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ABSTRACT
The advances in sensing and telecommunication technologies allow
the collection and management of vast amounts of spatio-temporal
data combining location and time information. Due to physical and
resource limitations of data collection devices (e.g., RFID readers,
GPS receivers and other sensors) data are typically collected only
at discrete points of time. In-between these discrete time instances,
the positions of tracked moving objects are uncertain. In this work,
we propose novel approximation techniques in order to probabilis-
tically bound the uncertain movement of objects; these techniques
allow for efficient and effective filtering during query evaluation
using an hierarchical index structure. To the best of our knowl-
edge, this is the first approach that supports query evaluation on
very large uncertain spatio-temporal databases, adhering to possi-
ble worlds semantics. We experimentally show that it accelerates
the existing, scan-based approach by orders of magnitude.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval

Keywords
Uncertain Spatio-Temporal Data, Uncertain Trajectory, Indexing

1. INTRODUCTION
Efficient management of large collections of spatio-temporal data

pertaining to mobile entities whose locations change over time is
paramount in a large variety of application domains: military ap-
plications, structural and environmental monitoring, disaster/rescue
management and remediation, Geographic Information Systems (GIS),
Location-Based Services (LBS). The technological enabling fac-
tors for such applications are advances in sensing and communica-
tion/networking, along with the miniaturizations of the computing
devices and development of embedded systems. In almost every
application domain, the location data at different (discrete) time-
instants is obtained via some positioning devices, like GPS-enabled
mobile devices, RFID or road-side sensors. In addition, to reduce
the communication cost, improve the bandwidth utilization, and
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Figure 1: Spatio-Temporal Data.
cope with storage constraints, often the recorded object trajectories
undergo simplification, eliminating some recorded values. Hav-
ing object trajectories sampled only at discrete time-instants and/or
simplified, renders the movement in-between samples uncertain
and query evaluation challenging.

Consider an object o, moving in a one-dimensional space, as il-
lustrated in Figure 1. Having complete information about this tra-
jectory enables answering a query asking whether the object inter-
sects a spatio-temporal window Q. However, this task becomes
difficult if only a few positions (at times {ts, ti, tj , te} in the ex-
ample) of the exact trajectory are recorded. A simple interpolation
approach, which connects temporally consecutive observations by
line segments and assumes a movement with constant direction and
speed between these points, is unacceptable for applications where
probabilistic analysis of the uncertain movement is required. When
taking uncertainty under consideration, the main challenge is that
the space of possible (location, time) positions between two ob-
servations can grow very large. More importantly, the number of
possible trajectories between two observed locations explodes.

A common method to approximate possible locations between
two observations is the beads (or necklace) model ([11, 22]). This
model is based on some constraints about the motion of an ob-
ject. In particular, assuming a maximum speed in each direction of
each dimension, the possible locations that an object can visit be-
tween two exact observations is bounded. Recent work [8] follows
the pragmatic assumption that the uncertain movement of an object
between consecutive observations can be described by a Markov-
Chain model, which captures the time dependencies between con-
secutive locations. [8] shows how the space of possible worlds
(i.e., trajectories between consecutive observations) can be effi-
ciently analyzed by multiplying Markov-Chain transition matrices
and that probabilistic query evaluation can be facilitated by inte-
grating pruning mechanisms into the Markov Chain matrices. All
these are sufficient for the case where there are few queried objects,
following similar movements; however, if there is a large number
of objects in the database, with different movements, evaluating a
probabilistic spatio-temporal query directly against each object in-
dividually (i.e., a scan-based approach) would be very expensive.



In this paper, we propose an indexing framework to efficiently
cope with large spatio-temporal data bases. Our work also assumes
that the movement of each object follows a Markov-Chain model
(described in Section 2). The objective of our index (described in
Section 4) is to minimize the number of objects for which exact
probabilistic evaluation has to be performed. To achieve this goal,
in Section 3, we propose a number of uncertain spatio-temporal
(UST) object approximations, which are stored in the index and a
set of corresponding pruning methods, which use the approxima-
tions to efficiently eliminate objects that may not qualify a given
probabilistic query. Section 5 presents an extensive experimental
evaluation, which demonstrates the effectiveness of our indexing
approach. Related work is discussed in Section 6. Finally, Section
7 concludes the paper.

2. PRELIMINARIES
This section formally defines the type of spatio-temporal data

that we index, the stochastic model that we use for uncertain trajec-
tories derived from the data, and the query types that we handle.
Data: We consider a discrete time and space domain, i.e., the com-
mon assumption of many existing works (e.g. [18, 1, 10, 8]), where
S = {s1, ...s|S|} ⊆ RD is a finite set of possible locations, which
we call states, in a D-dimensional space and T = N+

0 is the time
domain. Given this spatio-temporal domain, the (certain) move-
ment of an object o corresponds to a trajectory represented as func-
tion o : T → S of time defining the location o(t) ∈ S of o at a
certain point of time t ∈ T . We consider incomplete (and/or im-
precise) spatio-temporal data, where the motion of an object is not
recorded by a crisp trajectory. Instead, we are only given a set
o.Tobs of (location, time) observations for each object o. At any
time t /∈ o.Tobs, the position of o is uncertain, i.e., a random vari-
able. In many applications, a stochastic model can be built and used
to infer knowledge about this uncertainty.
Uncertain Data Model: We refer to the spatio-temporal approxi-
mation of a trajectory of an object o in a time interval spanned by
two consecutive observations of o at ti and tj as a bead or dia-
mond �(o, ti, tj). The diamond can be computed by considering
the maximum and minimum (singed) velocities of the object in
each dimension [25]. The whole approximation of the trajectory
based on a set Tobs of observations (i.e., a chain of beads) is re-
ferred to as a necklace. For example, the movement of the object in
Figure 1 is bounded by a chain of diamonds.

