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Abstract Matrix factorization (MF) is one of the most powerful techniques
used in recommender systems. MF models the (user, item) interactions be-
hind historical explicit or implicit ratings. Standard MF does not capture the
hierarchical structural correlations, such as publisher and advertiser in adver-
tisement recommender systems, or the taxonomy (e.g., tracks, albums, artists,
genres) in music recommender systems. There are a few hierarchical MF ap-
proaches, but they require the hierarchical structures to be known beforehand.
In this paper, we propose a Hidden Hierarchical Matrix Factorization (HHMF)
technique, which learns the hidden hierarchical structure from the user-item
rating records. HHMF does not require the prior knowledge of hierarchical
structure; hence, as opposed to existing hierarchical MF methods, HHMF can
be applied when this information is either explicit or implicit. According to our
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extensive experiments, HHMF outperforms existing methods, demonstrating
that the discovery of latent hierarchical structures indeed improves the quality
of recommendation.

1 Introduction

Recommender systems have become standard add-ons in popular e-commerce
applications and social media sites. Real applications include product rec-
ommendation (Amazon1), movie recommendation (Netflix2), restaurant rec-
ommendation (Yelp3), and trip recommendation (TripAdvisor4). The funda-
mental task in modern recommender systems is rating prediction. Specifically,
consider a set of users and a set of items: each user can rate any item by
giving it a score either explicitly (e.g., by rating it with a number of stars)
or implicitly (e.g., browsing to the web page of the item indicates the user’s
interest). Given a target user, for each item that he/she has not rated, the sys-
tem predicts the user’s rating (i.e., interest), based on the historical ratings by
him/her and other users. Then, the unrated items with the highest predicted
ratings are offered as suggestions to the target user.

Matrix factorization (MF) is the most prevalent method for rating predic-
tion in recommender systems, due to its ability to deal with large user-item
rating matrices (Li 2018). MF has shown its power in various open compe-
titions (e.g., Netflix prize challenge (Bell and Koren 2007) and KDD Cup
2011 (Dror et al. 2012)) and industrial applications (Koren et al. 2009). We
observe that users and items in many applications have structural correlations.
Specifically, users may form groups (e.g., a reading group with a specific topic
in the book recommender system goodreads5) and items may be divided into
categories (e.g., neighborhoods of attractions recommended by TripAdvisor).
MF itself may not be able to capture such structural information and use it
for rating prediction. Hence, some extensions of standard MF approaches use
side-information to overcome this limitation. For example, MF has been ex-
tended to consider social network features such as communities (Li et al. 2015;
Li 2015) and trust circles (Yang et al. 2012), where a community or a trust
circle consists of strongly connected users. In addition, item taxonomies have
also been considered in many MF based approaches, since items from the same
group may be similar (e.g., songs belonging to the same album share charac-
teristics) (Koenigstein et al. 2011). These approaches show that incorporating
group structural information into MF can further improve the accuracy of
rating prediction.

While most of the previous works only consider one-level structures, data
in many real recommender systems contain multi-level structures. For exam-

1 http://www.amazon.com
2 http://www.netflix.com
3 http://www.yelp.com
4 http://www.tripadvisor.com
5 http://www.goodreads.com
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ple, in advertisement recommender systems (Oentaryo et al. 2014), a page is
associated with a publisher and each publisher belongs to a unique channel.
Advertisers provide ads and agree on commissions for customer actions (e.g.,
clicking an ad), while publishers display ads on some web pages and earn com-
missions based on the traffic driven to the advertisers. Figure 1 illustrates the
hierarchical structure of such a system, which aims at maximizing the rev-
enue based on this multi-level structure. Another example is the Yahoo! Mu-
sic recommender system, where a four-level taxonomy (tracks, albums, artists,
genres) exists. The system leverages such hierarchical information to predict
the song that users may like (Koenigstein et al. 2011). To improve the service
of multi-level recommender systems, several hierarchical matrix factorization
methods (Shan et al. 2012; Zhong et al. 2012; Wang et al. 2014) have been
proposed.

(p2, a1, d1) (p3, a2, d3) (p1, a1, d2) (p2, a1, d4) (p1, a1, d5) (p3, a2, d2)

Root

RootChannel

Publisher Advertiser

Fig. 1 Multi-level advertisement recommender system where each page-ad-day triple
(pi, aj , dk) represents that ad from advertiser j on the web page from publisher i was clicked
on day dk.

In this paper, we propose a novel hierarchical MF method called Hidden
Hierarchical Matrix Factorization (HHMF), which can capture the hidden hier-
archical structure in the user-item rating records. Unlike traditional MF meth-
ods, HHMF takes hierarchical information into consideration. Compared with
the few existing hierarchical MF methods, HHMF does not require any prior
knowledge of hierarchical structures and thus can be used by both the systems
with explicit hierarchical structures and the systems wherein such structures
are implicit. Our experimental results show that HHMF outperforms existing
methods, demonstrating that the discovery of latent hierarchical structures
indeed improves rating prediction accuracy. What is more, our technique is
orthogonal to context-based approaches, and its performance is expected to
be better when additional information (e.g., user-generated text (Wang et al.
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2018a; Garćıa-Durán et al. 2018), check-in records (Lu et al. 2017), item meta-
data (Li et al. 2012), user grouping data (Ding et al. 2017; Li et al. 2015),
relationships in a graph (Qian et al. 2017) or time series data (Li et al. 2019))
is taken into consideration. In summary, the main contributions of this paper
are as follows:

– Upstream hidden structure learning. Our proposed HHMF approach
learns the hidden hierarchical structure for users and items from the rating
records, employing a bottom-up iterative optimization method.

– Downstream rating prediction. HHMF adopts a top-bottom mecha-
nism for rating prediction, using the grouping results from the upstream
phase.

– Analysis of time complexity. We conduct an analysis regarding the time
complexity of HHMF and show that it has the same complexity as existing
hierarchical MF methods, while HHMF is significantly more effective than
these methods.

– Validation. We conduct comprehensive experiments on several real
datasets to validate the effectiveness and efficiency of the proposed method.
According to the results, HHMF outperforms existing state-of-the-art
methods.

Currently, there are a few limitations of HHMF (see Section 5 for a detailed
discussion). Firstly, HHMF only considers basic user-item rating information,
though it is possible to incorporate additional auxiliary information. Moreover,
the number of layers is a user-defined hyperparameter in HHMF and HHMF
adopts hard-assignment, i.e., one user group or item group can only be affiliated
to one topic group. We will address these limitations in our future work.

The rest of this paper is organized as follows: Section 2 provides background
and discusses related work. We present the two phases of HHMF, i.e., upstream
hidden hierarchical structure learning and downstream rating prediction, in
Section 3. Experiments on real datasets that demonstrate the practicality and
effectiveness of HHMF are presented in Section 4. Section 5 concludes the
paper and discusses directions for future work.

2 Preliminaries

2.1 Matrix factorization

Let R be an m × n matrix with the ratings of m users on n items. Basic
matrix factorization predicts the missing ratings in R by approximating R as
the product of a a d-rank user-specific matrix Q ∈ Rm×d with a d-rank item-
specific matrix P ∈ Rn×d, i.e., R ≈ R̂ = QPT , where d � min{m,n}. The
d-dimensional user vector Qu ∈ Q and item vector Pi ∈ P can be thought of
as the latent user preferences and item properties. The inner product between
Qu and Pi is used to model the degree of the match between user u and item
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i. A larger inner product implies a higher chance of the user being satisfied by
the item. Given a training corpus of ratings R, Q and P are obtained through
minimizing the following loss function (Mean Squared Error):

f(R|Θ) =
∑
rui∈R

(rui − 〈Qu, Pi〉)2 + λ(||Q||2 + ||P ||2), (1)

where ‖·‖2 denotes the Frobenius norm, Θ represents the parameters and
〈Qu, Pi〉 is the dot product of Qu and Pi. Methods based on gradient descent
or alternating least-squares can be used to optimize Q and P (Koren et al.
2009).

The power of MF has been proved in the Netflix Prize competition.6 MF
scales easily to millions or billions of users and items (Facebook 2015; Li et al.
2017). In addition to its superior performance, another strength of MF, making
it widely used, is that additional information besides the existing ratings can be
integrated into the model to further increase its accuracy. Such information
includes social network data (Ma et al. 2011; Li et al. 2015), locations of
users and items (Lian et al. 2014; Lu et al. 2017), visual appearance (He and
McAuley 2016) and review text (Wang et al. 2018a; Garćıa-Durán et al. 2018).

2.2 Related Work

In this section we review MF based recommender approaches, dividing them
to single-layer MF methods that do not use hierarchical information and hi-
erarchical MF techniques, which use this information.

