hence each

original data value is reconstructed by adding/subtracting the

coefficients in the path towards its position. A Haar wavelet
synopsis of D is a vector Ẑ of B � n non-zero 〈i, ci〉
terms, such that its inverse wavelet transform D̂ = W−1

(
Ẑ

)
approximates D. The computation of an optimal Haar wavelet

synopsis is computationally easiest for the L2 error. Still,

past research has tackled the more demanding version of the

problem for non-Euclidean error metrics [20], [21], [22], [23],

[25], [18], [26], leading to the Haar+ tree, which supersedes

Haar wavelet models.

+

co

d3d2d1

-+
c1c2 c3

+ +

C1

-+
c4c5 c6

+ +

C2
-+

c7c8 c9
+ +

C3

d0

Fig. 1. An One-Dimensional Haar+ Tree

1For L1 it is the median of the values in [bi, ei] [19], for L2 their mean
[14], for L∞ the mean of the maximum and minimum value among them,
while [17] analyzes the respective relative error cases.

2) The Haar+ Tree: The Haar+ tree [28] extended the

Haar wavelet hierarchy by allowing for extra coefficient values

in the structure, which contribute their (signed) value to a

single dyadic interval alone. Figure 1 depicts a simple one-

dimensional Haar+ tree that may approximate a four-element

data set {d0, d1, d2, d3}; it contains a single root coefficient

node c0 that contributes its value to all approximated data

values, followed by a binary tree of triads (C1, C2 and

C3), which substitute the single non-root coefficients of the

classical Haar tree. In each triad (e.g., C1), the head coefficient
(e.g., c1) contributes its value positively to its left sub-tree and

negatively to its right sub-tree. The left (e.g., c2) and right

(e.g., c3) supplementary coefficients contribute their values

positively only in the single subinterval that they affect (e.g., c2

contributes positively to d0 and d1 only). An optimal synopsis

of space B for an error metric E places B non-zero coefficient

values at any positions in the Haar+ tree so that E is minimized.

Haar+ not only increases the accuracy of approximation in

relation to the simple Haar tree, but also allows for faster

synopsis construction [28].

3) Compact Hierarchical Histograms: The Compact Hier-

archical Histogram (CHH), proposed by [9], defines a binary

hierarchy of intervals and selects an optimal subset of nodes

to represent a data set. In fact, it can be easily shown

that a binary CHH is equivalent to a Haar+ tree with only

supplementary (and root) coefficients. [9] observed that the

calculation of the optimal value to retain on a node per

se is computationally hard, and proposed CHH construction

heuristics. This approach comes in contrast to the one of [26],

[28], in which a quantized set of possible values is examined,

allowing for an approximation guarantee. The winning Greedy

CHH heuristic [9] improves upon an overlapping partitioning,

in which the candidate assigned value at a CHH node is the

optimal value for the whole data interval under its scope (as in

a plain histogram bucket [14], [17], [19]), but not for the value

set it actually approximates; the heuristic uses the optimal

occupied node positions for such an overlapping partitioning

for the target error metric, but adjusts the values assigned to

them so as to be optimal for the actually approximated data

set (i.e., a subset of the data under the node’s scope); the result

is a longest-prefix-match partitioning. [9] tested the CHH at

approximating Internet traffic data, but emphasized that it can

be used in a broad range of applications. In fact, as pointed

out in [31], [28], hierarchical synopsis structures (such as the

Haar+ tree and its special case, the CHH) are most suitable at

approximating discontinuous data sets. [9] suggested that the

inherent IP address hierarchy provides a predefined hierarchy

suitable for the representation of quantities measured over

them. However, the IP address hierarchy is not necessarily

related to the relationship of data values measured over them.

In fact, any predefined hierarchy (i.e., structure where larger

buckets contain smaller ones) imposes an arbitrary constraint

on the approximation problem. The most appropriate hierar-

chical (i.e, bucket-overlap) pattern for a given data set is an

unknown, not a given, of the problem.

C. Multidimensional Histograms

Related research has strived to extend the histogram idea

to multiple dimensions, and to build hierarchical structures at

that. [32] introduced a multidimensional version of the equi-

depth histogram of [33]. [13] introduced MHist, a multidimen-

sional histogram generalizing the one-dimensional MaxDiff
heuristic of [12]. [34] introduced GenHist, which allows un-

restricted overlap among multidimensional buckets extracted

from progressively coarser grids over the data set. [35] pre-

sented a multidimensional histogram built by analyzing query

results, and [36] extended this work with STHoles, which

allows a bucket to contain another. Still, these techniques are

based on heuristics, and do not provide approximation guaran-

tees for general queries. Indeed, even in the two-dimensional

case, constructing an optimal partitioning into arbitrary non-

overlapping rectangular buckets is NP-hard [37]; algorithms

with approximation guarantees have been provided for limited

versions of the problem, with non-arbitrary buckets [38], [39],

[40]; the problem with arbitrary overlapping buckets, as in

[34], [36] is even harder. This work handles the static synopsis

construction problem in the one dimension, as [14], [22], [28],

[9], allowing bucket overlap, as [34], [36], [9]. Still, unlike

[36], it does not depend on query feedback, hence it is not
susceptible to errors for queries that target unseen data regions;

it allows for arbitrary bucket sizes and positions, constrained

neither by the imposition of grid structures over the data (as

in [34]), nor by a predefined hierarchy (as in [9]); and, unlike

all these works, it can provide tight approximation guarantees.

III. MOTIVATION

Plain histograms are advantaged by their freedom to choose

the most appropriate partitioning into buckets for the prob-

lem at hand, with no restrictions on their relative locations

and sizes. On the other hand, they are constrained by their

underlying locality assumption; a bucket is supposed to ap-

proximate neighboring values, which are expected to exhibit

small variations. Thus, histograms are unable to exploit non-

local interrelations. By contrast, hierarchical data compaction

is advantaged by its ability to exploit non-local interrelations.

Besides, a B-term Haar+ representation defines B to 3B + 1
distinct consecutive intervals; a B-term CHH defines B to

2B + 1 intervals; in contrast, a B-sized histogram defines

only B distinct intervals. Still, hierarchical representations are

constrained by the predefined nature of their hierarchies; such

hierarchies delimit the allowed buckets to a restrictive set; a

hierarchy that does not fit into the predefined mold cannot be

exploited by those structures. In consequence, the advantage of

a hierarchical structure over a plain histogram does not apply

at the task of approximating continuous data, such as those

generated by natural processes or economic phenomena (e.g.,

a series of currency exchange rates or stock exchange indices).