Existing studies on modeling uncertain trajectories ([23, 25, 24,
26, 15]) naively consider all possible trajectories bounded by a
necklace equi-probable. However, given two consecutive obser-
vations o(ti) and o(tj) of object o, there are time dependencies
between consecutive locations between o(ti) and o(tj), which ren-
der some locations in the corresponding diamond (e.g., those near
the line segment that connects o(ti) and o(tj)) more probable to be
visited by o than others (e.g., those near the boundary of the dia-
mond). Therefore, these models possibly yield incorrect inferences
resulting in incorrect answers to probabilistic queries. To over-
come this problem, in our proposal each uncertain spatio-temporal
(UST) object o ∈ D is associated with an uncertain object trajec-
tory, which is represented by a stochastic process. The stochastic
process assigns to each t ∈ T exactly one random variable; random
variables at consecutive time moments can be mutually dependent.
This dependency is vital in most applications, where the locations
of an object at two close points of time are highly correlated. Thus,
the uncertain trajectory o(t) of object o comprises a set of (crisp)
trajectories, each assigned with a probability indicating its likeli-
hood to be the true trajectory of o. Thereby, each trajectory with
a non-zero probability is called a possible world of o. Assuming

that objects are mutually independent, our semantics comply with
the classic possible worlds model [6]. If t ∈ o.Tobs (i.e., the exact
location of o at time t has been observed), then o(t) corresponds to
a (trivial) random variable having one possible location (i.e., state)
with probability 1.

The main challenge in answering a probabilistic spatio-temporal
query is to correctly consider the possible worlds semantics in the
model. In other words, the query results should comply with the
possible worlds model. Naively, this can be done by evaluating the
query predicate on each possible world, and summing up the prob-
abilities of possible worlds satisfying the query predicate. In gen-
eral, the number of possible worlds to be considered is O(|S|T );
exhaustively examining all of them requires exponential time, even
for finite time and space domains. Clearly, any naive approach that
enumerates all possible worlds, is not feasible.

In this work, we model the uncertain movement of an object
within a diamond, using a first-order Markov-chain model. This
approach models the movement between successive points in time,
based on background knowledge (e.g., physical laws) and has proven
capable of effectively capturing the behavior of real objects in prac-
tice. For instance, [1] and [10] show how Markov-models can ef-
fectively capture the movement of vehicles on road networks for
prediction purpose. In [18], it is shown that Markov-models can
also be used to model the indoor movement of people, as tracked
in RFID applications.

DEFINITION 1. A stochastic process o(t), t ∈ T , is called a
Markov-Chain if and only if

∀t ∈ N0∀sj , si, st−1, ...s0 ∈ S :

P (o(t+ 1) = sj |o(t) = si, o(t− 1) = st−1, ..., o(0) = s0) =

P (o(t+ 1) = sj |o(t) = si),

where the conditional probability

o.Pi,j(t) := P (o(t+ 1) = sj |o(t) = si)

is the (single-step) transition probability of object o from state si
to state sj at time t. The matrix o.M(t) := (o.Pi,j)i,j is called
transition matrix. Let o.P (t) = (p1, . . . , p|S) be the distribution
vector of an object o at time t, where pi corresponds to the proba-
bility that o is located at state si at time t. The distribution vector
o.P (t+ 1) can be inferred from o.P (t) as follows:

o.P (t+ 1) = o.P (t) · o.M(t)

Queries: Within the scope of this paper, we focus on selection
queries specified by the following parameters: (i) a spatial window
S2 ⊆ S, (ii) a contiguous time window T2 ⊆ T , and (iii) a prob-
ability threshold τ . In the remainder, we use Q2 = S2 × T 2 to
denote the search space of a query. The most intuitive definition of
a probabilistic spatio-temporal query is given below:

DEFINITION 2. [Probabilistic Spatio-Temporal τ Exists Query]
Given a query window S2 in space and a query window T 2 in
time, a probabilistic τ spatio-temporal exists query (PSTτ∃Q), re-
trieves all objects o ∈ D such that P (∃t ∈ T 2 : o(t) ∈ S2) ≥ τ ;
i.e., the trajectory of o intersects the query window Q2 with prob-
ability at least τ .

For example, consider the trajectory of Figure 1 and assume that
we only know for certain its observed locations at {ts, ti, tj , te};
a PSTτ∃Q query defined by rectangle Q2 would return the de-
picted trajectory, only if the probability that the trajectory inter-
sects S2 at any time within T 2 exceeds τ . Another query type is



the Probabilistic Spatio-Temporal τ ForAll Query ([8]), denoted as
(PSTτ∀Q), which requires an object to remain in the spatial win-
dow S2 for the whole time window T 2. Due to space constraints,
we will not discuss this query in this work, but note that our tech-
niques proposed for PSTτ∃Q queries can easily be adapted.

By modeling the movement within a diamond using a Markov-
chain model, the true probability that an object o satisfies a PSTτ∃
query, can be computed in PTIME [8], exploiting that the matrix
M is generally sparse (only a few states are directly connected to
a single state). Still, query evaluation remains too expensive over
a large spatio-temporal database, where we have to compute the
qualification probabilities of all objects. In view of this, we define
a set of approximations of uncertain object trajectories enabling
spatio-temporal and probabilistic filtering in Section 3. We then
show in Secion 4 how we can organize these approximations in an
index in order to perform efficient query evaluation.

