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Abstract Traditional spatial queries return, for a given query object q, all database
objects that satisfy a given predicate, such as epsilon range and k-nearest neighbors.
This paper defines and studies inverse spatial queries, which, given a subset of
database objects Q and a query predicate, return all objects which, if used as query
objects with the predicate, contain Q in their result. We first show a straight-
forward solution for answering inverse spatial queries for any query predicate.
Then, we propose a filter-and-refinement framework that can be used to improve
efficiency. We show how to apply this framework on a variety of inverse queries,
using appropriate space pruning strategies. In particular, we propose solutions for
inverse epsilon range queries, inverse k-nearest neighbor queries, and inverse skyline
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queries. Furthermore, we show how to relax the definition of inverse queries in
order to ensure non-empty result sets. Our experiments show that our framework
is significantly more efficient than naive approaches.

Keywords Spatial data · Inverse queries · k-NN query · Skyline query ·
Range query · Reverse queries

1 Introduction

Recently, a lot of interest has grown for reverse queries, which take as input an object
o and find the queries which have o in their result set, w.r.t. a given query predicate.
A characteristic example is the reverse k-NN query [6, 14], whose objective is to find
the query objects (from a given dataset) that have a given input object in their k-
NN set. In such an operation the roles of the query and data objects are reversed;
while the k-NN query finds the data objects which are the nearest neighbors of a
given query object, the reverse query finds the query objects, having a given set of
data objects within their k-NN result. Besides k-NN search, reverse queries have
also been studied for other spatial and multidimensional search problems, such as
top-k search [16] and dynamic skyline [7]. Reverse queries mainly find application
in data analysis tasks; e.g., given a product find the customer searches that have
this product in their result. Korn and Muthukrishnan [6] outlines a wide range of
such applications (including business impact analysis, referral and recommendation
systems, maintenance of document repositories).

In this paper, we generalize the concept of reverse queries. We note that the
current definitions take as input a single object. However, similarity queries such as
k-NN queries and ε-range queries may in general return more than one result. Data
analysts are often interested in the queries that include two or more given objects in
their result. Such information can be meaningful in applications where only the result
of a query can be (partially) observed, but the actual query object is not known. For
example consider an online shop selling a variety of different products each given by
a set of metric features values (e.g. price, weight, rating, etc.) stored in a database
D. The online shop may be interested in offering a package of products Q ⊆ D for a
special price. The problem at hand is to identify customers which are interested, i.e.
in all items of the package, in order to direct an advertisement to them. We assume
that the preferences of registered customers are known. First, we need to define a
predicate indicating whether a user is interested in a product. A customer may be
interested in a product if

– The distance between the product’s features and the customer’s preference is
less than a threshold ε.

– The product is contained in the set of his k favorite items, i.e., the k-set of product
features closest to the user’s preferences.

– The product is contained in the customer’s dynamic skyline, i.e., there is no other
product that better fits the customer’s preferences in every possible way.

Therefore, we want to identify customers r, such that the query on D with query
object r, using one of the query predicates above, contains Q in the result set. As a
spatial application consider a pizza restaurant that wants to find all customers that
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are spatially close to both him and another competitor pizza restaurant, in order to
find households to direct advertisements to. Again, the spatially close can refer to
direct distance (ε-range) or to nearest-neighbor distance.

More specifically, consider a set D ∈ R
d as a database of n objects. We assume that

Euclidean distance is used to measure dissimilarity between database objects.1 and
let d(·) denote the Euclidean distance in R

d. Let P(q) be a query on D with predicate
P and query object q.

Definition 1 An inverse P query (IPQ) computes for a given set of query objects
Q ⊆ D the set of points r ∈ R

d for which Q is in the P query result; formally:

IPQ = {r ∈ R
d : Q ⊆ P(r))}

Note, that in the context of inverse queries the term “query object” is used in an
opposite sense. Here, q ∈ Q denotes a query point in the context of “inverse queries”
while r denotes a query point in the traditional sense of queries, i.e. q is a result of
a query based on a query predicate P using r as query object. Simply speaking, the
result of the general inverse query is the subset of the space defined by all objects r
for which all Q-objects are in P(r). Special cases of the query are

– The mono-chromatic inverse P query, for which the result set is a subset of D.
– The bi-chromatic inverse P query, for which the result set is a subset of a

given database D′ ⊆ R
d. The main difference with the mono-chromatic inverse

P query is that objects in D do not affect each other, i.e., when computing the
result of an inverse query for a query subset Q ⊆ D′, then only objects in D are
considered for the result computation.

In this paper, we study the inverse versions of three common query types in spatial
and multimedia databases as follows.

Inverse ε-range query (Iε-RQ) The inverse ε-Range query returns all objects which
have a sufficiently low distance to all query objects. For a bi-chromatic sample
application of this type of query, consider a movie database containing a large
number of movie records. Each movie record contains features such as humor,
suspense, romance, etc. Users of the database are represented by the same attributes,
describing their preferences. We want to create a recommendation system that
recommends to users movies that are sufficiently similar to their preferences (i.e.,
distance less than ε). Now, assume that a group of users, such as a family, want
to watch a movie together; a bi-chromatic Iε-RQ query will recommend movies
which are similar to all members of the family. For a mono-chromatic case example,
consider the set Q = {q1, q2} of query objects of Fig. 1a and the set of database points
D = {p1, p2, · · · , p6, q1, q2}. If the range ε is as illustrated in the figure, the result of
the Iε-RQ(Q) is {p2, p4, p5} (e.g., p1 is dropped because d(p1, q2) > ε).

Inverse k-NN query (Ik-NNQ) The inverse k-NN query returns the objects which
have all query points in their k-NN set. For example, mono-chromatic inverse k-NN

1We note that the proposed techniques can be easily adapted to use any Lp-Norm as well as weighted
euclidean distance.
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Fig. 1 Examples of inverse queries

queries can be used to aid crime detection. Assume that a set of households have
been robbed in short succession and the robber must be found. Assume that the
robber will only rob houses which are in his close vicinity, e.g. within the closest
hundred households. Under this assumption, performing an inverse 100-NN query,
using the set of robbed households as Q, returns the set of possible suspects. A
mono-chromatic inverse 3-NN query for Q = {q1, q2} in Fig. 1b returns {p4}. p6, for
example, is dropped, as q2 is not contained in the list of its three nearest neighbors.

Inverse dynamic skyline query (I-DSQ) An inverse dynamic skyline query returns
the objects, which have all query objects in their dynamic skyline. A sample appli-
cation for the general inverse dynamic skyline query is a product recommendation
problem: Assume there is a company, e.g. a photo camera company, that provides its
products via an internet portal. The company wants to recommend to their customers
products by analyzing the web pages visited by them. The score function used by
the customer to rate the attributes of products is unknown. However, the set of
products that the customer has clicked on can be seen as samples of products that
he or she is interested in, and thus, must be in the customers dynamic skyline.
The inverse dynamic skyline query can be used to narrow the space which the
customers preferences are located in. Objects which have all clicked products in their
dynamic skyline are likely to be interesting to the customer. In Fig. 1, assuming that
Q = {q1, q2} are clicked products, I-DSQ(Q) includes p6, since both q1 and q2 are
included in the dynamic skyline of p6.

For simplicity, we focus on the mono-chromatic cases of the respective query
types (i.e., query points and objects are taken from the same data set); however, the
proposed techniques can also be applied for the bi-chromatic and the general case.

Motivation A naive way to process any inverse spatial query is to compute the
corresponding reverse query for each qi ∈ Q and then intersect these results. The
problem of this method is that running a reverse query for each qi multiplies
the complexity of the reverse query by |Q| both in terms of computational and
I/O cost. Objects that are not shared in two or more reverse queries in Q are



Geoinformatica (2013) 17:449–487 453

unnecessarily retrieved, while objects that are shared by two or more queries are
redundantly accessed multiple times. We propose a filter-refinement framework
for inverse queries, which first applies a number of filters using the set of query
objects Q to prune effectively objects which may not participate in the result.
Afterwards candidates are pruned by considering other database objects. Finally,
during a ref inement step, the remaining candidates are verified against the inverse
query and the results are output. Details of our framework are shown in Section 3.
When applying our framework to the three inverse queries under study, filtering and
refinement are sometimes integrated in the same algorithm, which performs these
steps in an iterative manner. Although for Iε-RQ queries the application of our
framework is straightforward, for Ik-NNQ and I-DSQ, we define and exploit special
pruning techniques that are novel compared to the approaches used for solving the
corresponding reverse queries.