A plain histogram approximates such data more effectively

than fixed-hierarchy structures For example, consider the data

set D = {4, 3, 5, 10, 12, 11, 11, 4}. A 3-term plain histogram

can represent it as {4, 4, 4, 11, 11, 11, 11, 4} with L∞ = 1 and

L1 = 0.5. Neither a Haar+ tree nor, therefore, a CHH can

achieve this accuracy. An L∞-optimal 3-term Haar+ synopsis

consists of the coefficients {c0 = 6.5, c8 = 4.5, c19 = 3.5},

producing the approximation {6.5, 6.5, 6.5, 6.5, 11, 11, 10, 3}
with L∞ = 3.5; an L1-optimal 3-term Haar+ synopsis consists

of the coefficients {c0 = 4, c8 = 7, c20 = 7}, producing the

approximation {4, 4, 4, 4, 11, 11, 11, 4} with L1 = 1.125; the

same results can be achieved in this case by a CHH. Both

[28] and [9] strived to annul the quality tradeoff between

histograms and index structures, from different points of

departure. [28] inserted histogram-like buckets into a Haar

tree; still, it did not escape from the constraints imposed by the

Haar hierarchy. Likewise, [9] built hierarchical interrelations

on a plain histogram; thus, it imposed a fixed hierarchy anew

at the expense of flexibility. In this paper, we introduce a

structure that eliminates this quality tradeoff.

IV. THE LATTICE HISTOGRAM

We now introduce the Lattice Histogram (LH), a resilient

synopsis structure that combines the strengths of, and goes be-

yond, plain histograms and fixed-hierarchy techniques. Figure

2 depicts an LH structure that may be used for summarization

of an eight-element data set {d0, . . . , d7}. The structure con-

tains
n(n+1)

2 = 36 nodes, {c0, . . . , d35}, layered in n = 8
levels, {�1, . . . , �8}. A node ci at level �k (k = 1, . . . , n,

counting from the top) affects an interval Ii of length n−k+1.

There are k intervals of size n−k +1 in a data vector of size

n, hence the kth level contains k nodes. Each node has two

children in the successor level, if such exists, and two parent

nodes in the predecessor level, except for edge nodes, who

have one parent node only. For instance, the single parent of

node c6 (Figure 2) is c3; c10 and c11 are its children; and

it affects the interval I6 = {d0,. . . ,d4}. On the other hand,

c7 has parents c3 and c4, children c11 and c12, and affects

I7 ={d1,. . . ,d5}.
co

c1 c2

c3 c4 c5

c6 c7 c8

c15

c11 c12 c13 c14

c9

c16 c19c17 c18 c20

c21 c22 c23 c24 c25 c26 c27

c10

c28 c29 c30 c31 c32 c33 c34 c35

d0 d1 d2 d3 d4 d5 d6 d7

Fig. 2. A Lattice Histogram Structure

An LH representation of a given data vector D in a space

budget B assigns non-zero values to, or occupies, a set of

B nodes in the lattice structure. In our data representation

mechanism, the intervals Ii, Ij defined by two occupied

nodes ci, cj may contain each other; however, non-containing

overlap between occupied node intervals is not allowed; hence,

no node is allowed to have two occupied ancestors such that

one of them is not ancestor of the other. For example, nodes

c9 and c11 cannot be both occupied, as they are both ancestors

of c24 without one of them being an ancestor of the other; if

node c4 in Figure 2 is occupied, then any of its descendant
nodes can be occupied; apart from these, only those nodes

that either contain I4 = {d1, . . . , d6} or are disjoint to it

may be occupied: c0, c1, c2, c28 and c35. A data item in an

LH can be reconstructed as the value of the lowest occupied

node affecting it in O(log B), using an appropriate interval

tree. The optimal LH representation of D in a space budget

B is the one that minimizes a given error metric E . For

example, for the data vector D = {4,3,5,10,12,11,11,4} the

2-term LH representation that minimizes L1, L2, and L∞,

consists of the occupied node set {c0=4, c13=11} and yields

the approximation D̂ = {4,4,4,11,11,11,11,4} with L1 = 0.5,

L2 =
√

.5, L∞ = 1. Neither the Haar+ (or CHH) structure,

nor a plain histogram can achieve such accuracy of approx-

imation. For example, the L∞-optimal 2-term histogram for

this vector approximates it as {4,4,4,8,8,8,8,8} with L∞ =4;

an L1-optimal 2-bucket histogram is {4,4,4,11,11,11,11,11}
with L1 = 1.375. Likewise, an L∞-optimal 2-term Haar+

approximation (see Section II-B.2) is {c0 = 6, c3 = 2} with

L∞ = 4, while an L1-optimal 2-term Haar+ approximation

is {c0 = 4, c8 = 7} with L1 = 2. The same results hold for a

CHH. We emphasize the following points:

• A plain histogram [11], [14], [17] is a special case of

an LH. In particular, it is an LH in which containment

between occupied node intervals is disallowed. Figure 3a

shows a subset of four occupied nodes in the LH of Figure

2 that make a (dense) plain histogram.
co

c1 c2

c3 c4 c5

c6 c7 c8

c15

c11 c12 c13 c14

c9

c16 c19c17 c18 c20

c21 c22 c23 c24 c25 c26 c27

c10

c28 c29 c30 c31 c32 c33 c34 c35

d0 d1 d2 d3 d4 d5 d6 d7

co

c1 c2

c3 c4 c5

c6 c7 c8

c15

c11 c12 c13 c14

c9

c16 c19c17 c18 c20

c21 c22 c23 c24 c25 c26 c27

c10

c28 c29 c30 c31 c32 c33 c34 c35

d0 d1 d2 d3 d4 d5 d6 d7

(a) (b)
Fig. 3. LH nodes that make (a) a plain histogram, (b) a full binary CHH

• A CHH [9] is also a special case of an LH. In particular,

it is an LH limited to a specific, pre-selected, hierarchy

of nodes. Figure 3b shows the subset of nodes in the LH

of Figure 2 that form a full binary CHH.

• In terms of sparse approximation theory [41], [25], the

LH provides an approximation using a redundant dic-

tionary of O(n2) vectors; it requires 2 log n bits per

index. A plain histogram that approximates a sparse one-

dimensional array also requires 2 log n bits to store the

boundaries of each bucket.

A. Definitions and Properties

A Lattice Histogram is a sparse array L of N = n(n+1)
2

elements, arranged in a lattice, that represents a data vector

D of n elements {d0, . . . , dn−1}. The lattice is configured so

that the index fk of the first node cfk
in level k is the (k−1)th

triangular number, fk = k(k−1)
2 . Therefore, node ci resides

in level k = � 1+
√

8i+1
2 	 and its children are nodes ci+k and

ci+k+1. A data item dj of the represented data vector D has

a parent node ci in the last level n of the lattice, such that

i+n=j+N . An LH obeys the following property.