2.2.1 Single-Layer Matrix Factorization

There are four types of correlations from individuals to communities: (user,
item), (user, item group), (user group, item) and (user group, item group) in
recommender systems (Wang et al. 2014). Basic matrix factorization (Koren
et al. 2009) only considers one-to-one correlation (i.e., one user to one item).
Readers can refer to (Shi et al. 2014) for a detailed introduction and literature
review for standard MF, based on the one-to-one correlation. Additionally,
there are many approaches extending MF to leverage other correlations:

•Many-to-One Correlation (User → Item Groups). This correlation is
common in recommender systems where items form a general-to-specific hier-
archy. Mashhoori and Hashemi (2012) propose a MF-based method utilizing
this; the latent factor vector of the parent item group is added to Equation 1.
Koenigstein et al. (2011) leverage the information from the four-level taxonomy
in Yahoo! Music (i.e., tracks, albums, artists and genres) and add taxonomy
bias terms to Equation 1 in order to improve the prediction accuracy. The
model is enhanced by letting item biases share components for items linked
in the taxonomy. Wang and Blei (2011); Wang et al. (2012) integrate latent

6 http://www.netflixprize.com

http://www.netflixprize.com
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Dirichlet allocation (LDA) (Blei et al. 2003) into MF, which tries to use a
class of items with the same topic instead of individual items, to improve the
quality of recommendation.

• Many-to-One Correlation (Item → User Groups). This correlation
is common when users form social or trust networks.7 Based on the rationale
that a user’s interest is similar to or influenced by the user’s neighbors in
the network, MF has been extended to a network-based model. Users in the
network tend to establish relationships with people who share similar interests
with them. With this observation, community-based MF (Li et al. 2015) and
trust circle based MF (Yang et al. 2012) are proposed. In these two approaches,
social constraints are added to Equation 1 so that the latent vectors of users
who belong to the same group are similar. Besides, there are some methods in
this category which can discover social structure information and make rating
predictions at the same time. The user latent factor vectors in Sorec (Ma et al.
2008) are learned based on both the user-item rating matrix and the user-user
adjacency matrix. Though Ma et al. (2008) have not systematically studied the
task of structure discovery, Sorec can be used for link prediction among users
in a social network. Jamali et al. (2011) propose GSBM, which is an extension
of the mixed membership stochastic blockmodel (Airoldi et al. 2008). GSBM
can make rating predictions and learn the group membership assignments for
both users and items in the social network.

• Many-to-Many Correlation (User/Item Groups ←→ User/Item
Groups). CMR (Xu et al. 2014) harnesses reviews associated with ratings
and apply co-clustering (Dhillon 2001) to uncover hidden user communities
and hidden item groups in social recommender systems, in order to further
improve the accuracy of rating predictions. George and Merugu (2005) also
use co-clustering to group users and items with similar contexts. Their method
then incorporates the biases of users, items and clusters into the rating matrix.
The optimization is performed over the new matrix instead of the original rat-
ing matrix. Instead of co-clustering, several context-aware recommender sys-
tems (Liu and Aberer 2013; Zhong et al. 2012; Wang et al. 2016) use random
decision trees (Fan et al. 2003) to group the ratings with similar contexts, but
they can only handle categorical contexts. As a comparison, Chen et al. (2014)
use spectral clustering (Ng et al. 2001) for user-item subgrouping so that the
model can handle both categorical and continuous contexts. Note that previ-
ous work in this category still focuses on the prediction of how well one user
matches one item during the process, though the information from groups is
taken into consideration.

In summary, most of the previous work for single-layered MF either only
considers one of the four correlations or requires additional contextual in-
formation beyond the user-item rating matrix. As a comparison, our HHMF

7 Users in a trust network can indicate whether he/she thinks one review with a rating is
‘useful’. One trust statement forms an edge with the trust rating as edge weight between two
users. Epinions (http://www.epinions.com) is an exemplified recommender systems based
on trust network.

http://www.epinions.com
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approach considers and predicts all four correlations during the factorization
and it does not require any additional contextual data.

2.2.2 Hierarchical Matrix Factorization

As illustrated in Section 1, structural characteristics in many recommender
systems are multi-level. Recently, some hierarchical MF approaches have been
proposed to capture the multi-level information. HPMF (Shan et al. 2012) is
a hierarchical probabilistic MF method for trait prediction tasks in the plant
kingdom. Although HPMF is designed for trait data, it could be generalized
and applied to recommender systems. However, HPMF assumes that the data
matrices at all levels are available and it only combines two types of corre-
lations, i.e., (user, item) and (user group, item). RPMF (Zhong et al. 2012)
applies the idea of random decision trees in the MF framework. It divides the
rating matrix iteratively into multi-level rating matrices using random parti-
tioning. In each sub-matrix, RPMF still focuses on the prediction of one user
on one item and standard MF is performed to give the prediction. Menon et al.
(2011) use hierarchical regularization in MF to improve response prediction
in online advertising. Priors based on the hierarchical structure are used as
regularization to induce correlations among different levels in the hierarchy.
Oentaryo et al. (2014) propose a Hierarchical Importance-aware Factoriza-
tion Machine (HIFM). Since pages and ads can be organized into predefined
hierarchies as illustrated in Figure 1, their models incorporate hierarchical in-
formation to alleviate the cold-start pages and ads (i.e., pages with few views
and ads with few clicks can benefit from the information of their siblings in
hierarchies).

However, all aforementioned approaches require the prior knowledge of hi-
erarchies. To overcome this limitation, HGMF (Wang et al. 2014) considers the
correlations not only between users and items but also between user groups
and item groups. HGMF also provides a greedy clustering algorithm to obtain
hierarchical structures for systems where such information is not available. Al-
though HGMF considers all the four correlations introduced in Section 2.2.1,
its clustering method is independent of its factorization process. As a compari-
son, our HHMF approach can make rating predictions and discover structures
at the same time; these two tasks benefit each other as the iterative process
goes on. IHSR (Wang et al. 2015, 2018b) is another framework which can
capture implicit hierarchical structures of users and items. IHSR is based on
weighted nonnegative matrix factorization (WNMF) (Zhang et al. 2006). IHSR
recursively performs nonnegative matrix factorization (NMF) on the user pref-
erence matrix Q and the item characteristic matrix P : Q ≈ Q̃Q̇, P ≈ P̃ Ṗ .
Due to the nonnegativity of Q̃ and P̃ , IHSR can use them to indicate the
affiliation of a user/item to different groups. Q̇ and Ṗ are the latent matrices
of the corresponding user/item groups, which can be further decomposed to
generate a deeper hierarchy. IHSR adopts the ideas of identifying communities
of users (Wang et al. 2011) and document clustering (Xu et al. 2003), where
the affiliations of users/items to groups are represented by nonnegative values.
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In summary, IHSR relies on NMF, while any MF method can be used as the
basic MF model in HHMF and HHMF is more general than IHSR.

Recently, there are a few approaches combining MF and neural net-
works (He et al. 2017; Xue et al. 2017). Although these models are repre-
sented as hierarchical structures due to the adaptation of neural networks,
such hierarchical structures do not reflect the hierarchical user/item grouping
like HGMF and HHMF. Instead, each neural layer in these models projects a
latent factor vector to another vector in order to finally push the model to-
wards local optima. As we will show in Section 4, HHMF, which appropriately
models user/item hierarchical grouping, exhibits better results than neural
network-based methods.

2.2.3 Recommendation Models Beyond Matrix Factorization

In addition to MF based methods, there are other recommendation models
which consider the affiliations of users and items to groups (Maleszka et al.
2013; He et al. 2016; Nikolakopoulos et al. 2015). For instance, CoBaFi (Beutel
et al. 2014) uses bi-clustering (i.e., mixture of Gaussians) to allow for dynamic
allocation of statistical capacity between sets of users in a single-layer manner.
The motivation behind it is that users with a significant number of ratings can
be modeled using personal parameter vectors, while cold-start users with little
data are probably best modeled as unspecific members of a large pool of similar
participants. In this paper, we focus on MF based methods, because MF is the
most prevalent method used in recommender systems; hence, we do not discuss
more about non-MF methods here.