Outline The rest of the paper is organized as follows. In Section 2, we give an
overview of the previous work which is related to inverse query processing. Section 3
describes our framework. In Sections 4–6, we implement it on the three inverse
spatial query types; we first briefly introduce the pruning strategies for the single-
query-object case and then show how to apply the framework in order to handle
the multi-query-object case in an efficient way, for both the mono-chromatic and the
bi-chromatic case. Section 7 gives a relaxed definition of the problem for the case
where no results are obtained using the original definition. In Section 8, we provide
an extensive experimental evaluation. Finally, Section 9 concludes the paper.

2 Related work

The problem of supporting reverse queries efficiently, i.e. the case where Q only
contains a single database object, has been studied extensively. However, none of
the proposed approaches is directly extendable for the efficient support of inverse
queries when |Q| > 1. First, there exists no related work on reverse queries for the
ε-range query predicate. This is not surprising since the the reverse ε-range query
is equal to a (normal) ε-range query. However, there exists a large body of work
for reverse k-nearest neighbor (Rk-NN) queries. Self-pruning approaches like the
RNN-Tree [6] and the RdNN-tree [17] operate on top of a spatial index, like the
R-tree. Their objective is to estimate the k-NN distance of each index entry e. If the
k-NN distance of e is smaller than the distance of e to the query q, then e can be
pruned. These methods suffer from the high materialization and maintenance cost of
the k-NN distances.

Mutual-pruning approaches such as [12–14] use other points to prune a given
index entry e. TPL [14] is the most general and efficient approach. It uses an R-
tree to compute a nearest neighbor ranking of the query point q. The key idea is to
iteratively construct Voronoi hyper-planes around q using the retrieved neighbors.

TPL can be used for inverse k-NN queries where |Q| > 1, by simply performing
a reverse k-NN query for each query point and then intersecting the results (i.e., the
brute-force approach).

Efficient algorithms to process Skyline queries [11, 15] and dynamic skyline
queries [2] have gained much attention by scientists due to their manifold applica-
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tions in decision making. For reverse dynamic skyline queries, Dellis and Seeger [3]
proposed an efficient solution, which first performs a filter-step, pruning database
objects that are globally dominated by some point in the database. For the remaining
points, a window query is performed in a refinement step. In addition, Lian and
Chen [7] gave a solution for reverse dynamic skyline computation on uncertain data.
None of these methods considers the case of |Q| > 1, which is the focus of our work.

In [16] the problem of reverse top-k queries is studied. A reverse top-k query
returns for a point q and a positive integer k, the set of linear preference functions
for which q is contained in their top-k result. The authors provide an efficient solution
for the 2D case and discuss its generalization to the multidimensional case, but do not
consider the case where |Q| > 1. Although we do not study inverse top-k queries in
this paper, we note that it is an interesting subject for future work.

Inverse queries are very related to group queries, i.e. similarity queries that
retrieve the top-k objects according to a given similarity (distance) aggregate w.r.t. a
given set of query points [9, 10]. However, the problem addressed by group queries
generally differs from the problem addressed in this paper. Instead of minimizing
distance aggregations, here we have to find efficient methods for converging query
predicate evaluations w.r.t. a set of query points. Hence, new strategies are required.

3 Inverse query (IQ) framework

Our solutions for the three inverse queries under study are based on a common
framework consisting of the following filter-refinement pipeline:

Filter 1: fast query based validation The first component of the framework, called
fast query based validation, uses the set of query objects Q only to perform a quick
check on whether it is possible to have any result at all. In particular, this filter verifies
simple constraints that are necessary conditions for a non-empty result. For example,
for the Ik-NN case, the result is empty if |Q| > k.

Filter 2: query based pruning Query based pruning again uses the query objects only
to prune objects in D which may not participate in the result. Unlike the simple first
filter, here we employ the topology of the query objects.

Filters 1 and 2 can be performed very fast because they do not involve any
database object except the query objects.

Filter 3: object based pruning This filter, called object based pruning, is more
advanced because it involves database objects additional to the query objects. The
strategy is to access database objects in ascending order of their maximum distance
to any query point; formally:

MaxDist(o, Q) = max
q∈Q

(d(o, q)).

The rationale for this access order is that, given any query object q, objects that are
close to q have more pruning power, i.e., they are more likely to prune other objects
w.r.t. q than objects that are more distant to q. To maximize the pruning power, we
prefer to examine objects that are close to all query points first.
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Note that the applicability of the filters depends on the query. Query based
pruning is applicable if the query objects suffice to restrict the search space which
holds for the inverse ε-range query and the inverse skyline query but not directly for
the inverse k-NN query. In contrast, the object based pruning filter is applicable for
queries where database objects can be used to prune other objects which for example
holds for the inverse k-NN query and the inverse skyline query but not for the inverse
ε-range query. Furthermore, we note that object based pruning is not applicable for
the bi-chromatic case, where objects in D do not affect each other. For all solutions
that we will propose in this work for the mono-chromatic case, the bi-chromatic case
can be easily derived by simply disabling object based pruning.

Ref inement In the final ref inement step, the remaining candidates are verified and
the true hits are reported as results.

4 Inverse ε-range query

We will start with the simpler query, the inverse ε-range query. First, consider
the case of a query object q (i.e., |Q| = 1). In this case, the inverse ε-range query
computes all objects, that have q within their ε-range sphere. Due to the symmetry
of the ε-range query predicate, all objects satisfying the inverse ε-range query
predicate are within the ε-range sphere of q as illustrated in Fig. 2a. In the following,
we consider the general case, where |Q| > 1 and show how our framework can be
applied.

4.1 Framework implementation

4.1.1 Fast query based validation

There is no possible result if there exists a pair q, q′ of queries in Q, such that their
ε-ranges do not intersect (i.e., d(q, q′) > 2 · ε). In this case, there can be no object r
having both q and q′ within its ε-range (a necessary condition for r to be in the result).

4.1.2 Query based pruning

For each qi ∈ Q, let Sε
i ⊆ R

d denote the ε-sphere around point qi as depicted in
the example shown in Fig. 2b. Obviously, any point in the intersection region of
all spheres, i.e. ∩i=1..m Sε

i , has all query objects qi ∈ Q in its ε-range. Consequently,
all objects outside of this region can be pruned. However, the computation of the
search region can become too expensive, even for the two-dimensional case where,
in the worst case, the search region may consist of |D| circular boundary lines. Thus,
we propose to compute the intersection between rectangles that minimally bound
the hyper-spheres and use it as a filter. This can be done quite efficiently even in high
dimensional spaces; the resulting filter rectangle is used as a window query and all
objects in it are passed to the refinement step as candidates.
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Fig. 2 Pruning space for Iε-RQ

4.1.3 Object based pruning

As mentioned in Section 3 this filter is not applicable for inverse ε-range queries,
since objects cannot be used to prune other objects.

4.1.4 Ref inement

In the refinement step, for all candidates we compute their distances to all query
points q ∈ Q and report only objects that are within distance ε from all query objects.

4.2 Algorithm

Due to the straightforward nature of our Iε-range algorithm, we will give only a
discuss on issues related with this algorithm in this section, rather than a formal
pseudo-code. The implementation of our framework above can be easily converted
to an algorithm, which, after applying the filter steps, performs a window query to
retrieve the candidates, which are finally verified. Search can be facilitated by an
R-tree that indexes D. Starting from the root, we search the tree, using the filter
rectangle. To minimize the I/O cost, for each entry P of the tree that intersects
the filter rectangle, we compute its distance to all points in Q and access the
corresponding subtree only if all these distances are smaller than ε.

For inverse ε-range queries, the bi-chromatic case is identical to the mono-
chromatic case. The reason being that non-query database objects in D do not affect
each other. Thus, the predicate of a query object q ∈ Q being in range of o ∈ D only
depends on the position of o and q, but not on other objects in D \ {o}.