3. APPROXIMATING UST-OBJECTS
In this section, we introduce (conservative) spatio-temporal as

well as probabilistic (conservative) spatio-temporal (UST-) object
approximations, which serve as building blocks for our proposed
index, to be presented in Section 4.

3.1 Spatio-Temporal Approximation
To bound the possible locations of an object o between two sub-

sequent observations (o(ti), o(tj)), we need to determine all state-
time pairs (s, t) ∈ S × T, ti ≤ t ≤ tj such that o has a non-zero
probability of being at state s at time t. This is done by consider-
ing all possible paths between state o(ti) at time ti and state o(tj)
at time tj . An example of a small set of such paths is depicted
in Figure 2(a). Here, we can see a set of five possible trajecto-
ries of an object o, i.e., all possible (state, time) pairs of o in
the time interval [ti, tj ]. In practice, the number of possible paths
becomes very large. Nonetheless, we can efficiently compute the
set of possible (state, time) pairs using the Markov-chain model:
The set of state-time pairs Si reachable from o(ti) can be com-
puted by performing tj − ti transitions using the Markov chain
o.M(t) of o, starting from state o(ti) and memorizing all reachable
(state, time) pairs. Similarly, we can compute Sj as all state-time
pairs (s, t) ∈ S × T , ti ≤ t ≤ tj such that o can reach state o(tj)
at time tj by starting from state s at time t. Sj can be computed in
a similar fashion, starting from state o(tj) and using the transposed
Markov chain o.M(t)T . The intersection Si,j = Si ∩Sj yields all
state-time pairs which are consistent with both observations. Let us
note that in practice, it is more efficient to compute Si and Sj in a
parallel fashion, to reduce the explored space. When the computa-
tion of Si and Sj meet at some time ti ≤ t ≤ tj , we can prune any
states which are not reachable by both s(ti) at time ti and s(tj) at
time tj . However, the number |Si,j | of possible state-time pairs in
Si,j can grow very large, so it is impractical for our index structure
(proposed in Section 4) to store all Si,j for each o ∈ DB in our
index structure. Thus, we propose to conservatively approximate
Si,j . The issue is to determine an appropriate approximation of
Si,j which tightly covers Si,j , while keeping the representation as
simple as possible. The basic idea is to build the approximation by
means of both object observations o(ti) and o(tj) with the corre-
sponding velocity of propagation in each dimension. To do so, we
first compute for the set of state-time pairs Si to derive the maxi-
mum and minimum possible velocity in the time interval [ti, tj ]:

v0d := max(s,t)∈Si
(
s[d]− o(ti)[d])

t− ti
)

v6d := min(s,t)∈Si
(
s[d]− o(ti)[d])

t− ti
)
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Figure 2: Spatio-Temporal Approximation.

where s[d] (o(ti)[d]) denotes the projection of state s (o(ti)) to
the d-th dimension. By definition, we can guarantee that for any
ti ≤ t ≤ tj it holds that

o(t)[d] ≤ o(ti)[d] + (t− ti) · v0d and

o(t)[d] ≥ o(ti)[d] + (t− ti) · v6d
Furthermore, we bound the velocity of propagation at which o

can have reached state o(sj) at time tj from each location in the
state-space Sj :

v1d := max(s,t)∈Sj
(
o(tj)[d]− s[d]

tj − t
)

v>d := min(s,t)∈Sj
(
o(tj)[d]− s[d]

tj − t
)

Again, we can bound the position of o in dimension 1 ≤ d ≤ D
at time ti ≤ t ≤ tj as follows:

o(t)[d] ≤ o(tj)[d]− (tj − t) · v1d , and

o(t)[d] ≥ o(tj)[d]− (tj − t) · v>d
In summary, using the positions o(ti) at time ti and o(tj) at time

tj , and using velocities v0d , v
6
d , v

>
d , v

1
d , we can bound the random

variable of the position o(t) of o at time ti ≤ t ≤ tj by the interval

o(t)[d] ∈ Id(t) := [max(o(ti)[d]+(t−ti)·v6d , o(tj)[d]−(tj−t)·v>d )),

min(o(ti)[d] + (t− ti) · v0d , o(tj)[d]− (tj − t) · v1d )] (1)

Deriving these intervals for each dimension, yields an axis-parallel
rectangle, approximating all possible positions of o at time t. In the
following, we will call this time dependent spatial approximation of
o(t) in the time interval [ti, tj ] between two observations o(ti) and
o(tj) a spatio-temporal diamond, denoted as �(o, ti, tj). A nice ge-
ometric property of this approximation is that computing the inter-
section with the query window at each time t is very fast. Another
advantage is that existing spatial access methods (e.g., R-trees) can
be easily used to efficiently organize these approximations. To
store the approximation, we only need to store the 4 · D real val-
ues v0d , v

6
d , v

1
d , v

>
d , 1 ≤ d ≤ D. A diamond is reminiscent to a

time-parameterized rectangle, used to model the worst-case MBR
for a set of moving objects in [19]; however, the way of deriving
velocities is different in our case. As an example, Figure 2(a) shows
for one dimension d ∈ D, positions o(ti) at time ti and o(tj) at
time tj . The diamond formed by the velocity bounds v0d , v

6
d , v

>
d

and v1d conservatively approximates the possible (location, time)
pairs. Note that it is possible to use a minimal bounding rect-
angle 2(o, ti, tj) instead of the diamond �(o, ti, tj) to conserva-
tively approximate the (location, time) space Si,j . In cases, how-
ever, where the movement of an object in one dimension is biased
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in one direction, a rectangle may yield a very bad approximation
(see Figure 2(b) for an example). Our index employs both ap-
proximations 2(o, ti, tj) and �(o, ti, tj) for spatio-temporal prun-
ing; 2(o, ti, tj) is used for high-level indexing and filtering, while
�(o, ti, tj) is used as a second-level filter.