3 Hidden Hierarchical Matrix Factorization

In this section, we introduce our Hidden Hierarchical Matrix Factorization
(HHMF) approach. The most frequently used notations are summarized in
Table 1. Since we focus on groups of users/items in this paper, we modify
the traditional notation for MF approaches as used in Section 2.1. From this
point on in this paper, u/i will indicate a group of users/items, even for the
case where the group only has one user/item. Superscript ‘(`)’ indicates the

hierarchal level. For example, u
(1)
1 indicates user group 1 at level 1 (i.e., it

contains only one user u1 as in flat MF), u
(2)
2 means the second user group at

level 2 which may contain more than one users, Q(`) is the user latent vectors
at level ` and θ(`) is the user topic distribution at level `. We use subscript
with a single letter to indicate a vector, e.g., Qu is the latent factor vector of
user group u and θu is the topic distribution of user group u. To denote an
entry in the vector, we normally use subscript with two letters, e.g., θ(u,z) is
the affiliation of user group u to topic group z and gui is the topic assignment
of user group u on item group i. Other notations are described where they are
used.
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Table 1 Notations used in HHMF

Symbol Description
d Number of latent dimensions/topics
m Number of users at level 1
n Number of items at level 1
l Number of levels

R(`) Rating matrix at level `

S(`) Ratings of user groups at level `+ 1 to item groups at level `

V (`) Ratings of user groups at level ` to item groups at level `+ 1
Q d-dimensional latent factors for user groups (m× d)
P d-dimensional latent factors for item groups (n× d)
θ d-dimensional topic distribution for user groups (m× d)
µ d-dimensional topic distribution for item groups (n× d)
φ User group distribution per topic (d×m)
κ Item group distribution per topic (d× n)
gui Topic assignment of user group u on item group i
hiu Topic assignment of item group i for user group u
eu Index of user group u’s parent group in higher layer
ti Index of item group i’s parent group in higher layer

WQ
(`)
u , WP

(`)
i Child group of u/i at level `

FQ
(`)
u , FP

(`)
i Parent group of u/i at level `

3.1 Basic Idea

Unlike previous hierarchical MF approaches, where only the rating error is
minimized at each level, HHMF tries to maximize both the probability that
the training corpus R is generated and the probability for the grouping of
users and items. HHMF includes two steps: (i) learning the hidden structure
from the bottom layer to the top layer of the hierarchy and then (ii) predicting
ratings from the top layer to the bottom layer, as illustrated in Figure 2. Later,
we will explain the two steps of this process in details.

There are two types of latent variables in HHMF:

– The latent factors Qu and Pi of a user group u and an item group i in
HHMF, respectively. These are similar to the latent factors in traditional
MF, modeling the latent preferences of a single user and the latent prop-
erties of a single item. Each dimension in a Qu and a Pi can take any
value.

– The latent topics θu and µi of a user group u and an item group i in
HHMF, respectively. These are the latent topic distributions of the user
and the item groups and can also be regarded as their latent affiliation to
larger groups with latent topics (e.g., horror movies and comedy movies).
The value of each dimension in θu or µi represents the probability that user
group u or item group i belongs to the corresponding larger group with a
certain latent topic. Therefore, the sum of values of all dimensions in θu or
µi should be equal to 1.

The idea behind learning the hidden structure is that the latent factor
vectors Qu and Pi are likely to ‘match’ the latent topic distribution vectors θu
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R(1)

<u1 , i1 >

<u3 , i3 ><u3 , i1 >

R(1)

<u1 , i1 >

<u3 , i3 ><u3 , i1 >

R(2)R(2)

R(3)

<u4 , i2 >

R(3)

<u4 , i2 >

Q(1)

Q(2)

Q(3)

Structure Information

Q1

Q2

Q3

Q6 Q7

Q9

(3) (3)

(1) (1)

(1) (1)

(3)

(2)

(2)

(2)

(1)
(1)

<u1 , i5 >
(1) (1)<u1 , i3 >

(1) (1)

(1) (1)

<u3 , i5 >
(1) (1)

<u1 , i1 >
(2)(2)

<u1 , i1 >
(2)(2)

Fig. 2 Overview of a three-level HHMF. The left part indicates the structure learning

phase, while the right part demonstrates the prediction phase. u
(3)
4 indicates user group 4

in layer 3 and Q
(3)
1 denotes user latent vector of user group 1 in layer 3. R(1) is the original

m×n rating matrix. To plot Q in the right 2d-dimensional space, we assume d = 2 and each
Q becomes a point in the space. P is similarly learned and therefore omitted. WQ/FQ are
child/parent groups of a user group and e is the index of the parent group of a user group.

For example, WQ
(2)
1 = {u(1)1 , u

(1)
3 }, FQ

(1)
1 = u

(2)
1 and e

(1)
1 = 1. WP/FP and t are defined

similarly.

and µi of the corresponding user group u and item group i. Specifically, if user
group u prefers comedy movies more, the probability of this topic in θu will
be high. By linking factors and topics together, we hope that if a user group
‘likes’ a certain property (high value in certain dimensions in Qu), this will
correspond to a high probability for corresponding topics (high value in certain
dimensions in θu). Similarly, if an item group exhibits a certain property, this
will correspond to some particular topics being observed in µi. After θ and µ
are learned, it is easy to obtain the hierarchical structure of user groups and
item groups (e.g., a fine-grained to coarse-grained hierarchy, such as tracks,
albums, artists and genres) using various methods (e.g., by choosing the topic
with the highest probability in θ or µ).

After the hierarchy has been discovered, HHMF combines all the correla-
tions introduced in Section 2.2.1, and the latent factors are generated from
higher layers to lower layers. Correlation representation (Shan et al. 2012;
Wang et al. 2014) which constructs new rating matrices for each layer is
adopted in order to supervise the learning of Q and P at each layer. Dur-
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ing this step, Q and P already incorporate the grouping information from
latent topics through hierarchical grouping.

HHMF relies on both latent factors and latent topics. Latent factors have
the same functionality as standard MF, while a ‘latent topic’ has two roles in
HHMF: (1) it helps the model to learn the hidden hierarchical structure; (2)
it helps to reduce the prediction error of MF.

In the following, we will first describe in detail the two processes in HHMF.
Then, the overall hierarchical and iterative procedure of HHMF will be pre-
sented.

3.2 Upstream Hidden Structure Learning

In its first phase (structure learning), HHMF tries to discover the latent hi-
erarchical affiliation of user groups and item groups. The objective of this
learning phase is to maximize the probability for the grouping of users and
items (via latent topics) and minimize the prediction error at each layer (via
latent vectors) in the discovered hierarchy.

For each user group u and item group i, we learn a topic distribution θu
and µi (i.e., a stochastic vector in ∆d). These vectors encode the extent to
which each of the d topics is preferred across all rating records for user group
u and item group i, respectively. Each topic z is also associated with a user
group distribution φz and an item group distribution κz, which encodes the
probability that a particular user group (resp. item group) shows preference
for (resp. relation to) topic z.

Based on our motivation, we do not design HHMF to learn latent factors
and latent topics independently. Instead, by linking the two types of latent
variables, if a user group u exhibits certain preference in latent factors Qu,
we anticipate that the corresponding topic is observed in the latent topics θu
and certain user group distributions φ. Similarly, latent factors Pi and latent
topics µi (and certain item distributions κ) are linked together. In other words,
HHMF is different than traditional supervised topic models (Blei et al. 2003)
which learns topics correlated with an output variable. In HHMF, latent topics
are learned in a way such that they are correlated with latent factors.

Now the problem is how we link the two latent variables. A straightfor-
ward approach is to enforce each dimension in θu (or µi) to be equal to the
corresponding dimension in Qu (or Pi). However, such a method will definitely
make the model to lose its expressive power. As discussed in Section 3.1, latent
factors and latent topics have different value ranges for each dimension. Each
of the entries in θu or µi describes the probability that the user group or item
group is related to a certain topic, and thus the value should be less than or
equal to 1. On the other hand, there are no constraints of the values in latent
factors. In addition to the expressiveness, the desired link should be mono-
tonic, i.e., the link should preserve the order so that large values in Qu (or Pi)
correspond to large values in θu (or µi). Considering both the expressiveness
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and monotonicity, our HHMF adopts the following link:

θ(u,k) =
exp(ε ·Quk)∑d
b=1 exp(ε ·Qub)

, (2)

where ε is a parameter which controls the link and will be fitted during learn-
ing. As ε increases, θu converges to a unit vector which only takes the value 1 at
the dimension corresponding to the most important topic. When ε decreases,
user group u becomes more evenly affiliated to different topic groups. µ and
P have a similar link and the parameter that controls the link is γ. The above
links respect both the expressiveness (i.e., the range of a probability) and the
monotonicity. In addition to linking θ (or µ) to Q (or P ), we have to connect
Q (or P ) to φ (or κ) as well. Note that θ and φ are different, even though φ
is obtained in a similar way as Equation 2. Specifically, we have

∑
z θuz = 1

for vector θu and
∑
u φzu = 1 for vector φz. The same holds for µ and κ. It is

notable that we implicitly assume the number of factors of user/item groups
is the same as the number of topics.