5 Inverse k-NN query

For inverse k-nearest neighbor queries (Ik-NNQ), we first consider the case of a sin-
gle query object (i.e., |Q| = 1). As discussed in Section 2, this case can be processed
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by the bi-section-based Rk-NN approach (TPL) proposed in [14], enhanced by the
rectangle-based pruning criterion proposed in [4]. The core idea of TPL is to use bi-
section-hyperplanes between database objects o and the query object q in order to
check which objects are closer to o than to q. Each bi-section-hyperplane divides the
object space into two half-spaces, one containing q and one containing o. Any object
located in the half-space containing o is closer to o than to q. The objects spanning the
hyperplanes are collected in an iterative way. Each object o is then checked against
the resulting half-spaces that do not contain q. As soon as o is inside more than k
such half-spaces, it can be pruned. Next, we consider queries with multiple objects
(i.e., |Q| > 1) and discuss how the framework presented in Section 3 is implemented
in this case.

5.1 Framework implementation

5.1.1 Fast query based validation

Recall that this filter uses the set of query objects Q only, to perform a quick check
on whether the result is empty. Here, we use the obvious rule that the result is empty
if the number of query objects exceeds the query parameter k.

5.1.2 Query based pruning

We can exploit the query objects in order to reduce the Ik′-NN query to an Ik′-NN
query with k′ < k. A smaller query parameter k′ allows us to terminate the query
process earlier and reduce the search space. We first show how k can be reduced by
means of the query objects only.

Lemma 1 Let D ⊆ R
d be a set of database objects and Q ⊆ D be a set of query objects.

Let D′ = D − Q. For each o ∈ D′, the following statement holds:

o ∈ Ik-NNQ(Q) in D ⇒ ∀q ∈ Q : o ∈ Ik′-NNQ({q}) in D′ ∪ {q},
where k′ = k − |Q| + 1.

Proof Assume that

∀q ∈ Q : o ∈ Ik′-NNQ({q}) in D′ ∪ {q}
where k′ = k − |Q| + 1.

Then, for each q ∈ Q there exist at most k′ − 1 objects o′ ∈ D \ Q such that
dist(o, o′) < dist(o, q). In addition, there exist at most |Q| − 1 query objects q′ ∈
Q \ {q} such that dist(o, q′) < dist(o, q). Thus, there exist at most k′ − 1 + |Q| − 1 =
k − |Q| + 1 − 1 + |Q| − 1 = k − 1 objects which are closer to o than to q, thus q must
be a k-NN of o. Since this holds for each q ∈ Q we obtain

o ∈ Ik-NNQ(Q) in D
	


Lemma 1 implies that, if a candidate object o is not in the Ik′-NNQ({q})
result of some q ∈ Q considering only the points D′ ∪ {q}, then o cannot be in
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the Ik-NNQ(Q) result considering all points in D and o can be pruned. As a
consequence, Ik′-NNQ({q}) in D′ ∪ {q} can be used to prune candidates for any
q ∈ Q. The pruning power of Ik′-NNQ({q}) depends on how q ∈ Q is selected.

From Lemma 1 we can conclude the following:

Lemma 2 Let o ∈ D − Q be a database object and qref(o) ∈ Q be a query object such
that ∀q ∈ Q : d(o, qref(o)) ≥ d(o, q). Then

o ∈ Ik-NNQ(Q) ⇒ o ∈ Ik′-NNQ({qref(o)}) in D′ ∪ {q},
where k′ = k − |Q| + 1.

Proof Due to Lemma 1 we have

o ∈ Ik-NNQ(Q) in D ⇒ ∀q ∈ Q : o ∈ Ik′-NNQ({q}) in D′ ∪ {q},
Again, let qref be the query point with the largest distance to o. Since qref ∈ Q we get:

∀q ∈ Q : o ∈ Ik′-NNQ({q}) in D′ ∪ {q} ⇒ o ∈ Ik′-NNQ({qref}) in D′ ∪ {qref}
	


Lemma 2 suggests that for any candidate object o in D, we should use the farthest
query point to check whether o can be pruned, since, if the right-hand-side of 2 does
not hold, the left-hand-side of Lemma 2 can not hold either.

5.1.3 Object based pruning

Up to now, we only used the query points in order to reduce k in the inverse k-
NN query. Now, we will show how to consider database objects in order to further
decrease k.

Lemma 3 Let Q be the set of query objects and H ⊆ D − Q be the non-
query(database) objects covered by the convex hull of Q. Furthermore, let o ∈ D be
a database object and qref(o) ∈ Q a query object such that ∀q ∈ Q : d(o, qref(o)) ≥
d(o, q). Then for each object p ∈ H it holds that d(o, p) ≤ d(o, qref(o)).

Proof A formal proof of Lemma 3 can be found in Appendix. 	


According to the above lemma the following statement holds:

Lemma 4 Let Q be the set of query objects, H ⊆ D − Q be the database (non-query)
objects covered by the convex hull of Q and let qref(o) ∈ Q be a query object such that
∀q ∈ Q : d(o, qref(o)) ≥ d(o, q) for a given database object o ∈ D. Then

∀o ∈ D − H − Q : o ∈ Ik-NNQ(Q) ⇔
at most k′ = k − |H| − |Q| objects p ∈ D − H are closer to o than qref(o), and

∀o ∈ H : o ∈ Ik-NNQ(Q) ⇔
at most k′ = k − |H| − |Q| + 1 objects p ∈ D − H are closer to o than qref(o).
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Proof

⇒ If o ∈ Ik-NNQ(Q), then all query points (including qref) are in the k-NN set of
o. Since for all points p in H, d(o, p) ≤ d(o, qref) (cf. Lemma 3), all points in H
should also be in the k-NN set of o. Therefore, in the (worst) case, where qref

is the k-th NN of o, there can be k − |H| − |Q| points outside the convex hull
closer to o than qref, if o /∈ H, or k − |H| + 1 − |Q| points if o ∈ H.

⇐ If o is outside the hull, from the points in H ∪ Q, qref is the farthest one to o (cf.
Lemma 3). If there are at most k − |H| − |Q| points outside the hull closer to o
than qref is, then the distance ranking of qref is at most k. Since all other points in
Q are closer to o than qref is, it holds that o ∈ Ik-NNQ(Q). If o ∈ H, the bound
is k − |H| − |Q| + 1, as o should be excluded from H in the proof. 	


Based on Lemma 4, given the number of objects in the convex hull of Q, we can
prune objects outside of the hull from Ik-NN(Q). Specifically, for an Ik-NN query
we have the following pruning criterion: An object o ∈ D can be pruned, as soon
as we find more than k′ objects p ∈ D − H outside of the convex hull of Q, that
are closer to o than qref(o). Note that the parameter k′ is set according to Lemma 4
and depends on whether o is in the convex hull of Q or not. Depending on the size
of Q and the number of objects within the convex hull of Q, k′ = k − |H| + 1 can
become negative. In this case, we can terminate query evaluation immediately, as no
object can qualify the inverse query (i.e., the inverse query result is guaranteed to be
empty). The case where k′ = k − |H| + 1 becomes zero is another special case, as all
objects outside of H can be pruned. For all objects in the convex hull of Q (including
all query objects) we have to check whether there are objects outside of H that prune
them.

As an example of how Lemma 4 can be used, consider the data shown in Fig. 3 and
assume that we wish to perform an inverse 10-NN query using a set Q of seven query
objects, shown as points in the figure; non-query database points are represented
by stars. In Fig. 3a, the goal is to determine whether candidate object o1 is a result,

o1

qref1

o2

d(o1,qref1)

(a) Pruning o1 .

o1
o2

qref2

d(o2,qref2)

(b) Pruning o2 .

Fig. 3 Ik-NN pruning based on Lemma 4
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i.e., whether o1 has all q ∈ Q in its 10-NN set. The query object having the largest
distance to o1 is qref(o1). Since o1 is located outside of the convex hull of Q (i.e,
o ∈ D − H − Q), the first equivalence of Lemma 4, states that o1 is a result if at
most k′ = k − |H| − |Q| = 10 − 4 − 7 = −1 objects in D − H − Q are closer to o1

than qref(o1). Thus, o1 can be safely pruned without even considering these objects
(since obviously, at least zero objects are closer to o1 than qref(o1)). Next, we consider
object o2 in Fig. 3b. The query object with the largest distance to o2 is qref(o2). Since
o2 is inside the convex hull of Q, the second equivalence of Lemma 4 yields that o2

is a result if at most k′ = k − |H| − |Q| + 1 = 10 − 4 − 7 + 1 = 0 objects D − H − Q
are closer to o2 than qref(o2). This, o2 remains a candidate until at least one object in
D − H − Q is found that is closer to o2 than qref(o2).