3.2 Spatio-Temporal Filter
Based on the spatio-temporal approximation of an uncertain ob-

ject as described in the previous section, it is possible to perform
filtering during query processing.

If none of the diamonds assigned to an object o ∈ D intersects
the query window, then o is safely pruned. In turn, if a diamond
of o is inside the query window S2 in space, i.e. fully covered by
S2, at any point of time t ∈ T 2, then o is a true hit and, thus, o
can be immediately reported as result of the query. In order to em-
ploy the above spatio-temporal pruning conditions, for a diamond
�(o, ti, tj) of an object o we need to determine the points of time
when it intersect the query window S2 in space, as well as the
points of time when �(o, ti, tj) is fully covered by S2. For this
purpose, it is helpful to focus on the spatial domain S and interpret
a diamond as well as the query as a time-parameterized (moving)
rectangle. By doing so, we can adapt the techniques proposed in
[19]: In general, a rectangle R1 intersects (covers) another rectan-
gle R2, if and only if R1 intersects (covers) R2 in each dimension.
Thus, for each spatial dimension d (d ∈ {1, . . . D}), we compute
the points of time when the extents of the rectangles intersect in that
dimension and the points of time when the extents of the diamond
rectangle are fully covered by the query rectangle S2.

For a single dimension d, with Equation 1 the query window
given by Q2

d intersects the diamond given by o(ti)[d], o(tj)[d],
v0d , v6d , v1d and v>d within the points of time

Iint,d := {t ∈ (T 2 ∩ [ti, tj ]|Id(t) ∩ S2
d }.

Similarly,Q2
d fully covers the diamond within the points of time

Icov,d := {t ∈ T 2 ∩ [ti, tj ]|Id(t) ⊆ S2
d }.

An example is illustrated in Figure 3(a). To compute both sets
Iint,d and Icov,d, we intersect the margins of the diamond with
the query window resulting in a set of time intervals, which subse-
quently have to be intersected accordingly in order to derive Iint,d
and Icov,d. Now, let us consider the overall intersection time in-
terval Iint =

⋂D
d=1 Iint,d (e.g., see Figure 3(b)) and the overall

points of covering time Icov =
⋂D
d=1 Icov,d.

If, for an object o ∈ D, there is no diamond yielding a non-
empty set Iint, o can be safely pruned. If any diamond of o yields
a non-empty set Icov , o can be reported as result.

In summary, the spatio-temporal filter can be used to identify
uncertain object trajectories having a probability of 100% or 0%
intersecting (remaining in) the query region Q2. Still, the proba-

bility threshold τ of the query is not considered by this filter. In
addition, the object approximation may cover a lot of dead space
if there exist outlier state-time pairs which determine one or more
of the velocities, despite having a very low probability. In the fol-
lowing, we show how to exclude such unlikely outliers in order to
shrink the approximation, while maintaining probabilistic guaran-
tees that employ the probability threshold τ .

3.3 Probabilistic UST-Object Approximation
We now propose a tighter approximation, based on the intuition

that the set of possible paths within a diamond is generally not uni-
formly distributed: paths that are close to the direct connection be-
tween the observed locations often are more likely than extreme
paths along the edges of the diamond. Therefore, given a query
with threshold τ , we can take advantage of a tighter approximation,
which bounds all paths with cumulative probabilities τ to perform
more effective pruning.

Based on this idea, we exploit the Markov-chain model in order
to compute new diamonds, which are spatio-temporal subregions,
called subdiamonds, of the (full) diamond �(o, ti, tj), as depicted
in Figure 4(a). For each such subdiamond, we will then show how
to compute the cumulative probability of all possible trajectories of
o passing only through this subdiamond. Let us focus on restricting
the diamond at one direction of one dimension; we choose one di-
mension d ∈ D, and one direction dir ∈ {∧,∨}. Direction ∧ (∨)
corresponds to the two diamond sides v0d and v1d (v6d and v>d ). To
obtain the subdiamond, we scale the corresponding sides by a factor
λ ∈ [0, 1] relative to the average velocity vavgd =

o(tj)[d]−o(ti)[d]
tj−ti

.
We obtain the adjusted velocity values for direction ∧ as follows:

v0
λ

d = ((v0d − v
avg
d ) · λ) + vavgd

= v0d · λ+ vavgd · (1− λ)

and

v1
λ

d = ((v1d − v
avg
d ) · λ) + vavgd

= v1d · λ+ vavgd · (1− λ)

The adjusted velocity values for direction ∨ can be computed anal-
ogously. Thus, for a given diamond �(o, ti, tj), dimension d ∈ D,
direction dir ∈ {∧,∨} and scalar λ ∈ [0, 1], we obtain a smaller
diamond �(o, ti, tj , d, dir, λ), derived from �(o, ti, tj) by scaling
direction dir in dimension d by a factor of λ. Figure 4(b) illus-
trates some subdiamonds for one dimension, the ∧ direction and
for various values of λ.