Given the links between latent factors and latent topics, HHMF maximizes
the following posterior probability:

Pr(Q,P, θ, µ, φ, κ|R,Ξ) ∝ Pr(Q,P |R,Ξ) · Pr(R|θ, κ) · Pr(R|µ, φ), (3)

where Ξ = {σ2
Q, σ

2
P } are the standard deviations and R is the rating ma-

trix. For the sake of readability, we put the calculation of Equation 3 in Ap-
pendix 6.1. When deducing Equation 3, we assume θ, φ and Q are conditionally
independent given R (see the third step in Appendix 6.1) and this makes the
problem simpler. A similar assumption holds for µ, κ and P .

We adopt the method used in probabilistic matrix factorization
(PMF) (Salakhutdinov and Mnih 2007) to estimate the first term
Pr(Q,P |R,Ξ) in Equation 3. In PMF, zero-mean spherical Gaussian priors
are placed over user and item latent vectors:

Pr(Q|σ2
Q) =

m∏
u=1

N (Qu|σ2
QI), P r(P |σ2

P ) =

n∏
i=1

N (Pi|σ2
P I). (4)

To estimate the second and third terms Pr(R|θ, κ) and Pr(R|µ, φ), we
firstly define R in another format δ: δ is the set of 〈user group, item group〉
records, i.e., δ(u,i) = 1 if user group u has rated item group i and δ(u,i) = 0 oth-
erwise. Then, Pr(R|θ, κ) = Pr(δ|θ, κ) and Pr(R|µ, φ) = Pr(δ|µ, φ). Parame-
ters θ, µ, φ, κ can be updated via sampling (Blei et al. 2003). The likelihood of
generating record set δ is:

Pr(δ|θ, κ) = Π〈u,i〉∈δ θ(u,gui) · κ(gui,i)

Pr(δ|µ, φ) = Π〈u,i〉∈δ µ(i,hiu) · φ(hiu,u)

(5)

where gui is the topic assignment of user group u on item group i and hiu is
the topic assignment of item group i for user group u. Then, the log of the
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posterior distribution in Equation 3 can be written as:

L = ln
(
Pr(Q,P, θ, µ, φ, κ|R,Ξ)

)
∝ ln

(
Pr(Q,P |R,Ξ)

)
+ ln

(
Pr(δ|θ, κ)

)
+ ln

(
Pr(δ|µ, φ)

)
=− 1

2σ2
R

∑
rui∈R

(rui − 〈Qu, Pi〉)2 − 1

2σ2
Q

m∑
u=1

||Qu||2 −
1

2σ2
P

n∑
i=1

||Pi||2

− 1

2

(
|R| lnσ2

R + dm lnσ2
Q + dn lnσ2

P

)
+ Const

+

m∑
u=1

d∑
z=1

Czu ln(θ(u,z)) +

d∑
z=1

n∑
i=1

Ciz ln(κ(z,i))

+

n∑
i=1

d∑
z=1

Czi ln(µ(i,z)) +

d∑
z=1

m∑
u=1

Cuz ln(φ(z,u)),

(6)

where Const is a constant that does not depend on the parameters, and |R| is
the number of ratings in R. We define Czu as the number of times that topic z
has been observed with a rating for the user group u, and Ciz as the number
of times the item group i is assigned to topic z. Similarly, we have Czi and Cuz .

The first component ln
(
Pr(Q,P |R,Ξ)

)
in Equation 6 is traditionally op-

timized by gradient descend based methods or alternating least-squares (Koren
et al. 2009), while iterative sampling is used to solve the second and third terms

ln
(
Pr(δ|θ, κ)

)
and ln

(
Pr(δ|µ, φ)

)
(Blei et al. 2003). Algorithm 1 demon-

strates how HHMF discovers the latent hierarchy. To optimize the log of the
posterior distribution in Equation 6 which consists of these components to-
gether, we first fix the topic assignments g/h and fit Q, P , θ, µ, φ, κ, ε and γ
through L-BFGS, a quasi-Newton method for non-linear optimization of prob-
lems with many variables (Nocedal 1980). Then, we iterate through all train-
ing ratings and update their topic assignments using the sampling method:
for each training rating rui, HHMF samples the topic assignment g once with
probability Pr(gui = b) = θ(u,b) · κ(b,i) and then it samples h with probability
Pr(hiu = b) = µ(i,b) ·φ(b,u). Note that Q and θ are linked through Equation 2,
thus they are optimized interdependently. In HHMF, we enforce that a change
in Q affects both latent factors and latent topics during L-BFGS optimization.
Similarly, a change in P will have an impact on both latent variables.

From the lowest to the highest layer of the hierarchy, HHMF iteratively
learns latent factors and latent topics for each layer. The corresponding group
assignment of a specific user group/item group is then the topic with the
maximum probability in its latent topic vector, i.e., eu ← arg maxz(θ(u,z)) and
ti ← arg maxz(µ(i,z)). Then, the ratings of a group at any layer are computed
by averaging the ratings of its members from the layer below, which is often
called correlation representation (see Figure 3) in hierarchical MF (Shan et al.
2012; Wang et al. 2014). Particularly, R(1) is the original rating matrix, which
represents (u(1), i(1)) correlation. The rating matrices generated by (u(1), i(2))
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Algorithm 1 Bottom-up Hidden Structure Learning
1: for ` in 1 . . . l do
2: while Not Converge do
3: Fix g and h, then optimize Equation 6 to learn Q,P, θ, µ, φ, κ using L-BFGS.
4: for rui in R(`) do
5: Samples topic assignment gui with probability Pr(gui = b) = θ(u,b) · κ(b,i).
6: Samples topic assignment hiu with probability Pr(hiu = b) = µ(i,b) · φ(b,u).
7: end for
8: for u in U do
9: eu ← arg maxz(θ(u,z))

10: end for
11: for i in I do
12: ti ← arg maxz(µ(i,z))
13: end for
14: end while
15: Form R(`+1) using grouping and R(`).
16: end for
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Fig. 3 A toy example of Correlation Representation in Hierarchical MF (Shan et al. 2012;
Wang et al. 2014). The figure shows the representations from level 1 to level 2 in the hierarchy
of Figure 2.

and (i(1), u(2)) are denoted as V (1) and S(1), respectively. Given V (1) and S(1),
the correlation (u(2), i(2)) can be obtained and it is defined as R(2), i.e., a higher
level rating matrix compared to R(1). The definition can be generalized to R(l),
S(l) and V (l) where l is the layer index.

To better understand the correlation representation, we now go through
the hierarchy in Figure 3 from its highest to its lowest level (i.e., R(2) →
{V (1), S(1)} → R(1)). To illustrate, we pick the record r

(2)
11 = 〈u(2)

1 , i
(2)
1 〉 = 0.84

at the second layer (i.e., r
(2)
11 ∈ R(2)) as the starting point. r

(2)
11 represents

the average aggregation of s
(1)
11 = 〈u(2)

1 , i
(1)
1 〉 = 1.5, s

(1)
13 = 〈u(2)

1 , i
(1)
3 〉 = 0

and s
(1)
15 = 〈u(2)

1 , i
(1)
5 〉 = 1 (i.e., (1.5 + 0 + 1)/3 = 0.84) in S(1), since i

(2)
1

contains {i(1)
1 , i

(1)
3 , i

(1)
5 }. r

(2)
11 can also be interpreted as the average aggregation

of v
(1)
11 = 〈u(1)

1 , i
(2)
1 〉 = 1, v

(1)
31 = 〈u(1)

3 , i
(2)
1 〉 = 0.67 in V (1) (i.e., (1 + 0.67)/2 =

0.84), since u
(2)
1 contains {u(1)

1 , u
(1)
3 }. S(1) and V (1) can also be computed
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using the aforementioned definition, e.g., s
(1)
14 = (r

(1)
14 + r

(1)
34 )/2 = (2 + 0)/2 =

1 and v
(1)
31 = (r

(1)
31 + r

(1)
33 + r

(1)
35 )/3 = (0 + 0 + 2)/3 = 0.67. Note that the

correlation representation can be interpreted from an inverse direction, i.e.,
from the lowest to the highest level (i.e., R(1) → {V (1), S(1)} → R(2)), and the
same scores (representations) can be obtained.

HHMF discovers the affiliation for user groups and item groups, which
minimizes the prediction error based on the group ratings at each layer in the
hierarchy. This bottom-up procedure forms the fine-grained to coarse-grained
hierarchy.

3.3 Downstream Rating Prediction

HHMF applies a top-down approach to perform recommendations, using the
hierarchy learned in the first phase. In this phase, HHMF becomes a generative
model.