Property 1: LH Property Let ci and cj be two occupied

nodes in an LH L, and Ii, Ij be their respective intervals. If

Ii ∩ Ij �= ∅, then Ii ⊂ Ij or Ij ⊂ Ii.

Nepots and Nepotic Descendants The nepot of a node ci

in level k=� 1+
√

8i+1
2 	 of an LH is the node cinep

=ci+2k+2,

that is, the middle of the three descendants of ci in level k+2,

if such exists. The nepot of ci and the descendants thereof are

called nepotic descendants of ci. The only items in Ii which

are not affected by the nepot of ci are the leftmost cilm
and

rightmost cirm
item in that interval.

Complementary nodes and Linear Descendants A pair of

LH nodes cj and ck is complementary with respect to another

node ci if and only if Ij ∩ Ik = ∅ and Ii = Ij ∪ Ik. A node

cj that is member of a complementary pair with respect to ci

is a linear descendant of ci, and ci is a linear ancestor of cj .

A node ci in level k = � 1+
√

8i+1
2 	 has n − k pairs of linear

descendants; we denote the leftward member of such a pair in

level k + � as ciL(k+�) and its rightward complementary node

as ciR(n−�+1) , for � ∈ {k + 1, . . . , n}.

In Figure 2, c13 is the nepot of c5, and nodes c16 and c25

are complementary with respect to node c7. All descendants of

a node are divided into a group of linear and one of nepotic

descendants. Figure 4 illustrates these groups for a selected

node, along with an example pair of complementary nodes.

linear descendants

nepotic
descendants

node

complementary
pair

d0 d1 d2 d3 d4 d5 d6 d7
Fig. 4. Groups of descendants

Given an LH L, let ‖L‖ be the number of occupied

nodes in it. The following theorem shows the redundancy of

occupying the linear descendants (hence, symmetrically, the

linear ancestors) of an occupied node.

Theorem 1: Any LH representation L is reducible to an at

least equally sparse LH L′, in which no linear descendant of

an occupied node is occupied, and ‖L′‖ ≤ ‖L‖.

Proof: Let ci be an occupied node in L and cj be an

occupied linear descendant thereof. Let ck be the complemen-

tary node of cj with respect to ci. Then, given that node

cj is occupied, no node which is a linear descendant of ci

and an ancestor of ck can be occupied; if such a node were

occupied, then its affected interval would overlap with but

neither contain nor be contained by the affected interval Ij

of occupied node cj ; hence the defining property of an LH

(Property 1) would be violated. Concerning node ck itself,

we distinguish the following cases: (i) if ck is occupied, then

the configuration {ci = a, cj = b, ck = c} is equivalent to

{ci = 0, cj = b, ck = c}; in this case, the occupation of ci

is of no consequence for the approximation, as all the values

in its scope have occupied affecting nodes in lower levels of

the lattice; (ii) if ck is not occupied, then the configuration

{ci = a, cj = b, ck = 0} is equivalent to {ci = 0, cj = b, ck =
a}. The value assigned to ci can be simply forwarded to ck

(recall that linear descendants of ci which are ancestors of

ck cannot be occupied); given that cj is occupied, the value

interval ci actually affects is exactly the interval affected by

ck. This substitution process is repeated for all other cases,

terminating when the bottom of the lattice is reached. Hence,

any instance of an occupied node ci with an occupied linear

descendant can be reduced to an equivalent, not less sparse,

configuration where ci is not occupied. In effect, any LH L
can be reduced to an at least equally sparse LH L′, in which

no linear descendant of an occupied node is occupied and

‖L′‖ ≤ ‖L‖.

Corollary 1: The optimal B-term LH representation L of a

data vector D that minimizes a given error measure E can be

expressed as an LH in which occupied nodes have no occupied

linear descendants.

In the next section, we proceed to construct a dynamic

programming approximation scheme for the optimal LH rep-

resentation of a data vector D based on Corollary 1.

Incoming value An incoming value v to an LH node ci with

affected interval Ii is the value assigned to the lowest occupied

ancestor node of ci, whose affected interval contains Ii. For

a data item, the incoming value definition corresponds to a

reconstructed value. The incoming value to the descendants of

an occupied LH node ci is defined by ci alone. Other ancestors

of those descendants do not contribute to that incoming value;

their contribution is either canceled by ci, or prohibited by the

LH Property, or would be redundant according to Theorem 1.

Figure 5 depicts the implications of occupying a node to

nodes in its periphery with whom it shares descendants.

occupied node

occupation
prohibited

occupation
redundant

d0 d1 d2 d3 d4 d5 d6 d7

Fig. 5. Prohibited and redundant occupation of nodes

V. LATTICE HISTOGRAM COMPUTATION

Problem 1: Given a data vector D and a monotonic dis-

tributive error metric E , construct an LH representation L of

D with B occupied nodes that produces an approximation D̂
of minimal error fE(‖D − D̂‖).

To solve this problem, we have to determine the optimal

positions and values for B occupied nodes. As an occupied

node need not have occupied linear descendants, two strategic

choices are available on a node ci: either ci is occupied and

the rest of the problem is solved on its nepotic descendants,

or ci is not not occupied and the rest of the problem is solved

among a complementary pair of its linear descendants; this

approach can result into any eligible combination of occupied

descendants nodes of ci conforming to the LH property. Let

v be an incoming value at node ci in level k, b be an amount

of available space allocated to ci and its descendants and

Q(i, v, b) the optimal choice to be made at ci in that case. The

full optimal solution can be derived in a bottom-up process

that calculates Q(i, v, b) on each node, for each possible v
and b. The interval affected by ci contains n−k+1 elements,

hence ci and its descendants do not need to use more than

n− k + 1 occupied nodes; thus the domain of b for ci is

|Di| = min{B,n−k+1}. We delimit the domain of v by

quantizing it into multiples of a resolution step δ. Let M (m)

be the maximum (minimum) value in D, and Δ = |M−m|.
Then the domain of v for any ci is S ⊂ [m,M]; values outside

this interval are not useful for approximation; hence |S|= Δ
δ .