5.1.4 Ref inement

Each remaining candidate is checked whether it is a result of the inverse query by
performing a k-NN search and verifying whether its result includes Q.

5.2 Algorithm

We now present a complete algorithm that traverses an aggregate R-tree (ARTree,
Papadias et al. [8]), which indexes D, and computes Ik-NNQ(Q) for a given set Q of
query objects, using Lemma 4 to prune the search space. The (ARTree) is a modified
R-tree which stores in each node N the number of objects approximated by N. These
counts can be used to accelerate search, as we will see later.

In a nutshell, the algorithm, while traversing the tree, attempts to prune nodes
based on the lemma using the information known so far about the points of D that
are included in the convex hull (f iltering). The objects that survive the pruning are
inserted in the candidates set. During the ref inement step, for each point c in the
candidates set, we run a k-NN query to verify whether c contains Q in its k-NN set.

Algorithm 1 shows the pseudocode of our approach. The ARTree is traversed
in a best-first search manner [5], prioritizing the access of the nodes according to
the maximum possible distance (in case of a non-leaf entry we use MinDist) of their
contents to the query points Q. In specific, for each R-tree entry e we can compute,
based on its MBR, the farthest possible point qref(p) in Q to a point p indexed under
e. Processing the entries with the smallest such distances first helps to find points in
the convex hull of Q earlier, which helps making the pruning bound tighter.

Thus, initially, we set |H| = 0, assuming that in the worst case the number of non-
query points in the convex hull of Q is 0. If the object which is deheaped is inside the
convex hull, we increase |H| by one. If a non-leaf entry is deheaped and its MBR is
contained in the hull, we increase |H| by the number of objects in the corresponding
sub-tree, as indicated by its augmented counter.

During the tree traversal, the accessed tree entries could be in one of the following
sets (i) the set of candidates, which contains objects that could possibly be results of
the inverse query, (ii) the set of pruned entries, which contains (pruned) entries whose
subtrees may not possibly contain inverse query results, and (iii) the set of entries
which are currently in the priority queue. When an entry e is deheaped, the algorithm
checks whether it can be pruned. For this purpose, it initializes a prune_counter
which is a lower bound of the number of objects that are closer to every point p in e
than Q’s farthest point to p. For every entry e′ in all three sets (candidates, pruned,
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Algorithm 1 Inverse k-NN query
Require: Q, k, ARTree

1: //Fast Query Based Validation
2: if |Q| > k then
3: return no result and terminate algorithm
4: end if
5: pq : PriorityQueue ordered by maxqi∈QMinDist
6: pq.add(ARTree.root entries)
7: |H| = 0
8: LIST candidates, prunedEntries
9: //Query/Object Based Pruning

10: while ¬pq.isEmpty() do
11: e = pq.poll()
12: if getPruneCount(e, Q, candidates, prunedEntries, pq) > k − |H| − |Q| then
13: prunedEntries.add(e)
14: else if e.isLeaf Entry() then
15: candidates.add(e)
16: else
17: pq.add(e.getChildren())
18: end if
19: if e ∈ convexHull(Q) then
20: |H|+ = e.agg_count
21: end if
22: end while
23: //Ref inement Step
24: LIST result
25: for c ∈ candidates do
26: if qref ∈ knnQuery(c, k) then
27: result.add(c)
28: end if
29: end for
30: return result

and priority queue), we increase the prune_counter of e by the number of points in
e′ if the following condition holds: ∀p ∈ e,∀p′ ∈ e′ : dist(e, e′) < dist(e, qref(p)). This
condition can efficiently be checked using the technique from [4]. An example were
this condition is fulfilled is shown in Fig. 4. Here the prune_counter of e can be
increased by the number of points in e′.

While updating the value of prune_counter for e, we perform a check whether
prune_counter > k − |H| − |Q| (prune_counter > k − |H| − |Q| + 1) for entries
that are entirely outside of (intersect) the convex hull. As soon as this condition is
true, e can be pruned as it cannot contain objects that can participate in the inverse
query result (according to Lemma 4). Considering again Fig. 4 and assuming the
number of points in e′ to be 5, e could be pruned for k ≤ 10 (since prune_counter(5) >
k(10) − |H|(2) − |Q|(4) holds). In this case e is moved to the set of pruned entries. If
e survives pruning, the node pointed to by e is visited and its entries are enheaped if
e is a non-leaf entry; otherwise e is inserted in the candidates set.
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Fig. 4 Calculating the
prune_count of e 1

q2

q3

q4

When the queue becomes empty, the filter step of the algorithm completes with a
set of candidates. For each object c in this set, we check whether c is a result of the
inverse query by performing a k-NN search and verifying whether its result includes
Q. In our implementation, to make this test faster, we replace the k-NN search by
an aggregate ε-range query around c, by setting ε = d(c, qref(c)). The objective is to
count whether the number of objects in the range is greater than k. In this case, we
can prune c, otherwise c is a result of the inverse query. ARTree is used to process the
aggregate ε-range query; for every entry e included in the ε-range, we just increase
the aggregate count by the augmented counter to e without having to traverse the
corresponding subtree. In addition, we perform batch searching for candidates that
are close to each other, in order to optimize performance.

We further note, that although the bi-chromatic inverse k-NN case can be solved
by simply disabling the object based filter, we note that bi-chromatic inverse k-NN
queries are not very meaningful in practise. In this case, the task is to compute for
a given database D, the set of objects which have all query objects q ∈ Q = D′ of a
second database D′ in their k-NN set. Clearly, this type of query returns nothing
if k < |Q|, and the whole database D otherwise. This is evident, since for a bi-
chromatic k-NN query, we drop the object-based filter, such that the query-based
filter is required to drop k′ to zero in order to produce results.

6 Inverse dynamic skyline query

Again, we first discuss the case of a single query object, which corresponds to the
reverse dynamic skyline query [7] and then present a solution for the more interesting
case where |Q| > 1. Let q be the (single) query object with respect to which we want
to compute the inverse dynamic skyline. An object o ∈ D defines a pruning region,
such that any object o′ in this region cannot be part of the inverse query result.
Formally:

Definition 2 (Pruning region) Let q = (q1, . . . , qd) ∈ Q be a single d-dimensional
query object and o = (o1, . . . , od) ∈ D be any d-dimensional database object. Then
the pruning region PRq(o) of o w.r.t. q is defined as the d-dimensional rectangle
where the ith dimension of PRq(o) is given by [ qi+oi

2 ,+∞] if qi < oi and [−∞, qi+oi

2 ] if
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Fig. 5 Single-query case

qi > oi. For qi = oi, the whole dimension is pruned, i.e. the pruning space is [−∞, ∞],
except for the case where q = o, where there is no pruning space.2

The pruning region of an object o with respect to a single query object q is
illustrated by the shaded region in Fig. 5a.

Filter step As shown in [7], any object p ∈ D can be safely pruned if p is contained
in the pruning region of some o ∈ D w.r.t. q (i.e. p ∈ PRq(o)). Accordingly, we can
use q to divide the space into 2d partitions by splitting along each dimension at q. Let
o ∈ D be an object in any partition P; o is an I-DSQ candidate, iff there is no other
object p ∈ P ⊆ D that dominates o w.r.t. q.

Thus, we can derive all I-DSQ candidates as follows: First, we split the data
space into the 2d partitions at the query object q as mentioned above. Then in
each partition, we compute the skyline,3 as illustrated in the example depicted in
Fig. 5b. The union of the four skylines is the set of the inverse query candidates (i.e.
{o1, o2, o3, o5, o6, o8} in our example).

Ref inement The result of the reverse dynamic skyline query is finally obtained by
verifying for each candidate c, whether there is an object in D which dominates q
w.r.t. c. This can be done by checking whether the hypercube centered at c with
extent 2 · |ci − qi| in each dimension i is empty. For example, candidate o5 in Fig. 5b
is not a result, because the corresponding box (denoted by dashed lines) contains o7.
This means that in both dimensions o7 is closer to o5 than q is.