Specifically, the user-group latent vectors {Q(`)}l`=1 and the item-group la-
tent vectors {P (`)}l`=1 are used to predict the unobserved ratings at different
levels. These are generated using the links and the ratings from the higher
level. Similarly to HGMF, HHMF assumes that the rating matrices {R(`)}l`=1,
{S(`)}l−1

`=1 and {V (`)}l−1
`=1 are drawn from a higher layer to a lower layer. Differ-

ently, the probability of generating Q
(`)
u (i.e., Pr(Q

(`)
u |Q(`+1))) consists of two

parts, N (Q(`+1), σ2
Q(`+1)I) and φ(`+1). Here, φ(`+1) is the user group distribu-

tion per topic (d-dimensional vector) and it can be regarded as the confidence
that the specific user group u is generated by the corresponding user group

eu. Similarly, we can get Pr(P
(`)
i |P (`+1)).

The generative process8 can be illustrated as follows:

– For each layer ` = l, . . . , 1

1. For each user group u in layer `, generate Q
(`)
u ∼ N (Q

(`+1)
eu , σQ(`+1)

2I) ·
φ

(`+1)
(eu,u)

2. For each item group i in layer `, generate P
(`)
i ∼ N (P

(`+1)
ti , σP (`+1)

2I) ·
κ

(`+1)
(ti,i)

– For each layer ` = l, . . . , 1

1. Draw r
(`)
ui ∼ N (〈Q(`)

u , P
(`)
i 〉, σ2

R(`)) for every observed rating rui of R(`).

2. Draw s
(`)
ui ∼ N (〈Q(`+1)

u , P
(`)
i 〉, σ2

S(`)) for every observed rating sui of

S(`).

3. Draw v
(`)
ui ∼ N (〈Q(`)

u , P
(`+1)
i 〉, σ2

V (`)) for every observed rating vui of

V (`).

8 Q(l+1) = P (l+1) = 0.
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For example, the arrow from Q
(3)
1 to the dashed circle containing Q

(2)
2 and

Q
(2)
3 in Figure 2 indicates that u

(2)
2 and u

(2)
3 belong to the same group u

(3)
1 in

the layer above and their latent vectors are generated from Q
(3)
1 at the layer

above.

The posterior probability of {Q(`)}l`=1 and {P (`)}l`=1 is:

Pr({Q(`)}l`=1, {P (`)}l`=1 | {R(`)}l`=1, {S(`)}l−1
` , {V (`)}l−1

`=1, Ξ)

∝
l∏

`=1

∏
rui∈R(`)

N (〈Q(`)
u , P

(`)
i 〉, σ

2
R(`)) ·

l−1∏
`=1

∏
sui∈S(`)

N (〈Q(`+1)
u , P

(`)
i 〉, σ

2
S(`))

l−1∏
`=1

∏
vui∈V (`)

N (〈Q(`)
u , P

(`+1)
i 〉, σ2

V (`)) ·
l∏

`=1

m(`)∏
u=1

φ
(`+1)
(eu,u)N (Q(`+1), σ2

Q(`+1)I)

l∏
`=1

n(`)∏
i=1

κ
(`+1)
(ti,i)

N (P (`+1), σ2
P (`+1)I),

(7)
where Ξ = {σ2

Q, σ
2
P , σ

2
R, σ

2
S , σ

2
V }. To improve the readability, we put the cal-

culation of Equation 7 in Appendix 6.2.

The log of the posterior distribution over the user-group and item-group
latent features is given by:

L = ln
(
P ({Q(`)}l`=1, {P (`)}l`=1 | {R(`)}l`=1, {S(`)}l−1

`=1, {V
(`)}l−1

`=1, Ξ)
)

∝−
l∑

`=1

1

2σ2
R(`)

∑
rui∈R(`)

(rui − 〈Q(`)
u , P

(`)
i 〉)

2 −
l−1∑
`=1

1

2σ2
S(`)

∑
sui∈Q(`)

(sui − 〈Q(`+1)
u , P

(`)
i 〉)

2

−
l−1∑
`=1

1

2σ2
V (`)

∑
vui∈V (`)

(vui − 〈Q(`)
u , P

(`+1)
i 〉)2 −

l∑
`=1

1

2σ2
Q(`+1)

m(`)∑
u=1

φ
(`+1)
(eu,u)(Q

`
u −Q(`+1)

eu )2

−
l∑

`=1

1

2σ2
P (`+1)

n(`)∑
i=1

κ
(`+1)
(ti,i)

(P `i − P
(`+1)
ti )2.

(8)

As in HGMF, we can perform a stochastic block co-ordinate ascent al-
gorithm (Bertsekas 2006) to update {Q(`)}l`=1 and {P (`)}l`=1, i.e., Q and P
will be updated sequentially at each layer for fast convergence. Algorithm 2
illustrates the update procedure. The update rules can be obtained using the
partial derivative of Equation 8:

Θ(`) ← Θ(`) + η ·Gradient , (9)

where η is the learning rate and Θ(`) indicates the parameter to be updated
(i.e., Q and P ). Gradients are the partial derivatives of Equation 8, which we
put in Appendix 6.3 for better readability.
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Algorithm 2 Top-down Rating Prediction
1: for ` in 1, . . . , l− 1 do
2: S(`) ← S(`) − S̄(`)

3: V (`) ← V (`) − V̄ (`)

4: R(`) ← R(`) − R̄(`)

5: end for
6: R(`) ← R(`) − R̄(`)

7: while Not Converge do
8: for ` in l . . . 2 do
9: Sequentially update Q(`), P (`), Q(`), P (`−1), Q(`−1), P (`) using gradients in

Equations 16, 17, 18, 19, 20 and 21, respectively.
10: end for
11: Sequentially update Q(1), P (1) using gradients in Equations 16 and 17, respectively.
12: end while
13: Output the prediction matrix as 〈Q(1), P (1)〉+ R̄(1).

Algorithm 3 HHMF
1: // Bottom-up Hidden Structure Learning
2: for ` in 1 . . . l do
3: while Not Converge do
4: Fix g and h, optimize Equation 6 to learn Q,P, θ, µ, φ, κ using L-BFGS.
5: Sample g and h to update topic assignment.
6: end while
7: Form the groups using θ and µ.
8: end for
9:

10: // Top-down Rating Prediction
11: for ` in l . . . 1 do
12: Optimize Equation 8 using batch gradient ascent algorithm as illustrated in Algo-

rithm 2.
13: end for
14: Output the prediction matrix as 〈Q(1), P (1)〉+ R̄(1).

3.4 HHMF: Putting It All Together

The overall HHMF process is shown in Algorithm 3. HHMF first learns the
hidden hierarchical structure bottom-up (lines 2-8). Based on the obtained
structural information, HHMF predicts the ratings in a top-down fashion (lines
11-14).

Time complexity. Hierarchical MF methods are inherently slower than
single-layer MF due to the traversal of multiple layers (e.g., lines 2 and 11 in Al-
gorithm 3). HGMF (Wang et al. 2014) has a time complexity of O

(
l(m̄2 + n̄2)

)
for its clustering phase due to the calculation of the similarity between all
pairs of users and O

(
dl(m̄ + n̄)

)
for the prediction phase, where m̄ and n̄

represent the average number of users and items at each level, respectively.
The time complexity of the bottom-up structure learning phase in HHMF is

O
( l(m̄2+n̄2+m̄+n̄)

2

)
, if L-BFGS (Nocedal 1980) is used for optimization. Our

HHMF method has the same time complexity in its top-down rating predic-
tion phase as the learning phase of HGMF, if both methods use the same
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gradient ascent approach. Overall, HHMF has the same time complexity as
HGMF, while it significantly outperforms HGMF in terms of recommendation
quality, as we will show in Section 4.

4 Empirical Study

In this section, we conduct an experimental study using real datasets to com-
pare the performance of HHMF with the state-of-the-art hierarchical MF
methods and other traditional methods for recommender systems in order
to answer the following four questions:

– Q1: Does the proposed HHMF model outperform the state-of-the-art hi-
erarchical MF approaches?

– Q2: Is HHMF sensitive to its hyperparameters? In other words, can HHMF
be easily tuned so that it keeps outperforming other models?

– Q3: Is HHMF an efficient method which can be used in practice?

– Q4: Is the learned ‘hidden’ hierarchy reasonable in practice?

4.1 Dataset

Six public datasets are used in our experiments: FilmTrust, Ciao, Yelp, Dian-
ping, MovieLens and Netflix:

– FilmTrust9 is a website that integrates semantic web-based social net-
works, augmented with trust, to create predictive movie recommendations.
The dataset is provided by Guo et al. (2013) and it was collected in June
2011.

– Ciao9 is a platform which combines consumer reviews and up-to-date price
information from hundreds of online merchants to provide a comprehensive
source of shopping intelligence on the web. The dataset was crawled from
the entire category of DVDs from Ciao UK website in December, 2013 (Guo
et al. 2014).