To use such subdiamonds for probabilistic pruning, we first need
to compute the probability P (inside(o, �(o, ti, tj , d, dir, λ))) that
object o will remain within �(o, ti, tj , d, dir, λ) for the whole time
interval [ti, tj ], in a correct and efficient way. The main challenge
for correctness, is to cope with temporal dependencies, i.e. the fact
that the random variables o(ti) and o(ti + δt) are highly corre-
lated. Thus, we cannot simply treat all random variables o(t) as
mutually independent and aggregate their individual distributions.
To illustrate this issue, consider Figure 4(a), where one subdia-
mond is depicted. Assume that each of the five possible trajec-
tories has a probability of 0.2. We can see that three trajectories are
completely contained in the subdiamond, so that the probability
P (inside(o, �(o, ti, tj , d, dir, λ))) that o fully remains in the sub-
diamond �(o, ti, tj , d, dir, λ) is 60%. However, multiplying for all
time instants t ∈ [ti, tj ] the individual probabilities that o is lo-
cated in �(o, ti, tj , d, dir, λ) at time t produces an arbitrarily small
and incorrect result, as time dependencies are ignored. Further-
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more, due to the generally exponential number of possible trajecto-
ries, P (inside(o, �(o, ti, tj , d, dir, λ))) is too expensive to com-
pute by iterating over all possible trajectories. Instead, we compute
this probability efficiently and correctly, as follows.

To compute the probability of possible trajectories between o(ti)
at ti and o(tj) at tj that are completely contained in �(o, ti, tj , d, dir, λ),
an intuitive approach is to start at o(ti) at time ti and perform tj−ti
transitions using the Markov-chain o.M(t). After each transition,
we identify states that are outside �(o, ti, tj , d, dir, λ). Any possi-
ble trajectory which reaches such a state is flagged. Upon reaching
tj , we only need to consider possible trajectories in state o(tj),
since all other worlds have become impossible due to the observa-
tion of o at tj . The fraction of un-flagged worlds at state o(tj) at
time tj yields the probability that o does not completely remain in
�(o, ti, tj , d, dir, λ).

To formalize the above approach, we first rewrite the probability
P (inside(o, �)|o(ti), o(tj))) that the trajectory of o remains in the
subdiamond �,1 given the observations o(ti), o(tj) at times ti, tj ∈
o.Tobs, using the definition of conditional probability:

P (inside(o, �)|o(ti), o(tj)) =
P (o(tj)|inside(o, �), o(ti))

P (otj |oti)
,

where P (o(tj)|inside(o, �), o(ti)) denotes the probability that o
reaches the state o(tj) observed by observation o(tj), given that o,
starting at o(ti) at time ti remains inside �. P (o(tj)|o(ti)) denotes
the probability that state o(tj) at time tj is reached, given that o
starts at o(ti) at time ti, regardless whether o remains in �.

3.4 Finding the optimal Probabilistic Diamond
In the previous section, we described, how to compute the prob-

ability of a probabilistic diamond �(o, ti, tj , d, dir, λ) from a dia-
mond �(o, ti, tj), dimension d, direction dir, and scaling factor λ.
In this section we will show how to find, for a given query window
Q2 and a given query predicate the subdiamond with the highest
pruning power. Let us focus on PSTτ∃ queries first. That is, our
aim is to find a value for d, dir and λ, such that the resulting subdi-
amond �(o, ti, tj , d, dir, λ) does not intersectQ2, and at the same
time it has a high probability P (inside(o, �)). This probability
can be used to prune o as we will show later. Formally, we want
to efficiently determine

argmaxd∈D,dir∈{∨,∧},λ∈[0,1][P (inside(o, �(o, ti, tj , d, dir, λ))]

constrained toQ2 ∩ �(o, ti, tj , d, dir, λ) = ∅.
For a single dimension d, and the north direction, a possible situ-

ation is depicted in Figure 4(d). Here, the projection �d(o, ti, tj) of
the full diamond �(o, ti, tj) to the d-th dimension and the projec-
tions Q2

1 [d] and Q2
2 [d] of two query windows Q2

1 and Q2
2 are de-

1Since the context is clear, we simply use � to denote
�(o, ti, tj , d, dir, λ).

picted. The aim is to find the largest values λopt of λ, such that the
corresponding probabilistic diamond �(o, ti, tj , d,∧, λ∃opt) which
we call optimal subdiamond, does not intersectQ2

1 (Q2
2 ). To solve

this problem, we distinguish between the following cases.
Case 1: the direct line between observations (o(ti), ti) and (o(tj), tj)
in dimension d intersectsQ2[d]. In this case, there cannot exist any
λ ∈ [0, 1] such thatQ2 ∩�(o, ti, tj , d, dir, λ) = ∅. Therefore, our
problem has no solution in dimension d, and d is ignored.
Case 2: the direct line between (o(ti), ti) and (o(tj), tj) does
not intersect Q2[d], and we assume without loss of generality that
Q2[d] is located above this line.2 In addition, in this case, the
time value of the north corner c of �d(o, ti, tj) is located in the
interval T 2 (e.g., see Q2

2 in Figure 4(d)).3 In this case, the edge
v0opt of the optimal subdiamond �(o, ti, tj , d, dim, λ∃opt) is given
by (o(ti), ti) and (s, t) where s corresponds to the lower bound of
S2[d] and t equals to the time component of c.
Case 3: Q2 is above the direct line between (o(ti), ti) and (o(tj), tj)
(as in Case 2), but the time value of the north corner c of �d(o, ti, tj)
is not located in the time interval T 2 (e.g. Q2

1 of Figure 4(d)). In
this case, the optimal subdiamond must touch a corner of Q2[d]
due to convexity of both Q2[d] and any diamond. If Q2[d] is lo-
cated to the left of c (the right direction is handled symmetrically),
then the edge v0opt of the optimal subdiamond is given by the line
between (o(ti), ti) and the lower right corner of Q2[d] (e.g., see
Figure 4(d)).

The optimal value λ∃opt for cases 2 and 3 equals the quotient
v
0
opt−vavg

v0−vavg
, i.e., the fraction of the maximum velocity of the opti-

mal subdiamond and the maximum velocity of the full diamond,
both normalized by the average velocity vavg =

s(tj)[d]−s(ti)[d]
tj−ti

.