2The later observation follows by the definition of domination, which allows to prune an object o′ if
there is another object o which is at least as close to o′ as q in all dimension, and close in at least one
dimension. In the case o = q, the case applies where distances in all dimensions are equal, so nothing
can be pruned.
3Only objects within the same partition are considered for the domination relation.
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6.1 Framework implementation

6.1.1 Fast query based validation

Following our framework, first the set Q of query objects is used to decide whether
it is possible to have any result at all. For this, we use the following lemma:

Lemma 5 Let q ∈ Q be an arbitrary query object and let S be the set of 2d partitions
derived from dividing the object space at q along the axes into two halves in each
dimension. If in each partition r ∈ S there is at least one query object q′ ∈ Q (q′ �= q),
then there cannot be any result.

Proof Let us consider the space partitioning S derived from dividing the object space
at q. Each q′ located within partition r ∈ S generates a pruning region PRq′(q) (cf.
Definition 2) that totally covers the partition r′ ∈ S which is opposite to r w.r.t. q.
Since we assume that we have at least one query object q′ �= q in each partition r ∈ S,
all partitions r′ ∈ S are totally covered by a pruning region and, consequently, the
complete data space can be pruned. An example in the two-dimensional space is
illustrated in Fig. 6. 	


6.1.2 Query-based pruning

In the following, we show how pruning a data object from the candidates set of
an inverse skyline query can be accelerated. Therefore, we first propose a filter,
which uses the set Q of query objects only in order to reduce the space of candidate
results. We explore similar strategies as the fast query-based validation. For any
pair of query objects q, q′ ∈ Q, we can define two pruning regions according to

Fig. 6 Fast query based
validation filter in 2D-space PR (q’3)

PRq(q’4)

PRq(q 3)

q’2
q’1

q

q’3 q’4

PRq(q’1)PRq(q’2)
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Definition 2: PRq(q′) and PRq′(q). Any object inside these regions cannot be a
candidate for the inverse query result because it cannot have both q1 and q2 in its
dynamic skyline point set. Thus, for every pair of query objects, we can determine
the corresponding pruning regions and use their union to prune objects or use R-
tree nodes that are contained in it. Figure 7 shows examples of the pruning space
for |Q| = 3 and |Q| = 4. Observe that with the increase of |Q| the remaining space,
which may contain candidates, becomes very limited.

The main challenge is how to encode and use the pruning space defined by Q, as
it can be arbitrarily complex in the multidimensional space. As for the Ik-NNQ case,
our approach is not to explicitly compute and store the pruning space, but to check
on-demand whether each object (or R-tree MBR) can be pruned by one or more
query pairs. This has a complexity of O(|Q|2) checks per object.

Let Q� be the rectangle that minimally bounds all query objects.
The main idea is to identify pruning regions by just considering Q� and one query

object q located on the boundary of Q�. We first concentrate on pruning objects
outside of Q�, the cases for pruning objects inside of Q� will be discussed later.

Pruning condition I Assume that q is located at one corner of Q�, then the axis-
aligned region outside of Q� where the ith dimension is defined by the interval
[ci,+∞] if qi > ci and [−∞, ci] otherwise (where c is the center of Q�) can be
pruned. The rationale is that since Q� is a minimally bounding rectangle, at least
one other query object must be located at each edge of Q� on which q is not located
itself. By pairing q with each of these objects, and merging the corresponding pruning
regions, we obtain the pruning region. In the example shown in Fig. 8a, q is located at
the southeast corner of Q� and, therefore, additional query objects must be located
on both north and west edges of Q�. As a consequence, any object in the lower-right
shaded region can be pruned.

Pruning condition II In the case, where q is located at a boundary of Q�, but not
at a corner of Q�, the half-space constructed by splitting the data space along the
face of Q� containing q and not containing Q� defines the pruning region. Here,
the rationale is that since q is on an face f (but not at a corner) of Q�, there must
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Fig. 7 Pruning regions of query objects
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Fig. 8 Using query points at the border of Q� to prune space

be at least 2 · (d − 1) additional query objects, located at the edges adjacent to f . By
pairing q with each of these query objects, and merging the corresponding pruning
regions, we obtain the final pruning region. For example, in Fig. 8b, q is paired with
two more query objects located on the east and the west edge of Q�. We obtain the
shaded pruning region below q. As another example, consider the union of PQq1(q4)
and PQq3(q4) in Fig. 7b which prunes the whole hyperplane below q4. Thus, if all
four edges of Q� contain four different query objects, then only objects in Q� are
candidates for I-DSQ results.

6.1.3 Object-based pruning

For any candidate object o that is not pruned during the query-based filter step, we
need to check if there exists any other database object o′ which dominates some
q ∈ Q with respect to o. If we can find such an o′, then o cannot have q in its dynamic
skyline and thus o can be pruned for the candidate list. Naively, we can determine,
for each database object o′ that we have found so far and each query object q, the
pruning region PRq(o′) according to Definition 2, and subsequently check whether
o is located in this region. In the following, we show how to perform this pruning
without considering all possible combinations of database and query objects.

Consider two query points q1 and q2 and the rectangle Q�
q1q2

that minimally
bounds q1 and q2. Note, that Q�

q1q2
is fully contained in Q� and for each pair

qi, q j ∈ Q, i �= j the union of all Q�
qiq j

is equal to Q�. Consider the axis-aligned

space partitioning according to the center point c of Q�
q1q2

resulting in 2d−1 partitions,
denoted as NE, SE, SW and NW in Fig. 9. According to pruning condition I, the two
partitions containing q1 and q2 respectively, can be pruned.

For the two-dimensional case, this observation leads to a powerful pruning
criterion (pruning criterion III) which uses the following corollary:

Corollary 1 Let Q�
q1q2

be a minimal rectangular region minimally bounding two query
objects q1 and q2. Consider the two regions R1 and R2 given by the axis-aligned
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Fig. 9 Object-based pruning
inside Q� q1 o1

2oNW NE

SW SE

q2

(a) Case 1.

q1 o1
o2NE

SW SE

q2

(b) Case 2.

NW

space partitioning according to the center point c of Q�
q1q2

that cannot be pruned using
pruning criterion I. In the two-dimensional case, each of these regions may contain at
most one candidate object for a I-DSQ query.

Proof To prove this, let us consider the following two cases illustrated in Fig. 9a
and b:

Case 1 Let SR(oi, o j) ∈ {NW-SE, NE-SW} denote the spatial relationship between
two objects oi and o j. We define

SR(oi, o j) =
{

NE-SW, if oi.x > o j.x ∧ oi.y > o j.y ∨ oi.x < o j.x ∧ oi.y < o j.y

NW-SE otherwise
,

where o.x and o.y denote the value of the first and second dimension of object o,
respectively.

Let us assume that there are two objects o1 and o2 in one of the regions R ∈
{R1, R2}, that have the same spatial relationship as q1 and q2, i.e. SR(o1, o2) =
SR(q1, q2), as shown in Fig. 9a. In this case, both objects o1 and o2 must prune each
other. The reason is that o1 is in the pruning region of o2 w.r.t. q2 and o2 is in the
pruning region of o1 w.r.t. q1. Consequently, for any object oi in R to be a candidate,
there cannot exist another object o j such that SR(oi, o j) = SR(q1, q2).

Case 2 Now, we assume that there are two objects o1 and o2 in one of the regions R ∈
{R1, R2}, that do not have the same spatial relationship as q1 and q2, i.e. SR(o1, o2) �=
SR(q1, q2), as shown in Fig. 9b. In this case, it must hold that either oi is pruned by o j

or vice versa. The reason is that in each dimension, and for both qi ∈ {q1, q2}, it holds
that the distance between oi and o j must be less than the distance between oi and qi,
or vice versa. For example, assume that R corresponds to the north-east region of
center c, as in Fig. 9b. Here, o2 can be pruned by o1. However, merely based on the
spatial relation between o2 and o1, we can not decide whether o1 can be pruned by
o2. In this example, this is not the case, but would be the case if o2 was closer to o1.

Clearly there can be at most one object oi ∈ R such that for each other object o j

in R, oi �= o j, both query objects qi ∈ {q1, q2} and each dimension it holds that that
the distance between oi and o j must be less than the distance between oi and qi. This
is the object closest to the corner of Q� contained in R. 	
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We can now use Corollary 1 to obtain the following pruning condition:

Pruning condition III Let R ⊆ Q� be a region inside the query rectangle that
cannot be pruned using query-based pruning. Let q1, q2 ∈ Q be two query points
for which R is fully contained in the rectangle Q�

q1q2
minimally bounding q1 and q2.