Similarly, the cardinality of the domain of allowed assigned

values z at node ci is |Si| = O(Δ
δ). Table I summarizes

our notation. We now define dynamic programming recur-

sive schemes for LH construction. We distinguish a general-

purpose algorithm for any monotonic distributive error metric,

and a specialized algorithm that achieves higher time- and

space-efficiency for maximum-error metrics.

symbol meaning
D Summarized data vector
L Optimized LH representation of D
ci Node in L
Ii Data interval affected by ci

v Incoming value to ci

z Value assigned to ci

m (M) Global minimum (maximum) in D

TABLE I

NOTATION USED

A. General Case

Our general algorithm computes and tabulates all values of

the fundamental Q(i, v, b) function It examines all allowed

distributions of the allocated space b on node ci with incom-

ing value v, and selects the best of them. The solution is

established after Q(0, 0, B) is computed, at which point all

choices corresponding to that solution can be traced within

the tabulation for the extraction of L. As we have discussed,

if a node ci is occupied, then no linear descendant of ci need

be occupied. Therefore, the b−1 available space left can be all

allocated to the nepotic descendants of ci, i.e., to cinep
. In that

case, all possible (quantized) assignments of an approximation

value z at ci need2 to be examined. The incoming value to

cinep is z and the leftmost (rightmost) item in Ii, cilm
(cirm),

which is not affected by the nepot, is approximated by z. On

the other hand, if ci is left unoccupied, then b space can be

shared between any of the n−k complementary pairs of its

linear descendants, k = � 1+
√

8i+1
2 	. Then the same incoming

value v is forwarded to the two nodes of the chosen pair

2The values this node will eventually approximate cannot be known in
advance, hence all possible assigned values are examined

that shares the allocated space. Hence Q(i, v, b) entries are

polymorphic; an entry contains: (i) the δ-optimal value z to

assign at ci (possibly none); (ii) the minimum error E(i, v, b)
thus achieved; when z=0, it also contains (iii) a level index

�̂ for the chosen best complementary linear descendants pair

ciL(k+�̂)
and ciR(n−�̂+1)

, �̂∈{1, . . . , n−k}; and (iv) the amount of

space bL out of b allocated to ciL(k+�̂)
. A recursive procedure

MinError emerges, which computes E(i, v, b) as:

E(i, v, b) = min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
z∈Si

⎧⎨
⎩

E (ilm, z, 0) +
E (inep, z, b−1) +
E (irm, z, 0)

,

min
1≤�≤n−k,b′∈Di

{
E

(
iL(k+�), v, b′

)
+

E
(
iR(n−�+1), v, b−b′

)
Error addition is used for the sake of simplicity; any dis-

tributive function G can be applied. This recurrence computes

the least of two minima, one for each choice available at

ci. Eventually, the computed minimal error value is tabulated

along with its accompanying choices of z, �̂ and bL. The

recursion reaches its end cases in the two last LH levels. Error

values are directly computed at the last level; the level before

the last is also special, as it does not involve nepots. Error

calculation is also straightforward for b=0.

Complexity Analysis There are k nodes in level k; each

node has O(Δ
δ min{B,n−k}) Q(i, v, b) entries; all z val-

ues need to be checked only once in O(Δ
δ) time, since

the exact value of v has no consequence on the optimal

z. Hence, the time required for nepotic descendant com-

putations is O
(

Δ
δ

∑n
k=1 k min{B,n−k}) = O

(
Δ
δ n2B

)
.

The time for the computations involving linear descendants

is O
(

Δ
δ

∑n
k=1 k

∑min{B,n−k+1}
b=1

∑n−k
�=1 min{�, b}

)
, which

adds up to O
(

Δ
δ n3B2

)
. In conclusion, the total time com-

plexity is O
(

Δ
δ n3B2

)
. Similarly, the space complexity is

O
(

Δ
δ n2B

)
. If a distinction between total space and working

space complexity is meaningful, as in [21], [22], we need only

keep the arrays of all linear descendants plus the nepot of a

node in the main memory at any time, hence the working space

complexity becomes O
(

Δ
δ nB

)
.

B. Maximum-Error Case
The problem of minimizing a maximum-error metric, such

as L∞, has a special practical interest, since such metrics

provide intuitive deterministic error guarantees for indepen-

dent approximate values [21], [22], [23]. Moreover, with this

problem we can follow a more memory-sparing approach;

we exploit the solution to the dual, error-bounded problem

in order to solve the space-bounded problem that we are

interested in. Such an approach was used in [25] for the

restricted Haar wavelet synopsis problem; in that case, it

did not furnish a space complexity benefit; the algorithm for

the space-bounded problem was already O(n) (see Table II

that follows). Still, in the present case of Lattice Histograms

this technique delivers a crucial complexity advantage. The

potential of this technique to deliver such an advantage in other

synopsis construction problems has been outlined in [42].

Problem 2: Given a data vector D and an error bound ε for

a maximum-error metric Emax, construct an LH L of D that

produces an approximation D̂, such that fEmax
(‖D−D̂‖) ≤ ε

and the number of occupied nodes B∗ in D̂ is minimized. Of

all representations with B∗ non-zero terms satisfying ε, select

the one with the minimal actual error ε∗ ≤ ε.

This problem can be solved by a dynamic-programming

recurrence analogous to the one of Section V-A. Let S(i, v)
be the minimum space that should be allocated to node ci and

its descendants in order for the error bound ε to be satisfied

with incoming value v at ci. The tabulation is now simpler;

no distributions of allocated space need to be examined; we

only tabulate over bucket values; this convenience renders both

the time and, most significantly, the space complexity of this

algorithm lower than the one of Section V-A. The solution

is established after S(0, 0) is computed, at which point all

choices corresponding to that solution can be traced within

the tabulation for the extraction of L. Each S(i, v) entry now

contains: (i) the δ-optimal value z to assign at ci (possibly

none); (ii) in the case that z = 0, a level index � for the

chosen pair of complementary linear descendants ciL(k+�) and

ciR(n−�+1) , � ∈ {1, . . . , n − k}; and (iii) the minimum space

thus achieved. A recursive procedure MinSpace emerges, in

which the value of S(i, v) is computed as:

S(i, v) = min

⎧⎪⎪⎨
⎪⎪⎩

min
z∈Si

˛̨
˛̨S(ilm,z)=0,
S(irm,z)=0

{
S (inep, z)

}
+ 1,

min
1≤�≤n−k

{
S

(
iL(k+�), v

)
+

S
(
iR(n−�+1), v

)
}

⎫⎪⎪⎬
⎪⎪⎭

This recurrence follows the same pattern as the one of

Section V-A. It differs in the absence of a b parameter and in

the simplification of the case where the node ci is occupied.