– Yelp10 is a local business recommender system and service provider. The
dataset is from the Yelp Business Rating Prediction Challenge, which in-
cludes customers’ ratings on restaurants in Phoenix, United States.

– Dianping11 is a social network-based recommender system, which is a
leading local restaurant search and review platform in China. The dataset
contains business items, user information in Shanghai and the ratings from
April 2003 to November 2013. We use the version provided by Li et al.
(2014).

9 http://www.librec.net/datasets.html
10 http://www.kaggle.com/c/yelp-recsys-2013
11 http://lihui.info/data/dianping.html

http://www.librec.net/datasets.html
http://www.kaggle.com/c/yelp-recsys-2013
http://lihui.info/data/dianping.html
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Table 2 Statistics of Data

Dataset # of users at level 1 # of items at level 1 # of ratings at level 1

FilmTrust 1,508 2,071 35,497
Ciao 17,615 16,121 72,664
Yelp 43,873 11,537 252,863

Dianping 11,352 10,657 501,472
MovieLens 71,567 10,681 10,000,054

Netflix 480,189 17,770 100,480,507

– MovieLens12 is an online movie recommender system and virtual com-
munity that recommends movies to users. The recommendation is based
on their film preferences, using collaborative filtering based on members’
movie ratings. We use MovieLens 10M dataset, which is one of the standard
benchmark datasets of MovieLens (Harper and Konstan 2016).

– Netflix13 is a media services provider which offers film and shows to its
subscribers. We use the dataset which was provided by Netflix Prize. Netflix
Prize was an open competition for collaborative filtering algorithms that
predict user ratings for films (Bell and Koren 2007).

Table 2 shows some general statistics of the datasets. For datasets
FilmTrust, Ciao and Dianping, we randomly selected 80% ratings in each
dataset to be used for training; the remaining 20% ratings are held out for
testing. For datasets Yelp, MovieLens and Netflix, we used the official train-
ing/test split.

4.2 Performance Metrics

We adopt several measures including Root Mean Square Error (RMSE), Pre-
cision@k, Recall@k, F1@k and NDCG@k to measure the quality of recom-
mendation, since they are widely used in the evaluation of recommender sys-
tems (Herlocker et al. 2004). RMSE measures the accuracy of predicted rat-
ings. However, modeling only observed ratings is insufficient for a ranking
based (i.e., top-k) recommender system which is more common nowadays (Hu
et al. 2008). Therefore, we additionally use Precision@k, Recall@k, F1@k and
NDCG@k to evaluate the performance regarding the top-k recommendation.
The aforementioned measures are defined as follows:

RMSE =

√
1

|R|
∑
rui∈R

(rui − r̂ui)2, (10)

where |R| denotes the number of tested ratings, rui is a real rating, and r̂ui is
a predicted rating.

12 https://grouplens.org/datasets/movielens
13 https://www.netflixprize.com

https://grouplens.org/datasets/movielens
https://www.netflixprize.com
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Precision@k =
1

m

m∑
i=1

|Gui
(k) ∩ Tui

(k)|
|Tui

(k)|
, (11)

Recall@k =
1

m

m∑
i=1

|Gui(k) ∩ Tui(k)|
|Gui

(k)|
, (12)

where m is the number of users, Tui
(k) denotes the set of top-k recommended

items for user ui, and Gui(k) represents the true set of relevant items (ground-
truth positives in test data). Given Precision@k and Recall@k, F1@k is the
harmonic mean between them:

F1@k =
2× Precision@k ×Recall@k
Precision@k +Recall@k

. (13)

NDCG@k =
1

ZkM

k∑
i=1

2ti − 1

log2(i+ 1)
, (14)

where Zk is a normalizer which ensures that perfect ranking has a value of 1;
ti is the relevance of item at position i. We use simple binary relevance: ti = 1
if the item is in the test set, and 0 otherwise.

4.3 Competitors

In our evaluation, we compare the effectiveness of the following approaches:

– KNN: The k nearest neighbors algorithm is one of the most popular col-
laborative filtering methods, where the predicted ratings are given based
on the ratings of the top-k most similar users via Cosine similarity (i.e.,
weighted sum).

– PMF (Salakhutdinov and Mnih 2007): This is the probabilistic matrix
factorization method where only user-item correlation is considered.

– FISM (Kabbur et al. 2013)14: FISM learns the item-item similarity matrix
as the product of two low dimensional latent factor matrices in order to
overcome the problem of traditional nearest neighbor collaborative filtering
methods, i.e., similarities between items which have not been co-rated by at
least one user cannot be captured. FISM is motivated by NSVD (Paterek
2007) and SVD++ (Koren 2008) and it is a factored item similarity model.

– IHSR (Wang et al. 2015, 2018b)15: This is the weighted nonnegative
MF (Zhang et al. 2006) based hierarchical MF approach. IHSR recursively
performs nonnegative MF on the user preference matrix and item charac-
teristic matrix and uses the nonnegative decomposed matrices to indicate
the affiliations of users/items to different groups.

14 https://github.com/yushuai/FISM
15 http://www.public.asu.edu/~swang187/codes/HSR.zip

https://github.com/yushuai/FISM
http://www.public.asu.edu/~swang187/codes/HSR.zip
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– HGMF (Wang et al. 2014): Hierarchical Group Matrix Factorization
(HGMF) is the state-of-the-art hierarchical MF method, which outper-
forms a previously proposed HPMF method (Shan et al. 2012). We use the
greedy-based clustering method suggested in (Wang et al. 2014) to obtain
the structure information, required by HGMF as prior knowledge.

– DMF (Xue et al. 2017)16: Deep Matrix Factorization (DMF) combines
MF and neural networks architecture. DMF uses a deep structure learn-
ing framework to learn the representations of users and items. The latent
vectors are projected to another vector at each layer in order to learn
the representation. Unlike other hierarchical MF approaches, the structure
(i.e., layers in the neural network) in DMF does not represent the natural
hierarchical structures of users and items.

– NeuMF (He et al. 2017)17: Neural Collaborative Filtering (NeuMF) is a
neural network-based method which is similar to DMF. DMF adopts the
user-item interaction matrix (i.e., rating matrix R) where each element
corresponds to the real rating score, while NeuMF transforms R into a
binary matrix, such that if a user has rated an item the corresponding
element in R is 1.

– NFM (He and Chua 2017)18: Neural Factorization Machines combines
the linearity of Factorization Machines (FMs) (Rendle 2010) in modeling
second-order feature interactions and the non-linearity of neural networks
in modeling higher-order feature interactions. We modified the original
implementation in order for the method to be applicable for collaborative
filtering.

– HHMF: HHMF is our proposed method which learns the hidden structure
information and utilizes it to improve the quality of recommendation.

In order to demonstrate the effectiveness of HHMF, we evaluate it using
only user-item rating information and ignore any contextual information such
as user-generated text or check-in records, which may come together (and
could be used to improve recommendation quality).

4.4 Hyperparameter Settings

A similar strategy for setting the hyperparameters of hierarchical MF as that
in (Wang et al. 2014) is adopted: the learning rate η is set to 0.0005, the
performances of HGMF and HHMF are tested for ` = 2, 3. For the main
experiments of HHMF, we set the maximum group size of each layer to be 10
times the size in the layer above and that of the highest layer to be equal to
d, i.e., 10 groups for ` = 2 and 100 groups for ` = 1 if d = 10. We call this

16 https://github.com/RuidongZ/Deep_Matrix_Factorization_Models
17 https://github.com/hexiangnan/neural_collaborative_filtering
18 https://github.com/hexiangnan/neural_factorization_machine

https://github.com/RuidongZ/Deep_Matrix_Factorization_Models
https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/hexiangnan/neural_factorization_machine
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hyperparameter group ratio and we also report the impact of group ratio in
Section 4.6.

For the factorization based methods (i.e., PMF, FISM, IHSR, HGMF,
DMF, NeuMF, NFM and HHMF), values {0.0001, 0.001, 0.01, 0.1, 1, 10}
are tested for the regularization hyperparameter λ and we test values
{10, 20, 30, 50} for the hidden dimensionality d. For KNN the neighborhood
size is tuned from values in {2, 3, 5, 10, 20}. 2 layers and a negative sampling ra-
tio of 5 are used in DMF and NeuMF, following the authors’ suggestions (Xue
et al. 2017; He et al. 2017). The normalization constant in FISM is tuned from
values in {0.4, 0.5, 0.6, 0.7, 0.8}, as suggested by Kabbur et al. (2013). We use
2 hidden layers for IHSR; the authors claimed that using more layers will
result in similar observations (Wang et al. 2015, 2018b). For NFM, the best
drop ratio is searched in the range {0, 0.1, 0.2, · · · , 0.9} as in the experiments
conducted by He and Chua (2017).