Since R cannot be pruned based on query-pruning only, R must be located in non-
pruning regions (e.g. NE and SW in Fig. 7a) of q1 and q2. Without loss of generality,
let us assume that R is located in the NE region of Q�

q1q2
. Now let O be the set of

database objects inside R. Let a ∈ O be the object with the largest x coordinate and
let b ∈ O be the object with the largest y coordinate. If a �= b we can prune R. If
a = b , then a is a candidate and all other objects c ∈ R, c �= a can be pruned.

The above pruning condition allows us to prune objects inside Q� for the two-
dimensional case. The next pruning condition allows us to prune objects outside of
Q� using database objects for arbitrary dimensionality. In the following, let Q�

i . max
and Q�

i . min denote the maximum and minimum coordinate of Q�, at dimension i,
respectively.

Pruning condition IV For the next pruning condition we use the sets of database
objects Oi ⊆ D outside Q� for which it holds that each o ∈ Oi intersects Q� in all
but one dimension. Such objects are shown in Fig. 10 for the two-dimensional case.
Let O+

i (O−
i ) denote the subset of Oi such that each object o ∈ O+

i has a larger
(smaller) coordinate than Q� in the non-intersecting dimension. Now let o+

i ∈ O+
i

(o−
i ∈ O−

i ) be the object in O+
i (O−

i ) with the smallest (largest) coordinate in the
non-intersecting dimension j. Any database object which has a j coordinate greater

than o+
i +Q�

i .max
2 or less than o−

i +Q�
i .min

2 can be pruned. The rationale of this pruning
condition is that due the MBR property of Q�, we know that at least one query
object must be located on each edge of Q�. The pruning regions defined are based
on these query objects. For instance, for object o+

1 in Fig. 10 we can exploit that
there must be query objects q1 and q2 located on the left and the right border edge
of Q�, respectively. This allows us to create the two pruning regions PRq1(o

+
1 ) and

PRq2(o
+
1 ) according to Definition 2. These pruning regions are smallest possible, if

q1 and q2 are located at the upper corners of Q�. Thus, we can prune any object
above the line bisecting the upper side of Q� and o+

1 .

Fig. 10 Pruning regions
outside of Q� +

1

Q□
o-2

o+
22

o-o1

o

o
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Fig. 11 Refinement area
defined by q1, q2 and o1

q1

q2

6.1.4 Ref inement

In the refinement step, each candidate c is verified by performing a dynamic skyline
query using c as query point. The result should contain all qi ∈ Q, otherwise c is
dropped. The refinement step can be improved by the following observation (cf.
Fig. 11): for checking if a candidate o1 has all qi ∈ Q in its dynamic skyline, it suffices
to check whether there exists at least one other object o j ∈ D which prevents one qi

from being part of the skyline. Such an object has to lie within the MBR defined by
qi and q′

i (which is obtained by reflecting qi through o1). If no point is within the |Q|
MBRs, then o1 is reported as result.

Algorithm 2 Inverse dynamic skyline query
Require: Q, ARTree

1: pq : PriorityQueue ordered by minqi∈Q MaxDist
2: pq.add(ARTree.root entries)
3: LIST candidates, prunedEntries
4: //Filter step
5: while ¬pq.isEmpty() do
6: e = pq.poll()
7: if canBePruned(e, Q, candidates, prunedEntries, pq) then
8: prunedEntries.add(e)
9: else if e.isLeaf Entry() then

10: candidates.add(e)
11: else
12: pq.add(e.getChildren())
13: end if
14: end while
15: //Ref inement Step
16: LIST result
17: for c ∈ candidates do
18: if Q ∈ dynamicSkyline(c) then
19: result.add(c)
20: end if
21: end for
22: return result
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6.2 Algorithm

The pseudocode for I-DSQ is shown as Algorithm 2. During the filter steps, the
tree is traversed in a best-first manner, where entries are accessed by their minimum
distance (MinDist) to the farthest query object. For each entry e we check if e
is completely contained in the union of pruning regions defined by all pairs of
queries (qi, q j) ∈ Q; i.e.,

⋃
(qi,q j)∈Q PRqi(q j). In addition, for each accessed database

object oi and each query object q j, the pruning region is extended by PRq j(oi).
Analogously to the Ik-NN case, lists for the candidates and pruned entries are
maintained. The pruning conditions of Section 6.1 are used wherever applicable to
reduce the computational cost. Finally, the remaining candidates are refined using
the refinement strategy described in Section 6.1.

For the case of bi-chromatic inverse dynamic skyline queries, the pruning region
is only defined by objects in the set of query objects q ∈ Q = D. This pruning region
is used to prune objects o in D′. Again, the object-based filter is dropped, since in the
bi-chromatic case, objects in the set D′ do not affect each other.

7 Relaxed inverse queries

A major disadvantage of inverse queries in general is the problem that often no
result is returned. This problem becomes evident by considering the fast query-based
evaluation steps for each query predicate: An inverse query will return no result
at all, if a simple condition is satisfied. In many applications, this becomes a very
constraining concern: For example, in the family movie application there may be no
single movie which is sufficiently similar to the preference of all family members, thus
an inverse query would return an empty set. Instead, it may be preferred to return
movies which are sufficiently similar to as many family members as possible.

In this section, we will investigate an approach to ensure that a meaningful result
is returned. Therefore, we will relax Definition 1 by no longer requiring that, for a
database object o to be a result of an inverse query, all query objects Q have to be in
the result the P query result of o. Instead, we want to return the set of objects having
the largest number of objects q ∈ Q in their P query result. Thus, if there is no object
which qualifies for the inverse query predicate for all objects in Q, we will return all
objects that qualify for exactly |Q| − 1 objects in Q. If there is no such object, we will
return all objects that qualify for exactly |Q| − 2 objects in Q, and so on. We redefine
inverse queries as follows:

Definition 3 A relaxed inverse P query (IrelaxP query) computes for a given set of
query objects Q ⊆ D the set of points r ∈ R

d for which the largest number of objects
q ∈ Q are in the P query result; formally:

IrelaxP(Q) = {r : |P(r)| = maxr∈Rd (|P(r) ∩ Q|)}

In the following, we will discuss solutions for IrelaxP queries for the mono-
chromatic case. Note that Definition 3 is guaranteed to yield at least one answer,
because in the worst case it degenerates to a reverse query (for any q ∈ Q).

A naive approach to compute the result of an IrelaxP query is to iteratively
consider the setSk of

(|Q|
k

)
subsets of Q of size k, starting at k = |Q| and decrementing
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k in each iteration. For each s ∈ Sk, an IP(s) query is performed. An iteration
terminates when a non-empty result is returned, and all results of the same iteration
are returned. Clearly, this approach is not viable for large query sets Q due to
exponential runtime in |Q|.

Another naive approach performs a reverse P query for each query object q ∈ Q.
Then, for each database object o we count the number of occurrences of o in the
results of the reverse queries and return the set of objects with the largest number of
occurrences.

We propose to extend the latter approach by performing all reverse queries in
a parallel fashion, i.e. in one single traversal of the R∗-tree. Depending on the
respective query predicate P , we can identify pairs of query objects q and entries e of
the R∗-tree (which can be individual database objects or intermediate index pages),
for which we can already make a decision (positive or negative) whether e must have
q in its P query result. These decisions, allow us to estimate the number of query
objects in the P query result of e. Let LB(e) and U B(e) be lower and upper bounds
of the number of query objects in the result of e, respectively. Using these bounds,
we can derive a lower bound maxMin of the highest number of query points that any
database object has in its P query result. In a nutshell, maxMin is the highest lower
bound LB(e) of all active entries e of the R∗-tree at a given time:

maxMin = maxeLB(e)

The bound maxMin allows to prune entries e which cannot possibly have maxMin or
more query objects in their result set, i.e. objects where U B(e) < maxMin.