Now the occupation of node ci brings a +1 term in the space

equation; besides, according to Theorem 1, node ci may be

occupied only by an assigned value z that approximates the

values of its leftmost and rightmost linear descendants within

the given error bound ε (otherwise one of its linear descendants

would need to be occupied as well); this condition is expressed

in the equation; the incoming value to the nepotic descendants

of ci is again its assigned value z. In the case that node ci is not

occupied, the recurrence follows the pattern of Section V-A,

searching for the pair of complementary linear descendants

that minimizes the required space; still, a b parameter does

not exist. In addition, the recurrence optimizes, in secondary

priority, the actual error achieved within the minimal space.

Our LH construction algorithm for maximum-error metrics

invokes the MinSpace module by binary search in the domain

of error. This method avoids a tabulation with respect to space

B, hence pays in terms of both space- and time-efficiency.

In our implementation, the seed value of the fluctuating error

bound ε for the target maximum-error metric Emax is obtained

as the Emax-error of an equi-width B-bucket plain histogram

of D; this provides an upper bound for the B-optimal Emax-

error of an LH over D. Since our solution minimizes the error

within the δ-optimal space, this binary search yields the δ-

optimal error when it converges to the space budget B. Still,

space less than B may also achieve the B-optimal error. Thus,

in order to ensure the convergence of the search, our procedure

performs an optimality test for each examined error bound

that requires less than B space with actual error ε̄; it re-runs

a variant of MinSpace in which the condition to be satisfied

on each approximated value di is Emax(|d̂i − di|) < ε̄ (with

< instead of ≤); if this variant requires more than B space,

then the search can safely terminate; otherwise, it proceeds.

Hence, the search terminates when it reaches an error bound

that either requires an LH of exactly B space, or requires

an LH of B̄ < B space and actual error ε̄, while any error

bound ε<ε̄ requires B̃>B space. When the tested bound ε is

decreased, the minimum error derived for the previous bound

is taken into account for determining the new bound. Figure

6 shows a pseudocode for this IndirectLattice algorithm.

Algorithm IndirectLattice(B)
Input: space bound B, n-data vector [d0, . . . , dn−1]
Output: Emax-error optimal B-sized LH
1. εu = Emax-error of B-term equi-width histogram;
2. εl = 0;
3. elow = εl; ehigh = εu;
4. while (not finished)
5. emid = (ehigh + elow)/2;
6. L=MinSpace(≤ emid); B̄ = size of L;
7. ε̄ = actual Emax-error of L; /* ε̄ ≤ ε */
8. if (B̄ < B)

9. L̃=MinSpace(< ε̄); B̃ = size of L̃;

10. if (B̃ > B) finished := 1; /* optimal result found */
11. else ehigh = ε̄;
12. else if (B̄ > B) elow = emid

13. else finished := 1; /* B̄ = B */
14. return L;

Fig. 6. Indirect LH construction

Complexity Analysis. MinSpace tabulates O(Δ
δ) entries

per node; again, the optimal z value needs to be computed

once for all v in O(Δ
δ) time. Hence, the time needed to

range through all computations involving nepotic descendants

is O
(

Δ
δ n2

)
; likewise, the time needed to range through

linear descendant computations is O
(

Δ
δ

∑n
k=1 k(n−k)

)
=

O
(

Δ
δ n3

)
. In conclusion, the time complexity of MinSpace is

O
(

Δ
δ n3

)
. The binary search adds an O(log ε∗) factor to this

complexity, where ε∗ is the final optimal error3 value; thus

the total time complexity becomes O
(

Δ
δ n3 log ε∗

)
. The space

complexity is O
(

Δ
δ n2

)
, and the working space is O

(
Δ
δ n

)
.

Crucially, these complexities are independent of B.

C. Approximation Guarantee

The following theorem provides a guarantee for the ap-

proximation achieved with the presented LH algorithms for

normalized Minkowski-distance error metrics, in the spirit of

[26], [28].

Theorem 2: Consider a data set D of size n, summarized by

an LH for the normalized Minkowski-distance Lp error in B
terms. Let L∗ be the optimal LH representation in IR. Let Lδ

be the optimal LH representation in the domain of multiples

of δ. Let the derived error values be E∗ and Eδ , respectively.

Then, Eδ ≤ E∗ + δ
2 .

Proof: Let D∗ denote the approximation of D produced

by L∗. Let L̂δ be the LH representation derived after rounding

3The log function expresses the dependence of running time on the derived
error value; it is to be understood as a growth function, as in [25]; not as an
algebraic function; ε∗ ≤ 1 does not imply non-positive time.

all coefficients in L∗ to the nearest multiple of δ, and Êδ

be the Lp error of the approximation D̂ produced by L̂δ .

Since Lδ is the Lp-optimal δ-step representation, it follows

that Eδ ≤ Êδ . However, according to the triangle inequality,

Êδ ≤ E∗ +Lp(D∗, D̂). As each approximated data value is

the single value assigned to the lowest ancestor node, each

such value in L̂δ has been rounded from its value in L∗ by

at most δ
2 . Therefore, L∞(D∗, D̂) ≤ δ

2 . From the definition

of the normalized Minkowski-distance norm it follows that

Lp(D∗, D̂) ≤ L∞(D∗, D̂). Thus, Eδ ≤ E∗+ δ
2 .

D. Heuristic LH Computation

Our algorithm for general-error LH computation (Section

V-A) provides the good approximation guarantees analyzed

in Section V-C. However, its space complexity will engender

difficulties with sizeable data sets. On the other hand, the space

complexity for our maximum-error algorithm (Section V-B)

is lower, as it evades the B factor. Still, we can exploit the

maximum-error algorithm in order to build a heuristic solution

for general error metrics. This solution runs the maximum-

error algorithm for an appropriate4 maximum-error metric.

After the set of occupied nodes for the best maximum-error

solution is established, the values assigned to these nodes are

adjusted, so as to be optimal for the target error at hand. The

value adjustment step of our heuristic is reminiscent of that

performed by the greedy heuristic of [9]. However, our heuris-

tic does not involve a low-quality overlapping partitioning; it

utilizes a partitioning which is already of the longest-prefix-

match type, but optimized for an associated maximum-error

metric instead of the general error metric at hand.

E. Theoretical Comparison

Table II summarizes the evolution of complexity for synop-

sis construction algorithms. The practical L1 and L∞ metrics

are used for illustration; n is the data set size, B the space

bound, δ the resolution step, E an upper bound for the target

normalized Minkowski-norm error, Δ the difference of the

minimum from the maximum value in the data set, and ε∗ the

optimal L∞ error. The fractions with denominator δ express

the cardinality of the examined set of incoming or assigned

values. Space complexity expressions for [26], [9], [28] take

into account their use of the space-efficiency technique of [18].