5-fold cross-validation is performed on a small subset of the training data
to empirically tune the hyperparameters so that each method achieves the best
possible results. For all methods, except KNN, the experiment will terminate
when the decrease of RMSE between two iterations becomes less than 0.001.
The reported results are based on the best hyperparameters.

4.5 Quality of Recommendation (Q1)

We compare the effectiveness of the tested recommenders on two standard
tasks: rating prediction and top-k recommendation, in order to answer question
Q1.

4.5.1 Rating Prediction

The RMSE of all tested methods on rating prediction is shown in Tables 3
and 4. HHMFi implies that the results are obtained using HHMF with i lev-
els. A similar notation is used for HGMF. HHMFi + HGMFi indicates that
we run HHMFi once and use the learned hierarchy as input to HGMFi. The
best results of either HHMF2 or HHMF3 are indicated in bold. The last row
indicates the improvement that HHMF achieves over the best competitor ex-
cluding HHMFi + HGMFi. Note that HHMF outperforms the best runner-up
by 4.15%− 11.70%. Additionally, we can observe the following:

(1) MF based methods achieve better results than KNN in most cases.

(2) IHSR, HGMF and HHMF, which incorporate hierarchical structure infor-
mation into MF, usually outperform PMF and FISM which only consider
(user, item) and (item, item) correlations.

(3) HGMF and HHMF have better accuracy as the number of levels increases.

(4) HHMF significantly outperforms HGMF and IHSR when the same num-
ber of levels are used, showing its superiority over other hierarchical MF
methods.
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Table 3 RMSE on FilmTrust, Ciao and Yelp

Method
FilmTrust Ciao Yelp

d=10 d=20 d=10 d=20 d=10 d=20

KNN 1.001 1.1658 1.2656
PMF 0.8992 0.9400 1.1895 1.1698 1.2120 1.2080
FISM 0.9211 0.9105 1.1512 1.1498 1.1876 1.1798
IHSR 0.9142 0.9098 1.1437 1.1412 1.1642 1.1579

NeuMF 0.8812 0.8743 1.0923 1.0781 1.1823 1.1809
DMF 0.8687 0.8513 1.1322 1.1218 1.1812 1.1798
NFM 0.8798 0.8762 1.1592 1.1582 1.1746 1.1708

HGMF2 0.9067 0.8803 1.1773 1.1789 1.1982 1.1976
HGMF3 0.9068 0.8997 1.1614 1.1422 1.1732 1.1687

HHMF2 + HGMF2 0.8335 0.8251 1.0854 1.0789 1.1654 1.1607
HHMF3 + HGMF3 0.8317 0.8219 1.0877 1.0642 1.1520 1.1354

HHMF2 0.8124 0.8120 1.0417 1.0424 1.1398 1.1365
HHMF3 0.8127 0.8113 1.0255 1.0111 1.1023 1.0876

Improvement 6.48% 4.70% 11.70% 6.21% 6.04% 6.94%

Table 4 RMSE on Dianping, MovieLens and Netflix

Method
Dianping MovieLens Netflix

d=10 d=20 d=10 d=20 d=10 d=20

KNN 0.8391 0.8742 0.9468
PMF 0.7620 0.7667 0.8816 0.8812 0.9423 0.9388
FISM 0.7842 0.7541 0.8654 0.8578 0.9345 0.9311
IHSR 0.7762 0.7598 0.8164 0.8154 0.9311 0.9356

NeuMF 0.7654 0.7512 0.8244 0.8164 0.9314 0.9297
DMF 0.7732 0.7702 0.8106 0.8142 0.9267 0.9109
NFM 0.7684 0.7679 0.8348 0.8278 0.9266 0.9112

HGMF2 0.7502 0.7748 0.8245 0.8194 0.9222 0.9235
HGMF3 0.7498 0.7442 0.8187 0.8168 0.9211 0.9187

HHMF2 + HGMF2 0.7311 0.7568 0.8014 0.8120 0.9014 0.9123
HHMF3 + HGMF3 0.7298 0.7255 0.7987 0.7945 0.8925 0.8871

HHMF2 0.7235 0.7242 0.7844 0.7804 0.8814 0.8810
HHMF3 0.7139 0.7041 0.7816 0.7864 0.8778 0.8645

Improvement 4.79% 5.39% 4.26% 4.15% 4.70% 5.10%

(5) The learned ‘hidden’ hierarchy can be further used to improve the accu-
racy of HGMF, demonstrating that the two interdependent components
in HHMF (i.e., rating prediction and hidden hierarchy discovery) mutu-
ally benefit each other and the learned structure has a better quality than
the output structure from an independent structure discovery algorithm
like the clustering algorithm used in HGMF.

(6) HHMF has significantly better performance than the state-of-the-art neu-
ral network-based methods NeuMF, DMF and NFM. The learned ‘hid-
den’ hierarchy in HHMF represents the similarity among users/items and
therefore helps to improve the accuracy of prediction. As a comparison,
a neural layer projects each latent factor vector to another vector in or-
der to finally push the model towards a local optimum. Lacking a nat-
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ural mapping between the projection and user/item correlations, neural
network-based methods are inferior to HHMF.

In summary, the superior performance of HHMF over other approaches
demonstrates the effectiveness of our proposal for the rating prediction task
in recommender systems.

4.5.2 Top-k Recommendation

We choose three approaches (i.e., HGMF, NeuMF and DMF) which exhibit
better performance compared to other methods on rating prediction in Sec-
tion 4.5.1, and compare them with our proposed method HHMF on the top-k
recommendation task. Figures 4, 5, 6, 7, 8 and 9 show the ranking accuracies
of NeuMF, DMF and HGMF2 and HHMF2 when d = 20 (for other settings,
the results are similar). From the results, we can conclude that HHMF consis-
tently outperforms NeuMF, DMF and HGMF for different sizes (i.e., k) of the
recommendation lists, which demonstrates that HHMF is superior to previous
approaches also for the task of top-k recommendation.
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Fig. 9 Performance of top-k recommendation on Netflix

4.6 Sensitivity to Hyperparameters (Q2)

To answer question Q2, we report the performance of HHMF when different
hyperparameters are used.
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Impact of λ. Firstly, we evaluate the impact of the regularization weight λ.
We compare HHMF with HGMF for the task of rating prediction, since HHMF
and HGMF require the same hyperparameters and it is easy to illustrate the
effect of changing one hyperparameter when the others are fixed. We set d = 20
and a two-level hierarchy is learned in HHMF and HGMF. The results using
different λ are shown in Figure 10. From the results, we can draw the conclusion
that the best λ values are consistent on these datasets (i.e., 0.01 or 0.1),
although deviating from them would downgrade the performance.

Impact of group ratio. We also evaluate the influence of the group ratio
on HHMF. We set d = 20 and use a two-level hierarchy. λ is tuned to be
optimal for each specific value of the group ratio. The results regarding the
rating prediction task are illustrated in Figure 11. Note that a group ratio
of 10 achieves the best results. Larger or smaller group ratios do not help to
improve the performance further.

Impact of d. Finally, we evaluate the performance when changing the latent
dimensionality d. Figure 12 shows the performances of HHMF and HGMF
when a two-level hierarchy is learned by the two methods. From Figure 12, we
can conclude that increasing d can improve the performance of both HHMF
and HGMF. On the other hand, HHMF consistently outperforms HGMF using
the same value of d.

In summary, the best hyperparameters of HHMF on these datasets tend to
be consistent as depicted in our extensive experiments, though deviating from
these values will affect the results a lot. In practice, we recommend setting λ
to be 0.01 or 0.1 and using a group ratio of 10 for HHMF.
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4.7 Running Time (Q3)

In Section 4.5, we have demonstrated the superiority of HHMF over other
models on the quality of recommendation. We now investigate the practicality
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of HHMF by assessing its runtime scalability. Note that the implementations of
FISM, IHSR, DMF, NeuMF and NFM use different deep learning libraries and
directly comparing the running time of Python implementations (e.g., NeuMF
and NFM which utilize GPUs) with C++ implementations (e.g., CPU based
methods like HGMF and HHMF) may not illustrate the scalability fairly. The
experiments we show in this section are used to help readers understand that
our proposed HHMF is both effective and efficient in practice, even when we
do not use the best possible implementation and hardware.

We compare the running time of HHMF with that of HGMF and NFM.
HGMF is the best CPU-based method as shown in Tables 3 and 4, while NFM
is the most recent GPU-based baseline we have compared against in previous
experiments. Our implementations of HGMF and HHMF adopt Intelr Math
Kernel Library.19 The main program which wraps Intelr Math Kernel Li-
brary is multithreading and implemented using standard C++ library. The
implementation of NFM is provided by the authors of (He and Chua 2017)
and implemented using TensorFlow. The experiments were conducted on a
machine with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 32 GB of main
memory, Nvidia Titan Xp 12GB and Ubuntu 16.04. The programs of HGMF
and HHMF are set to use 4 threads in our experiments.