An example is given in Fig. 12, where a set of three query points Q = {q1, q2, q3}
and a set of intermediate R∗-tree entries are depicted. Here, we assume that the
predicate P is given as ε-range with the depicted radius as parameter. For each
entry e ∈ {e1, ..., e5}, the number of query objects in the range of the approximated
database objects can be approximated easily: The minimum number is given by the
ranges which fully contain e, whereas the maximum number is given by the ranges
intersecting e. For instance, each database object approximated by entry e1 must have
exactly one query object in its ε-range, since q3 must be in the range, while q1 and
q2 cannot possibly be in the range. Entry e2 has between zero and one objects in
its range, because q1 may or may not be in the range of children of e2. Entry e4

has a minimum number of two query objects in the range of its children, which is
the highest lower bound of all entries, thus maxMin = 2. This allows us to prune all
entries having an upper bound of less than two query objects, i.e. entries e1,e2 and

Fig. 12 Example for a IrelaxP
query

q1

q2

q3

e1

e2

e3

e4
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e3 can be safely pruned. Children of e5 however may also have two query objects in
their range, and thus, have to be considered, therefore e5 has to be refined.

A formalization of this approach for an arbitrary predicate P is shown in
Algorithm 3. This algorithm requires a set of query objects Q, a database indexed
by an R∗-tree RTree and a query predicate P with corresponding parameters (e.g.

Algorithm 3 Relaxed Inverse P query
Require: Q, P , RTree

1: pq : PriorityQueue ordered by U BP .
2: pq.add(RTree.root entries)
3: maxMiPruneCount = 0
4: LIST candidates, prunedEntries
5: //Query/Object Based Pruning
6: while ¬pq.isEmpty() do
7: e = pq.poll()
8: if (LBP (e) > maxMin) then
9: maxMin = LBP (e)

10: end if
11: if U BP (e) < maxMin then
12: prunedEntries.add(e)
13: else if e.isLeaf Entry() then
14: candidates.add(e)
15: else
16: for (childine.getChildren()) do
17: if (LBP (child) > maxMin then
18: maxMin = LBP (child)
19: end if
20: if U BP (child) < maxMin then
21: prunedEntries.add(child)
22: else
23: pq.add(child)
24: end if
25: end for
26: end if
27: end while
28: //Ref inement Step
29: LIST result
30: maxResults = 0
31: for c ∈ candidates do
32: if |PQuery(c) ∩ Q| > maxResults then
33: result.clear()
34: result.add(c)
35: else if |PQuery(c) ∩ Q| = maxResults then
36: result.add(c)
37: end if
38: end for
39: return result
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k for k-NN queries, εilon for εilon-range queries). Similar to our algorithms for IP-
queries, we propose to use a best-first approach to traverse the tree. Thus, all current
entries are stored in a priority queue, using meaningful heuristics for the sorting, such
as average minimum distance to all query objects.

In each iteration, the first object e of the queue is dequeued and the number of
query objects in its P query result is lower- and upper-bounded using the functions
LB(e) and U B(e). Obtaining these approximations depends on the predicate P :

– For P = ε-range, a lower bound is given by the number of ε-range spheres
completely containing e, whereas an upper bound is given by the ε-range spheres
intersecting e.

– For P = k-NN, we propose to use the concept of spatial domination [4], to
decide, for each q ∈ Q, if q must be (must not be, may be) a k-NN of e. A lower
bound is then given by the total number of query points that must be k-NNs of e,
while an upper bound is given by the number of query objects that must or may
be k-NNs of e.

– Analogously, for P = DS, the spatial pruning techniques proposed in [7] can be
used to find query objects q ∈ Q that must (not) be in the dynamic skyline of e.

If the upper bound of e is less than the current maximum lower bound maxMin,
then we can conclude that there must be an object in the database that has more
query objects in its result than any object in e, and thus e can be pruned. If the
lower bound of e is greater than the current maximum lower bound maxMin, then
maxMin is adjusted accordingly. In this case, we can prune all objects (both in the
candidate list candidates and in the priority queue pq which have an upper bound
less than the new maxMin). Then, if e is a leaf-node and has not been pruned, it
is added to the candidate list. Otherwise, if e is an intermediate entry, it is being
resolved, and its children are checked whether they can be pruned or whether they
can increase maxMin. The pruning phase stops when the priority queue pq is empty,
which implies that there is no intermediate entry left that can possibly be pruned. At
this point, the set of candidate objects is refined, i.e. their P-query result is computed
naively, and all objects having the largest number of query objects in their result are
returned.

8 Experiments

For each of the inverse query predicates discussed in the paper, we compare our
proposed solution based on multi-query-filtering (MQF), with a naive approach
(Naive) and another intuitive approach based on single-query-filtering (SQF). Naive
computes the corresponding reverse queries for every q ∈ Q and intersects their
results iteratively. In order to be fair, we terminated Naive as soon as the intersection
of results obtained so far is empty. SQF performs an Rk-NN (Rε-range, RDS) query
using one randomly chosen query point as a filter step to obtain candidates. For each
candidate, an ε-range (k-NN, DS) query is issued and the candidate is confirmed
if all query points are contained in the result of the query (refinement step). Since
the pages accessed by the queries in the refinement step are often redundant, we
use a buffer to further boost the performance of SQF. We employed R∗-trees [1] of
pagesize 1 kB to index the datasets used in the experiments. For each method, we
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present the number of page accesses and runtime. To give insights into the impact of
the different parameters on the cardinality of the obtained results, we also included
this number in the charts. In all settings, we performed 1,000 queries and averaged
the results. All methods were implemented in Java 1.6; tests were run on a dual
core (3.0 GHz) workstation with 2 GB main memory having Windows XP as OS.
We note that all our experiments were performed in main memory, however, to
give an intuition about the additional cost for hard-disc access, we further evaluated
the number of page-accesses that would be required using a disc-based R∗-tree.
The performance evaluation settings are summarized below; the numbers in bold
correspond to the default settings:

Parameter Values
db size 100,000 (synthetic), 175,812 (real)
dimensionality 2, 3, 4, 5
ε 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1
k 50, 100, 150, 200, 250
# inverse queries 1, 3, 5, 10, 15, 20, 25, 30, 35
query extent 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006

The experiments were performed using several datasets:

– Synthetic datasets: Clustered and uniformly distributed objects in d-dimensional
space.

– Real dataset: Vertices in the Road Network of North America,4 contains 175,812
two-dimensional points.

The datasets were normalized, such that their minimum bounding box is [0, 1]d.
For each experiment, the query objects Q for the inverse query were chosen
randomly from the database. Since the number of results highly depends on the
distance between inverse query points (in particular for the Iε-RQ and Ik-NNQ) we
introduced an additional parameter called extent to control the maximum distance
between the query objects. The value of extent corresponds to the volume (fraction of
data space) of a cube that minimally bounds all queries. For example in the 3D space
the default cube would have a side length of 0.073. A small extent assures that the
queries are placed close to each other generally yielding more results. In this section,
we show the behavior of all three algorithms on the uniform datasets only. Finally,
the evaluation of the relaxed version of inverse queries are presented in Section 8.4.

8.1 Inverse ε-range queries

We first evaluated the algorithms on inverse ε range queries. Figure 13a shows that
the relative speed of our approach (MQF) compared to Naive grows significantly
with increasing ε; for Naive, the cardinality of the result set returned by each query
depends on the space covered by the hypersphere which is in O(εd). Note that due

4Obtained and modified from http://www.cs.fsu.edu/∼lifeifei/SpatialDataset.htm. The original
source is the Digital Chart of the World Server (http://www.maproom.psu.edu/dcw/).

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
http://www.maproom.psu.edu/dcw/
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Fig. 13 Iε-Q algorithms on uniform dataset

to the high run-time and the large number of page accesses of Naive, we further
annotated the measured values above the corresponding bars.

In contrast, our strategy applies spatial pruning early, leading to a low number
of page accesses. SQF is faster than Naive, but still needs around twice as much
page accesses as MQF. MQF performs even better with an increasing number
of query points in Q (as depicted in Fig. 13b), as in this case there are more
intersecting hyperspheres. The I/O cost of SQF in this case remains almost constant
which is mainly due to the use of the buffer lowering the page accesses in the
refinement step. Similar results can be observed when varying the database size (cf.
Fig. 13e) and query extent (cf. Fig. 13d). For the data dimensionality experiment
(cf. Fig. 13c) we set epsilon such that the sphere defined by ε covers always the same
percentage of the data space, to make sure that we still obtain results when increasing
the dimensionality (note, however, that the number of results is still unsteady).
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Increasing dimensionality has a negative effect on performance. However MQF
copes better with data dimensionality than the other approaches. In a last experiment
(cf. Fig. 13f) we compared the computational costs of the algorithms. Even though
Inverse Queries are I/O bound, MQF is still preferable for main-memory problems.