The cubic complexity of Lattice Histograms is comparable

to original approaches for other techniques, as [14], [21],

[26], and competitive towards the lower-quality k-holes CHH

heuristic [9]; still, as we will see in the next section, the LH

achieves consistently higher quality than previous approaches;

hence, its cubic complexity is worthwhile in terms of synopsis

quality. Moreover, in contrast to [26], [28], the time complexity

of our LH construction algorithms does not depend quadrati-

cally on the cardinality factor Δ
δ ; it grows linearly with it.

Figure 7 depicts a genealogy of synopsis structures. An

arrow denotes that the destination structure contains the struc-

ture of origin: any representation that can be achieved with

4For example, the maximum relative error is an appropriate target metric
if we wish to minimize the average relative error.

Technique Time Complexity (L1) Time Complexity (L∞) Space Complexity Reference
Plain Histogram O

`
n3B

´
O (nB) [14]

Plain Histogram O
`
n2(B + log n)

´
O

`
nB log2 n

´
O(n) [17], [18]

Restricted Haar O
`
n2B2´

O
`
n2B log B

´
O

`
n2B

´
[21]

Restricted Haar O
`
n2 log B

´
O

`
n2´

, O
“

n2 log ε∗
log n

”
O(n) [18], [25]

Unrestricted Haar O
“` E

δ

´2
n3B

”
O

“` E
δ

´2
n log2 B

”
O

“
E
δ B log n

B + n
”

[26]

CHH (k-holes) O
“

nk+1B2 log n
”

O
“

nk+1B log B log n
”

O
“

nkB log2 n
”

[9]

CHH (Greedy) O
`
nB2 log n

´
O (nB log n log B) O

`
B log2 n + n

´
[9]

Haar+ O
“` Δ

δ

´2
nB

”
O

“` Δ
δ

´2
n log2 B

”
O

“
Δ
δ B log n

B + n
”

[28]

Lattice Histogram O
` Δ

δ n3B2´
O

` Δ
δ n3 log ε∗

´
O

` Δ
δ n2B

´
O

` Δ
δ n2´

This work

TABLE II

SUMMARY OF RESULTS FOR QUALITY-AWARE ONE-DIMENSIONAL SYNOPSIS CONSTRUCTION

the latter can also be achieved with the former. Hence, a

restricted Haar wavelet synopsis [21], [22] is a special case of

an unrestricted one [26]; a unrestricted Haar wavelet synopsis

is a special case of a Haar+ representation [28]; a CHH [9]

is a special case of a Haar+ representation as well. Similarly,

a plain histogram [14], [17] is a special case of an LH; a

CHH is a special case of an LH as well. We infer that the

approximation quality achieved with an LH is bound to be

at least as good as that achieved with a plain histogram or

a CHH, subject to a sufficiently small resolution step δ. The

quality comparison of an LH to the structurally independent

Haar+ approximation is of greatest experimental interest.

Plain HistogramPlain Histogram

HierarchicalHierarchical
Lattice HistogramLattice Histogram

HaarHaar++

RestrictedRestricted
HaarHaar WaveletWavelet

UnrestrictedUnrestricted
HaarHaar WaveletWavelet

CompactCompact
HierarchicalHierarchical
HistogramHistogram

Fig. 7. Genealogy of Synopsis Structures

F. Approximating Very Large Data Sets

The space complexity for LH computation is quadratic

in n; although lower than the the high-polynomial space

complexity for an inferior-quality k-holes CHH [9] (Table II),

this complexity is still bound to drain the memory resources

when summarizing very large data sets. Therefore, we propose

a more appropriate and practical approach: a large data set is

first summarized by a primary space-efficient approximation

technique, such as a plain histogram or a Haar+ synopsis

[14], [17], [18], [28]. In case the primary technique is a plain

histogram, the data set is subsequently divided into smaller

segments, using a selection of the boundaries established by it,

and LH synopses are constructed for each of those segments,

using the space budget that the primary histogram allocated to

them. This process results into a quality enhancement in each

segment, hence for the total data set. The size of the chosen

segments is determined by the available memory resources. An

integrated LH representation is derived by concatenating the

representations of all segments. Figure 8 depicts schematically

the segmentation of a data set in this case.

Alternatively, if the primary technique is a Haar+ synopsis,

then the lowest levels of the Haar+ hierarchy are substituted

by local LH structures. An LH synopsis is separately built

for each of them, again using the space budget the primary

Haar+ approximation has allocated to each A mixed synopsis

structure results, in which the overall approximation quality is

increased. Figure 9 depicts such a mixed structure.

B2B1 B3 B4

Lattices
B5

B1 B2 B3 B4 B5 Data Series
Primary Synopses

Fig. 8. Piece-wise LH application

+

co

-+
c1c2 c3

+ +

C1

-+
c4

C2
-+

c7
C3

c5 c6 c8 c9

Fig. 9. Mixed Haar+/LH structure

VI. EXPERIMENTAL VERIFICATION

We now compare the LH to alternative synopsis techniques

in terms of our focal question of quality. The quality achieved

with a mixed synopsis (Section V-F) directly depends on the

performance of the LH synopses it contains in relation to

the structures they substitute. The following methods were

implemented with g++ 3.4.3 and run on a 3.5GB machine:

• Plain Histogram The optimal histogram algorithms [14],

[17], which provide an upper bound to the quality of

approximate histograms [11], [12], [13], [15], [16], [19].

• CHH The winning Greedy CHH heuristic [9], which ini-

tially computes an overlapping partitioning (see Section

II-B.3), where the candidate assigned value on a node

is the optimal value for the data interval under its scope

with the target metric. We have observed that a quality

improvement can occur if the median values in those

intervals (which are actually optimal for the L1 metric)

are used instead. Medians guide the algorithm more

robustly towards the occupation of good positions. We

call this variant Enhanced CHH. We include these CHH

schemes in our study for the sake of completeness, even

though Haar+ is bound to outperform them for sufficiently

small δ. To our knowledge, this is the first experimental

comparison between CHH and optimal plain histograms

for non-L2 metrics [17], as well as between CHH and

any other hierarchical synopsis; thus it supplements [9].

• Haar+ The synopsis construction model based on the

Haar+ tree [28], which supersedes [21], [22], [26].

• Lattice Our LH techniques.

Description of Data In order to assess the quality achieved

with diverse synopses in several real-world environments, we

have used two real-life data sets with hard to approximate

bursts and discontinuities, as well as a real-world data set with

continuity features. In order to allow the binary-interval-based

Haar+ and CHH techniques to perform at their best, we have

used binary data sizes. The first data set5 (FR), discussed in

[43], is a sequence of the mean monthly flows for the Fraser

River at Hope, B.C. The flows present periodic autoregression

features, while they average at 2709 (standard deviation: 2123)

and feature discontinuities (min value: 482, max value: 10800).