After identifying the value for λ∃opt, for a dimension d and a di-
rection dir, we can compute the probability of the corresponding
subdiamond �(o, ti, tj , d, dir, λ∃opt). Since we can guarantee, that
any path in this subdiamond does not intersect the query window,
we can obtain a lower bound

PLB(never(o, ti, tj ,Q2))=P (inside(o, �(o, ti, tj , d, dir, λ∃opt)))
(2)

of the event that o never intersects the query window in the time
interval [ti, tj ]. This directly yields an upper bound

PUB(sometimes(o, ti, tj ,Q2)) =

1− P (inside(o, �(o, ti, tj , d, dir, λ∃opt))) (3)

of the probability that the reverse event that o intersects the query

2If Q2[d] is below the line, we consider direction dir = ∨ sym-
metrically.
3Corner c is given by the intersection of lines (o(ti), ti) + v0 and
(o(tj), tj) + v1.



window at least once in [ti, tj ]. This bound can be used for proba-
bilistic pruning for PSTτ∃ queries, as we will see in Section 3.6.

3.5 Approximating Probabilistic Diamonds
The main goal of our index structure, proposed in Section 4, is to

avoid expensive probability computations for subdiamonds. Since
the query window is not known in advance, 2D computations (i.e.,
one for each dimension and direction) have to performed in order
to identify the optimal subdiamond for a given query and candidate
object o. To avoid these computations at run-time, we propose to
precompute, for each diamond �(o, ti, tj) in D, probabilistic sub-
diamonds for each dimension and direction and for a set Λ of λ-
values. This yields a catalogue of probability values, i.e. a proba-
bility for each �(o, ti, tj , d, dir, λ), d ∈ D, dir ∈ {∨,∧}, λ ∈ Λ.

Given a query window, the optimal value λopt computed in Sec-
tion 3.4 may not be in Λ. Thus, we need to conservatively approxi-
mate the probability of probabilistic diamonds �(o, ti, tj , d, dir, λ)
for which λ /∈ Λ. We propose to use a conservative linear approxi-
mation ofP (inside(o, �(o, ti, tj , d, dir, λ))) which increases mono-
tonically with λ, using the precomputed probability values. For
example, Figure 4(c), shows the (λ, probability)-space, for six
values Λ = {0, 0.2, 0.4, 0.6, 0.8, 1}. The corresponding precom-
puted pairs (λ, P (inside(o, �(o, ti, tj , d, dir, λ)))) are depicted.
Our goal is to find a function f(λ) that minimizes the error with
respect to P (inside(o, �(o, ti, tj , d, dir, λ)), while ensuring that
∀λ ∈ [0, 1] : f(λ) ≤ P (inside(o, �(o, ti, tj , d, dir, λ)). The
latter constraint is required to maintain the conservativeness prop-
erty of the approximation, which will be required for pruning. We
model this as a linear programming problem: find a linear function
l(λ) = a · λ+ b that minimizes the aggregate error with respect to
the sample points, under the constraint that the approximation line
does not exceed any of the sample values (e.g., the line in Figure
4(c)). That is, we compute:

argmina,b(
∑
λ∈Λ

P (λ)− (a+ b · λ))

subject to: ∀λ ∈ Λ : P (λ) ≥ a+ b · λ

We use the simplex algorithm to solve fast this optimization prob-
lem. In summary, a probabilistic spatio-temporal object o is ap-
proximated by a set of |o.Tobs| − 1 diamonds, one for each sub-
sequent time points ti, tj ∈ o.Tobs. Each diamond approximation
contains its spatio-temporal diamond �(o, ti, tj), consisting of four
real values v0, v6, v1, v>, and a set of 2 · D linear approxima-
tion functions fd,dir(λ), one for each dimension d ∈ D and each
direction dir ∈ {∨,∧}. Next, we will show how to use these ob-
ject approximations for efficient query processing over uncertain
spatio-temporal data.

3.6 Probabilistic Filter
For each dimension d ∈ D and direction dir ∈ {∨,∧}, we now

have a linear function to approximate all (λ, P (o, ti, tj , d, dim, λ)).
However, using this line directly, may violate the conservativeness
property, since the true function may have any monotonic increas-
ing form, and thus, for a value λQ located in between two values λ1

and λ2 (λ1, λ2 ∈ Λ, λ1 < λQ < λ2) the probability is bounded by
P (λ1) ≤ P (λQ) ≤ P (λ2). To avoid this problem, we can exploit
that the catalogue Λ is the same for all diamonds, dimensions and
directions. Thus, we chose the function f(λ) = l(bλc), where bλc
denotes the largest element of Λ such that bλc ≤ λ. In our run-
ning example, the function f(λ) is depicted in Figure 4(e). In this
example, assume that we have computed an optimal value λopt in
the previous steps. The corresponding conservative approximation
f(λopt) is shown.

Now, we show how these probability bounds can be used to
bound the probability that an object (i.e. its corresponding chain
of diamonds) satisfies the query predicate. This is done by prob-
ing each uncertain trajectory approximation (each necklace) on the
query regionQ2. Obviously, we only have to take into account di-
amonds intersecting the query time range T 2. In turn, when prob-
ing an uncertain trajectory approximation �(o, ti, tj) on the query
rangeQ2, we only have to take the time range [ti, tj ] into account;
i.e., if the time range T 2 of the query spans beyond [ti, tj ], we
truncate T 2 accordingly. Consequently, in the case where more
than one diamonds of an object intersect T 2, we can split Q2 at
the time dimension and separately probe the object diamonds on
the corresponding query parts. The resulting probabilities obtained
for individual diamonds can be treated as independent.