	0

	200

	400

	600

	800

10 20 30 50R
un
ni
ng
	T
im
e	
(S
ec
s)

d

FilmTrust

	200

	480

	760

	1040

	1320

	1600

10 20 30 50

d

Ciao

	600

	1600

	2600

	3600

	4600

	5600

10 20 30 50

d

Yelp

	150
	350
	550
	750
	950
	1150
	1350
	1550

10 20 30 50R
un
ni
ng
	T
im
e	
(S
ec
s)

d

Dianping

	1300

	3640

	5980

	8320

	10660

	13000

10 20 30 50

d

MovieLens

	6000

	13200

	20400

	27600

	34800

	42000

10 20 30 50

d

Netflix

NFM HGMF HHMF

Fig. 13 Running time of NFM, HGMF and HHMF when using different values of d

Figure 13 shows the running time of NFM, HGMF and HHMF when a
three-level hierarchy is learned and the group ratio is 10. For each test, we run
each method once using its best hyperparameters (found in hyperparameter

19 https://software.intel.com/en-us/mkl

https://software.intel.com/en-us/mkl
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search) and report their running time in this one-time experiment. We vary
the value of latent dimensionality d in Figure 13. From Figure 13, we can see
the cost of HHMF is typically higher than that of NFM and HGMF, using the
same value of d. However, all the methods scale similarly and their runtime
difference is not significant. This confirms our time complexity analysis in
Section 3.4. Considering the recommendation quality of HHMF, we believe
that the additional overhead pays off. Note that HGMF and HHMF can be
deployed in a GPU environment when their implementation is modified using
CUDA20 and their running time is expected to drop further.

4.8 Analysis of the Learned ‘Hidden’ Structure (Q4)

HGMF and HHMF are designed to model the hierarchy of users and items,
matching the natural hierarchical structures in the data. We now analyze the
hidden hierarchies learned by HGMF and HHMF in order to assess whether
they represent well the similarity among users/items and, in turn, help improve
the quality of recommendation.

To measure the similarity between two user groups s and v, we adopt the
Pearson Correlation Coefficient (PCC) which is widely used in recommender
systems (Resnick et al. 1994):

Simsv =

∑
r∈Rs∗∩Rv∗

(r − R̄s∗) · (r − R̄v∗)√∑
r∈Rs∗∩Rv∗

(r − R̄s∗)2
√∑

r∈Rs∗∩Rv∗
(r − R̄v∗)2

, (15)

where Rs∗ ∩ Rv∗ indicates ratings of those items that both user groups have
rated. R̄s∗ and R̄v∗ represent the average rating of user group s and user group
v, respectively. We map PCC into range [0, 1] using function f(x) = (x+1)/2.
The similarity between the two item groups is defined in a similar way.

For each user group, we compute the average PCC of all pairs of smaller
user groups it contains (i.e., user groups from the lower level) for HGMF3 and
HHMF3 when d = 20 and the group ratio is 10. We report the average in-group
PCC in Table 5. For item groups, we compute PCC similarly. In Table 5, 1→2
indicates the grouping from user/item groups at level 1 (where each group
contains one user/item) to user/item groups at level 2, and 2→3 indicates the
grouping from user/item groups at level 2 to user/item groups at level 3.

From Table 5, we can observe the following:

(1) The hierarchy learned in HHMF captures user/item grouping better than
HGMF, since the average PCC of HHMF is higher than the corresponding
PCC of HGMF in most cases.

(2) From lower to higher levels, the average PCC decreases. During rating
prediction, the task is conducted top-bottom and thus the predicted rat-
ings are refined from higher to lower levels. At higher levels, more user

20 https://www.geforce.com/hardware/technology/cuda

https://www.geforce.com/hardware/technology/cuda
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Table 5 Average Pearson Correlation Coefficient in each level

Method Grouping FilmTrust Ciao Yelp Dianping MovieLens Netflix

HGMF
(user)

1→2 0.1021 0.3698 0.2411 0.3156 0.1711 0.2310
2→3 0.0783 0.3012 0.2171 0.1865 0.1456 0.2101

HHMF
(user)

1→2 0.1398 0.3912 0.2976 0.3981 0.1801 0.2481
2→3 0.0911 0.3451 0.2511 0.2411 0.1611 0.2415

HGMF
(item)

1→2 0.1312 0.3871 0.2731 0.3316 0.1187 0.2514
2→3 0.1234 0.3229 0.2654 0.2341 0.1024 0.2431

HHMF
(item)

1→2 0.1431 0.3812 0.3211 0.3612 0.1546 0.2741
2→3 0.1287 0.3451 0.2899 0.2678 0.1347 0.2547

groups/item groups from the level below are included in one group, which
introduces more noise.

To conclude, HHMF models better the user/item grouping structures com-
pared to HGMF, which explains why HHMF outperforms HGMF (and other
approaches that do not capture at all the hierarchical structures in the data).

5 Conclusion

In this paper, we proposed a novel hierarchical matrix factorization method
called HHMF, which learns and uses the ‘hidden’ hierarchical structure in the
user-item rating records to improve the quality of recommendation. HHMF
can be applied in recommender systems, where the hierarchical structure is
implicit. Our extensive experiments demonstrate that HHMF outperforms tra-
ditional MF methods, state-of-the-art hierarchical MF methods, and neural
network-based methods.

Currently, there are a few limitations of HHMF. First, we only consider
basic user-item rating information, instead of incorporating additional contex-
tual information. We do this in order to demonstrate that the improvement
achieved by HHMF over other methods is due to the effectiveness of our inter-
dependent structure learning and rating prediction. Additionally, the number
of layers in HHMF is a user-defined hyperparameter, as in other hierarchical
MF approaches. Lastly, HHMF adopts hard-assignment, i.e., one user group
or item group can only be affiliated to one topic group after the hierarchy is
built, although the probabilities that one user group or item group is affiliated
to different topic groups are also learned.

Towards addressing the aforementioned drawbacks, there are several pos-
sible directions for improving HHMF:

(1) In the future, we plan to incorporate additional contextual information
(e.g., review text (Wang et al. 2018a; Garćıa-Durán et al. 2018), check-in
records (Lu et al. 2017) and item metadata (Li et al. 2012)) into HHMF
in order to further improve its performance.

(2) We will enhance the current optimization method and design an early-
stop mechanism, such that HHMF does not require the hyperparameter of
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layer number. This way, the algorithm will be able to stop before entering
into deeper layers, if the current model converges.

(3) We will consider introducing additional soft-grouping mechanisms into
HHMF such that each user group or item group can affiliate to more than
one topic group. In this way, more flexibility is added to HHMF and its
performance can potentially be improved.
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6 Appendix

6.1 Calculation of Equation 3

Pr(Q,P, θ, µ, φ, κ|R,Ξ)

= Pr(Q,P |R,Ξ) · Pr(θ, µ, φ, κ|R,Ξ)

= Pr(Q,P |R,Ξ) · Pr(θ, µ, φ, κ|R)

= Pr(Q,P |R,Ξ) · Pr(θ, κ|R) · Pr(µ, φ|R)

=
Pr(Q,P |R,Ξ) · Pr(R|θ, κ) · Pr(R|µ, φ) · Pr(θ, κ) · Pr(µ, φ)

Pr(R) · Pr(R)

∝ Pr(Q,P |R,Ξ) · Pr(R|θ, κ) · Pr(R|µ, φ).

6.2 Calculation of Equation 7

Pr({Q(`)}l`=1, {P (`)}l`=1 | {R(`)}l`=1, {S(`)}l−1
` , {V (`)}l−1

`=1, Ξ)

=
Pr({R(`)}l`=1, {S(`)}l−1

` , {V (`)}l−1
`=1, Ξ | {Q(`)}l`=1, {P (`)}l`=1) · Pr({Q(`)}l`=1, {P (`)}l`=1)

Pr({R(`)}l`=1, {S(`)}l−1
` , {V (`)}l−1

`=1, Ξ)

∝Pr({R(`)}l`=1 | {Q(`)}l`=1, {P (`)}l`=1, σ
2
R) · Pr({S(`−1)}l`=1 | {Q(`)}l`=1, {P (`)}l`=1, σ

2
S)

Pr({V (`−1)}l`=1 | {Q(`)}l`=1, {P (`)}l`=1, σ
2
V ) · Pr({Q(`)}l`=1) · Pr({P (`)}l`=1)

=
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6.3 Gradients used in Equation 9

∂LR(`)

Q
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u
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u ) (16)
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(`−1)
i ) (19)
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∂LV (`−1)
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