We have used a 512-value prefix of it. The second data set6

(FC) is extracted from a relation of 581,012 tuples describing

the forest cover type for 30 x 30 meter cells, obtained from

US Forest Service. FC contains the frequencies of the distinct

values of attribute aspect in the relation. The frequencies

average at 1613 (standard deviation: 730) and feature spikes

of large values (min value: 499, max value: 6308). We have

used a 256-value prefix of it. The third data set (DJIA) is the

Dow-Jones Industrial Average (DJIA) data set7 that contains

closing values of the Dow-Jones Industrial Average index from

1900 to 1993. Negative values were removed. We used a 512-

value subset of closing values from Apr. 14th, 1948 to Feb. 8th,

1950. The closing values average at 182 (standard deviation:

8.73) and exhibit both continuities and hierarchical patterns

(min value: 161.6, max value: 205.03).

A. Synopsis Quality with non-Smooth Data

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 30 40 50 60 70 80 90 100

M
ax

im
um

 A
bs

ol
ut

e
E

rro
r

Space B

Plain Histogram
CHH
Enhanced CHH
Haar+
Lattice

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 15 20 25 30 35 40 45 50

M
ax

im
um

 A
bs

ol
ut

e
E

rro
r

Space B

Plain Histogram
CHH
Enhanced CHH
Haar+
Lattice

(a) FR (b) FC

Fig. 10. Quality comparison: L∞

1) Maximum Absolute Error: In this experiment we eval-

uate the accuracy achieved with the L∞ metric on the the

FR and FC data sets. Figure 10 shows the results, in which

the resolution value has been set8 at δ = 50 for the FR and

δ = 10 for the FC data set with both the Haar+ and Lattice

(LH) techniques. The Lattice histogram achieves the highest

quality for both data sets; its advantage is particularly clear

with the FR data set. As expected, the accuracy achieved with

the CHH techniques is lower than that of LH and Haar+. Our

Enhanced CHH algorithm could outperform the regular CHH;

with the FC data set, it outperforms the optimal histogram

5Available at http://lib.stat.cmu.edu/datasets/fraser-river
6Available at http://kdd.ics.uci.edu/
7Available at http://lib.stat.cmu.edu/datasets/djdc0093
8Smaller values burdened the running time without significant quality

increase; larger values were undermining the quality of the synopses.

too, while the regular CHH does not; its performance is not as

stable with the FR data set. The L∞-optimal plain histogram

quality itself is poor in relation to an LH, as expected. Most

interestingly, the LH quality is consistently higher than that of

the Haar+ representation.
2) Average Error: We now evaluate the accuracy achieved

with the L1 metric on the the same data sets and with

the same resolutions. Figure 11 shows the results. Now the

Lattice technique is the heuristic of Section V-D. Although

this heuristic does not confer the same quality guarantees

as its memory-intensive counterpart (Section V-A), it still

achieves the highest quality in this experiment. The quality

achieved with this heuristic on FR comes closer to that of

other hierarchical techniques for the smallest values of B; this

is due to the fact that the positions selected for a small space

budget, albeit optimal for a maximum error metric, may not

perform as well for another metric. However, this behavior

is annulled for larger values of B, denoting that the heuristic

selects well-chosen bucket positions. In this experiment there

is no Enhanced CHH, as the regular uses the median values by

default. With the FR data set, the CHH accuracy deteriorates

as B grows, eventually becoming the lowest.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 A
bs

ol
ut

e
E

rro
r

Space B

Plain Histogram
CHH
Haar+
Lattice

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 20 25 30 35 40 45 50

A
ve

ra
ge

 A
bs

ol
ut

e
E

rro
r

Space B

Plain Histogram
CHH
Haar+
Lattice

(a) FR (b) FC
Fig. 11. Quality comparison: L1

B. Synopsis Quality with Smooth Data
1) Maximum Absolute Error: We now examine the DJIA

data set, which does not present as sharp discontinuities as

those we have examined heretofore. We first assess the quality

of approximation with L∞ (Figure 12a); the resolution value

was set at δ = 0.5 with both Haar+ and LH. Again, LH

achieves the highest quality. Interestingly, the other techniques

cannot match the optimal plain histogram.

 0

 1

 2

 3

 4

 5

 20 30 40 50 60 70 80 90 100

M
ax

im
um

 A
bs

ol
ut

e
E

rro
r

Space B

Plain Histogram
CHH
Enhanced CHH
Haar+
Lattice

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 A
bs

ol
ut

e
E

rro
r

Space B

Plain Histogram
CHH
Haar+
Lattice

(a) L∞ (b) L1

Fig. 12. Quality comparison: DJIA

2) Average Error: Figure 12b shows the results with L1.

The LH heuristic used in this experiment achieves the top

quality again, while the disadvantage of the other hierarchical

techniques in relation to the optimal plain histogram is clear.

Results with other metrics, such as L2, were similar.

VII. DISCUSSION

The results on higher LH accuracy in relation to plain

histograms and CHH were expected. The results in relation to

the structurally independent Haar+ tree are more interesting.

Moroever, while the performance of the Haar+ tree (and its

simplified form, the CHH) in relation to a plain histogram

varies depending on the nature of the summarized data, the

LH achieves invariably higher quality than all contenders.

VIII. CONCLUSIONS

In this paper we have introduced the Lattice Histogram: a

robust, resilient data structure for data approximation. The LH

answers to the call for an investigation of the opportunities and

challenges posed by the interaction between histograms and

index structures. An LH identifies a most suitable hierarchy

in a data set and uses it in order to approximate the given

data. This structure combines both the advantages of a plain

histogram over a hierarchical index structure, and those of

an index structure over a histogram, in a single synopsis

model; hence, it annuls the quality tradeoff between them. We

designed approximation schemes for LH computation for both

general error metrics and the special case of maximum-error

metrics; we have employed the latter solution for a reduced-

memory, high-quality heuristic for the general-error case.

We have demonstrated that Lattice Histograms consistently

achieve higher quality than the recently proposed Compact

Hierarchical Histograms and the well-established optimal plain

histograms, regardless of the nature of the summarized data

set. In fact, both these models are special cases of an LH.

Still, an LH can achieve higher quality than the structurally

independent Haar+ tree too. In the future we plan to design

streaming heuristics for LH-based data approximation.

ACKNOWLEDGMENT

This work was supported by grant HKU 7155/06E from

Hong Kong RGC.