LEMMA 1. Let �(o, ti, tj), �(o, tj , tk) be two successive di-
amonds of object o and �1 := �(o, ti, tj , d1, dir1, λ1), �2 :=
�(o, tj , tk, d2, dir2, λ2) be probabilistic subdiamonds, associated
with respective probabilities P (�1) and P (�2) that o intersects
these subdiamonds. Then, the probability P (�1 ∧ �2) that o in-
tersects both subdiamonds, is given by

P (inside(o, �1) ∧ inside(o, �2)) =

P (inside(o, �1)) · P (inside(o, �2))

PROOF. We first rewrite P (inside(o, �1) ∧ inside(o, �2)) us-
ing conditional probabilities.

P (inside(o, �1) ∧ inside(o, �2)) =

P (inside(o, �1)) · P (inside(o, �2)|inside(o, �1))

Furthermore, we exploit the knowledge that object o is at the ob-
served location o(tj) at time tj

P (inside(o, �1) ∧ inside(o, �2)) =

P (inside(o, �1)) · P (inside(o, �2)|inside(o, �1) ∧ o(tj))

Based on the Markov model assumption, we know that, given the
position at tj , the behavior of o in the time interval [tj , tk] is inde-
pendent of any position at times t < tj . Thus, we obtain:

P (�1 ∧ �2) = P (�1) · P (�2|o(tj))

Finally, the lemma is proved based on the fact that the position
o(tj) has been observed, and thus, is not a random variable.

Lemma 1 shows that the random events of two successive proba-
bilistic diamonds of the same object are conditionally independent,
given the observation in between them. This observation allows us
to compute the probability P ∃(o) that the whole chain of diamonds
of o intersects a query windowQ2. Let {ti, tj} ⊆seq o.Tobs be the
set of pairs of subsequent observations in o.Tobs. Then,

P ∃(o) = P (
∨

{ti,tj}⊆seqo.Tobs

sometimes(o, ti, tj ,Q2)

That is, o satisfies a PSTτ∃ query, if and only if at least one dia-
mond of o intersectsQ2 at least once. Rewriting yields

P ∃(o) = 1− P (
∧

{ti,tj}⊆seqo.Tobs

never(o, ti, tj ,Q2).

Exploiting Lemma 1 yields

P ∃(o) = 1−
∏

{ti,tj}⊆seqo.Tobs

P (never(o, ti, tj ,Q2))



Using our probability bounds derived in Section 3.4, we obtain

P ∃(o) ≤ 1−
∏

{ti,tj}⊆seqo.Tobs

PLB(never(o, ti, tj ,Q2))

which can be used to prune o, if

1−
∏

{ti,tj}⊆seqo.Tobs

PLB(never(o, ti, tj ,Q2)) < τ (4)

If Equation 4 cannot be applied for pruning, we propose to it-
eratively refine single diamonds of o. Thus, the exact probabil-
ity P (sometimes(o, ti, tj ,Q2)) is computed using the technique
proposed in [8]. This exact probability of a single diamond can then
be used to re-apply the pruning criterion of Equation 4 , by using
the true probability as lower bound. When all diamonds of o have
been refined, Equation 4 yields the exact probability P ∃(o) .

4. THE UST-TREE
In the previous section, we showed that we can precompute a set

of approximations for each object, which can be progressively used
to prune an object during query evaluation. In this section, we in-
troduce the UST-tree, which is an R-tree-based hierarchical index
structure, designed to organize the object approximations and effi-
ciently prune objects that may not possibly qualify the query; for
the remaining objects the query is directly verified based on their
Markov models, as described in [8] (refinement step). Section 4.1
describes the structure of the UST-tree and Section 4.2 presents a
generic query processing algorithm for answering PSTτ∃ queries.

4.1 Architecture
The UST-tree index is a hierarchical disk-based index. The basic

structure is illustrated in Figure 5. An entry on the leaf level corre-
sponds to an approximation of an object o represented by a quadru-
ple (2(o, ti, tj), �(o, ti, tj), {fd,dir : d ∈ D, dir ∈ {∨,∧}}, oid),
containing (i) the MBR approximation 2(o, ti, tj) (cf. Section
3.1), (ii) the diamond approximation �(o, ti, tj) (cf. Section 3.1),
(iii) a set {fd,dir : d ∈ D, dir ∈ {∨,∧}} of 2 · D linear ap-
proximation functions for the precomputed probabilistic diamonds
of o (cf. Section 3.5), and (iv) a pointer oid to the exact uncertain
spatio-temporal object description (raw object data). Intermediate
node entries of the UST-tree have exactly the same structure as in
an R-tree; i.e., each entry contains a pointer referencing its child
node and the MBR of all MBR approximations stored in pointed
subtree. Note that the necklace of each object is decomposed into
diamonds, which are stored independently in the leaf nodes of the
tree. Since the directory structure of the UST-tree is identical to that
of the R-tree, the UST-tree uses the same methods as the R∗-tree
[2] to handle updates.

4.2 Query Evaluation
Given a spatio-temporal query windowQ2, the UST-tree is hier-

archically traversed starting from the root, recursively visiting en-
tries whose MBRs intersectQ2; i.e., the subtree of an intermediate
entry e is pruned if e.mbr ∩ Q2 = ∅. For each leaf node entry e,
we progressively use the spatio-temporal and probabilistic diamond
approximations stored in e to filter the corresponding object.