8.2 Inverse k-NN queries

The three approaches for inverse k-NN search show a similar behavior as those
for the Iε-RQ. Specifically the behavior for varying k (cf. Fig. 14a) is comparable
to varying ε and increasing the query number (cf. Fig. 14b) and the query extent
(cf. Fig. 14c) yields the expected results. When testing on datasets with different
dimensionality, the advantage of MQF becomes even more significant when d

Fig. 14 Ik-NNQ algorithms on uniform dataset
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increases (cf. Fig. 14d). In contrast to the Iε-RQ results for Ik-NN queries the page
accesses of MQF decrease (cf. Fig. 14e) when the database size increases (while
the performance of SQF still degrades). This can be explained by the fact, that
the number of pages accessed is strongly correlated with the number of obtained
results. Since for the Iε-RQ the parameter ε remained constant, the number of
results increased with a larger database. For Ik-NN the number of results in contrast
decreases and so does the number of accessed pages by MQF. As in the previous set
of experiments MQF has also the lowest runtime (cf. Fig. 14f).

For further evaluation of Ik-NN queries on the synthetic clustered dataset (cf.
Fig. 15) and the real dataset (cf. Fig. 16), we excluded from the evaluation the naive
approach due to its poor performance; this way, the difference between MQF and

Fig. 15 Ik-NNQ algorithms on clustered dataset
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Fig. 16 Ik-NNQ algorithms on real dataset

SQF becomes more clear. Let us note that similar trends could be observed for the
Iε-range query.

8.3 Inverse dynamic skyline queries

Similar results as for the Ik-NNQ algorithm are obtained for the inverse dynamic
skyline queries (I-DSQ). Increasing the number of queries in Q reduces the cost of
the MQF approach while the costs of the competitors increase. Since the average
number of results approaches 0 faster than for the other two types of inverse queries,
we choose 4 as the default size of the query set. Note that the number of results
for I-DSQ intuitively increases exponentially with the dimensionality of the dataset
(cf. Fig. 17b), thus this value can be much larger for higher dimensional datasets.
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Increasing the distance among the queries does not affect the performance as seen in
Fig. 17c; regarding the number of results in contrast to inverse range- and k-NN-
queries, inverse dynamic skyline queries are almost not sensitive to the distance
among the query points. The rationale is that dynamic skyline queries can have
results which are arbitrarily far away from the query point, thus the same holds
for the inverse case. The same effect can be seen for increasing database size (cf.
Fig. 17d). The advantage of MQF remains constant over the other two approaches.
Like inverse range- and k-NN-queries, I-DSQ are I/O bound (cf. Fig. 17e), but MQF
is still preferable for main-memory problems.

Figure 18 presents the results obtained with experiments on the synthetic clustered
dataset, where similar results were obtained.

Fig. 17 I-DSQ algorithms on uniform dataset
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Fig. 18 I-DSQ algorithms on clustered dataset

8.4 Relaxed inverse ε-range queries

In this section, we review the evaluation of relaxed inverse queries IrelaxP that have
been introduced in Section 7. In this case, the query predicate P was evaluated
using ε-range. We compare the approach based on single-query-filtering (SQF) with
a naive approach (Naive) on the uniformly distributed dataset. Note that, for this
dataset, there is little overlap of the ε spheres for d ≥ 3. Thus, the maximum number
of query objects is 1 for d ≥ 3 in most of the 1,000 runs. The results are summarized
in Fig. 19. Here again, the number of page accesses as well as the number of query
results are of interest.

Varying the range value ε for Irelaxε-Q algorithms, we obtain the results depicted
in Fig. 19a. It is obvious that, with increasing ε, the number of results increases as
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Fig. 19 Irelaxε-Q algorithms on uniform dataset

well, as, for each query, more objects are likely to be included in the ε spheres. For
both approaches, the number of page accesses also increases, since more tree entries
intersect the spheres when the radius of the spheres is large enough.

Next, we evaluated the number of query points in Q. As Fig. 19b shows, there is a
significant break point in the step from 10 to 15 query objects regarding the number
of page accesses of SQF as well as the number of results. Up to 10 query objects,
these values increase linearly. This is due to the fact that the number of covered data
points by the union of all ε spheres increases constantly for each query, if the objects
uniformly distributed in the data space. For ≤ 10 query objects, the ε spheres of the
queries do not overlap at all, so each of the returned results qualify for exactly one
object in Q. A query set size of greater then 10 leads to increasing overlap between
two ε spheres, respectively. These overlapping regions contain the results of the next
stage – the results obtained now qualify for exactly two objects in Q. However, a
large number of objects do not appear in the result set now, as they only have one
query object in their ε sphere. As Naive first computes the results for each query and
applies the intersections afterwards, the number of page accesses further increases
linearly. Applying the pruning rules of Section 7, SQF ia able to discard the objects
that do not qualify to be part of Irelaxε-Q. Therefore, the number of accessed pages
with SQF starts to be low again at this break point.

The results with varying dimensionality of the data are depicted in Fig. 19c.
Regarding the number of results, there is again a significant break point, in this case
for the steps from two to three and from three to four dimensions. For the three-
dimensional case, there is hardly any overlap of the ε spheres. Thus, similar to the
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Fig. 20 Illustration of
Corollary 2

p

qref

q2 q3

case having 10 query points above, the result objects qualify for exactly one object
in Q. Having d = 2, the pruning conditions of SQF work well due to overlapping ε
spheres. With d = 3, the number of pages which are intersected by an ε sphere and
thus have to be considered is significantly higher. Naive produces a high number
of page accesses with d = 2, as the ε spheres cover large parts of the data space.
The step to d = 3 is again significant due to the shrinking coverage of the spheres
of the data space. With increasing dimensionality (d ≥ 3), both algorithms perform
similarly w.r.t. the number of accessed pages. This number then decreases having
d = 5, since the branching factor of the R∗-tree increases.

9 Conclusions

In this paper we introduced and formalized the problem for inverse query processing.
We proposed a general framework for such queries using a filter-refinement strategy
and applied this framework to the problem of answering inverse ε-range queries,
inverse k-NN queries and inverse dynamic skyline queries. Furthermore, we relaxed
the definition of inverse queries in order to ensure non-empty result sets, which is
vital for many applications. Our experiments show that our framework significantly
reduces the cost of inverse queries compared to straightforward approaches. In the
future, we plan to extend our framework for inverse queries with different query
predicates, such as top-k queries. Another interesting extension of inverse queries is
to allow the user not only to specify objects that have to be in the result, but also
objects that must not be in the result.
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Research Scheme sponsored by the Research Grants Council of Hong Kong (Reference No. G
HK030/09) and the German Academic Exchange Service (Proj. ID 50149322).

Appendix: Proof of Lemma 3

We first require the following corollary:

Corollary 2 Let Q ∈ R
d be a set of points and C ⊆ Q be the vertices of the convex hull

of Q in R
d. Then, for each point p ∈ R

d, the farthest point in Q to p must be in C as
well.
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Proof Consider any point p ∈ R
d and its farthest point q ∈ Q. Then all points in

Q must be located in the hyper-sphere centered at o with radius d(o, q). Now, we
can proof the above lemma by contradiction assuming that q is not a convex-hull
vertex. If q is assumed to be within the convex-hull (not lying on the margin of
the convex hull), then the hyper-sphere splits the convex-hull into points that are
inside the sphere and points that are out-side of the sphere as shown for q2 in Fig. 20.
Consequently, the convex hull contains points that are farther from o than q which
contradicts the assumption. Now, we assume that q lies on the margin (but not on
a vertex) of the convex hull which corresponds to a region of a hyper-plane like
q3 in our example. If we move along this hyper-plane starting from q, we are still
within the convex-hull but leave the hyper-sphere of o. Consequently, again, the
convex hull contains points that are farther from o than q which again contradicts the
assumption. 	


Now we can use Corollary 2 to prove Lemma 3:

Proof By definition of qref it holds that

qref = argmaxq∈Q(dist(o, q))

Since the vertices C of the convex hull of Q consists only of points in Q, Corollary 2
leads to

qref = argmaxc∈C(dist(o, c))

Thus,

∀c ∈ C : dist(o, qref) ≥ dist(o, c)

and since H ⊆ C:

∀p ∈ H : dist(o, qref) ≥ dist(o, p).
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