REFERENCES

[1] J. S. Vitter and M. Wang, “Approximate computation of multidimen-
sional aggregates of sparse data using wavelets,” in SIGMOD, 1999.

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, “Join
synopses for approximate query answering,” in SIGMOD, 1999.

[3] V. Poosala, V. Ganti, and Y. E. Ioannidis, “Approximate query answering
using histograms,” IEEE Data Eng. Bull., vol. 22, no. 4, pp. 5–14, 1999.

[4] Y. E. Ioannidis and V. Poosala, “Histogram-based approximation of set-
valued query-answers,” in VLDB, 1999.

[5] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim, “Approximate
query processing using wavelets,” VLDB Journal, vol. 10, no. 2-3, pp.
199–223, 2001 (also VLDB 2000).

[6] Y. Matias, J. S. Vitter, and M. Wang, “Wavelet-based histograms for
selectivity estimation,” in SIGMOD, 1998.

[7] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani, “Locally adap-
tive dimensionality reduction for indexing large time series databases,”
TODS, vol. 27, no. 2, pp. 188–228, 2002 (also SIGMOD 2001).

[8] T. Li, Q. Li, S. Zhu, and M. Ogihara, “A survey on wavelet applications
in data mining,” SIGKDD Explorations Newsletter, vol. 4, no. 2, pp.
49–68, 2002.

[9] F. Reiss, M. Garofalakis, and J. M. Hellerstein, “Compact histograms
for hierarchical identifiers,” in VLDB, 2006.

[10] Y. E. Ioannidis, “Universality of serial histograms,” in VLDB, 1993.
[11] Y. E. Ioannidis and V. Poosala, “Balancing histogram optimality and

practicality for query result size estimation.” in SIGMOD, 1995.

[12] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita, “Improved
histograms for selectivity estimation of range predicates,” in SIGMOD,
1996.

[13] V. Poosala and Y. E. Ioannidis, “Selectivity estimation without the
attribute value independence assumption,” in VLDB, 1997.

[14] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik,
and T. Suel, “Optimal histograms with quality guarantees.” in VLDB,
1998.

[15] P. B. Gibbons, Y. Matias, and V. Poosala, “Fast incremental maintenance
of approximate histograms,” TODS, vol. 27, no. 3, pp. 261–298, 2002.

[16] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and
M. J. Strauss, “Fast, small-space algorithms for approximate histogram
maintenance,” in STOC, 2002.

[17] S. Guha, K. Shim, and J. Woo, “REHIST: Relative error histogram
construction algorithms.” in VLDB, 2004.

[18] S. Guha, “Space efficiency in synopsis construction algorithms,” in
VLDB, 2005.

[19] E. Terzi and P. Tsaparas, “Efficient algorithms for sequence segmenta-
tion.” in SIAM SDM, 2006.

[20] M. Garofalakis and P. B. Gibbons, “Probabilistic wavelet synopses,”
TODS, vol. 29, no. 1, pp. 43–90, 2004 (also SIGMOD 2002).

[21] M. Garofalakis and A. Kumar, “Deterministic wavelet thresholding for
maximum-error metrics.” in PODS, 2004.

[22] ——, “Wavelet synopses for general error metrics,” TODS, vol. 30, no. 4,
pp. 888–928, 2005.

[23] P. Karras and N. Mamoulis, “One-pass wavelet synopses for maximum-
error metrics,” in VLDB, 2005.

[24] Y. Matias and D. Urieli, “Optimal workload-based weighted wavelet
synopses,” Theoretical Computer Science, vol. 371, no. 3, pp. 227–246,
2007 (also ICDT 2005).

[25] S. Muthukrishnan, “Subquadratic algorithms for workload-aware Haar
wavelet synopses,” in FSTTCS, 2005.

[26] S. Guha and B. Harb, “Approximation algorithms for wavelet transform
coding of data streams,” in SODA, 2006 (also eprint arXiv:cs/0604097).

[27] A. Deligiannakis, M. Garofalakis, and N. Roussopoulos, “Extended
wavelets for multiple measures,” TODS, vol. 32, no. 1, 2007.

[28] P. Karras and N. Mamoulis, “The Haar+ tree: a refined synopsis data
structure,” in ICDE, 2007.

[29] Y. E. Ioannidis, “Approximations in database systems,” in ICDT, 2003.
[30] R. Bellman, “On the approximation of curves by line segments using

dynamic programming,” Communications of the ACM, vol. 4, no. 6, p.
284, 1961.

[31] A. Graps, “An introduction to wavelets,” IEEE Computational Sciences
and Engineering, vol. 2, no. 2, pp. 50–61, 1995.

[32] M. Muralikrishna and D. J. DeWitt, “Equi-depth histograms for esti-
mating selectivity factors for multi-dimensional queries,” in SIGMOD,
1988.

[33] G. Piatetsky-Shapiro and C. Connell, “Accurate estimation of the number
of tuples satisfying a condition,” in SIGMOD, 1984.

[34] D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi, “Selectivity
estimators for multidimensional range queries over real attributes,” The
VLDB Journal, vol. 14, no. 2, pp. 137–154, 2005 (also SIGMOD 2000).

[35] A. Aboulnaga and S. Chaudhuri, “Self-tuning histograms: building
histograms without looking at data,” in SIGMOD, 1999.

[36] N. Bruno, S. Chaudhuri, and L. Gravano, “STHoles: a multidimensional
workload-aware histogram,” in SIGMOD, 2001.

[37] S. Muthukrishnan, V. Poosala, and T. Suel, “On rectangular partitionings
in two dimensions: Algorithms, complexity, and applications,” in ICDT,
1999.

[38] S. Khanna, S. Muthukrishnan, and S. Skiena, “Efficient array partition-
ing,” in ICALP, 1997.

[39] S. Muthukrishnan and T. Suel, “Approximation algorithms for array
partitioning problems,” Journal of Algorithms, vol. 54, no. 1, pp. 85–
104, 2005.

[40] F. Furfaro, G. M. Mazzeo, D. Saccà, and C. Sirangelo, “Hierarchical
binary histograms for summarizing multi-dimensional data,” in ACM
SAC, 2005.

[41] A. C. Gilbert, S. Muthukrishnan, and M. J. Strauss, “Approximation of
functions over redundant dictionaries using coherence,” in SODA, 2003.

[42] P. Karras, D. Sacharidis, and N. Mamoulis, “Exploiting duality in
summarization with deterministic guarantees,” in KDD, 2007.

[43] A. McLeod, “Diagnostic checking of periodic autoregression models
with application,” Journal of Time Series Analysis, vol. 15, no. 2, pp.
221–233, 1994.