In the spatio-temporal filter step, we first use 2(o, ti, tj) (ST-
MBR Filter) using simple rectangle intersection tests. If this fil-
ter fails, we proceed using �(o, ti, tj) (ST-Diamond filter) by per-
forming intersection tests against Q2 as described in Section 3.2.
Note that sometimes multiple leaf entries associated with an ob-
ject are required to prune an object or confirm whether it is a true

λ

P

Index Entries at Leaf Level:

oid

leaf level:

directory levels:

Figure 5: The UST-tree.

hit. Therefore, candidates are stored in a list until all their diamond
approximations have been evaluated.

Finally, for the remaining candidates we exploit the probabilis-
tic filter (Probabilistic Diamond Filter) as described in Section 3.6.
Thereby, we use the linear approximation functions {fd,dir : d ∈
D, dir ∈ {∨,∧}} stored in the leaf-node entry in order to derive
an upper bound of the qualification probability P (∃t ∈ (T 2 ∩
[ti, tj ]) : o(t) ∈ S2) or P (∀t ∈ (T 2 ∩ [ti, tj ]) : o(t) ∈ S2)
(depending on the query predicate). For each object o which is not
pruned (or reported as true hit), we accumulate in a list L(o) all
upper bounds of its qualification probabilities from the leaf entries
that index the diamonds of o. After collecting all candidate objects,
the qualification probabilities stored in the list L(o) for each can-
didate o are aggregated in order to derive the upper bound of the
overall qualification probability P (∃t ∈ T 2 : o(t) ∈ S2) for o,
as described in Section 3.6. If this probability falls below τ we can
skip o, otherwise we have to refine o by accessing the exact object
data referenced by oid.

5. EXPERIMENTAL EVALUATION
In order to evaluate the proposed techniques we used data de-

rived from a real application and several synthetic data sets.
Real Data. As a basis for the real world data served the trajectory
data set containing one-week trajectories of 10,357 taxis in Beijing
from [27]. This heterogeneous dataset contains trajectories having
different samples rates, ranging from one sample every fives sec-
onds to one sample every 10 minutes. The average time between
localization updates (observations) is 177 seconds. The average
distance between two observations is 623 m. We applied the tech-
niques from [4] to obtain both a set of possible states (mostly corre-
sponding crossroads) and a transition matrix reflecting the possible
movements of the taxis. We only included data of taxis where the
time between two GPS signals (observations) is no more than two
minutes to train the Markov chain. The resulting data set consists
of 3008 states and 11699 possible transitions between theses states.
Synthetic Data. In order to demonstrate the behavior of the pro-
posed techniques depending on the underlying data we also gener-
ated a set of synthetic data sets with different characteristics. For
the possible states, we generated n points uniformly distributed in
the [0, 1]2 space. Each point was then connected to the points which
have an Euclidean distance smaller than ε. Those connections cor-
respond to the possible movements of an object in the space and
we randomly assigned probabilities to each connection such that
the sum of all outgoing edges sums up to 1. These values are the
entries for the corresponding transition matrix. As a default for
this dataset we generated 1000 objects each with 100 observations
(= 99.000 probabilistic diamonds) and the parameters were set to
n = 10000, ε = 0.02 and the catalogue size |Λ| = 10.
Observations. Additionally to the positions of the states and the
transition matrix, we further need observations from each object
in order to build a database. The observations were constructed



3

2 5

3
time (w.r.t. speed)c)

2

2,5
( p )

time (w.r.t. observation interval)e 
(s
e

1 5

2

n
ti
m
e

1

1,5

ct
io
n

0,5

1

ns
tr
uc

0

0,5

co
n

0.01 0.015 0.02 0.025
[5, 10] [10, 15] [15, 20] [20, 25]

(a) diamond parameter

0 5

0,6

ec
)

0,4

0,5

m
e 
(s
e

0,3

0,4

n
ti
m

0,2

uc
ti
on

0,1

ns
tr
u

0

0 5 10 15

co
n

0 5 10 15
catalogue size |Λ|

(b) catalogue size

Figure 6: diamond construction

by a directed random walk through the underlying graph (states =
vertices and non-zero transitions = edges). At some time steps we
memorize the current position of the object and take these time-
state-tuples as an observation of the object. The time steps between
two successive observations was randomly chosen from the interval
[10,15] if not stated otherwise. For the observations of the real
dataset we used the GPS data of taxis, where the time between two
signals is between 2 and 20 minutes.

All experiments were run on a Quad Intel Xeon server running
Windows Server 2008 with 16 GB RAM and 3.0 GHz. The UST-
tree was implemented in Java. For all operations involving matrix
operations (e.g., the refinement step of queries) we used MATLAB
for efficient processing. All query performance evaluation results
are averaged over 1000 queries. The spatial extent of the query
windows in each dimension was set to 0.1 and the duration of the
queries was set to 10 time steps by default. Unless otherwise stated,
we experimented with PSTτ∃ queries, with τ = 0.5. The page size
of the tree was set to 4 KB. Our experiments assess the construction
cost of the UST-tree structure and its performance on query eval-
uation. For experiments regarding the effectivity of the Markov-
chain model, and an evaluation of its capability to capture the real
world in various applications, we refer to previous work, e.g., [1, 4,
10, 18], where Markov Chains were proved successful in modeling
spatio-temporal data.

5.1 UST-tree Construction
The first experiment investigates the cost of index construction.

In particular, we evaluate the cost for generating the spatio-temporal
and probabilistic diamond approximations used to build the entries
of the leaf level; this is the bottleneck of constructing and updating
the tree, since restructuring operations always take at most 1ms. On
the other hand, constructing the probabilistic diamonds is typically
2-3 orders of magnitude costlier, as illustrated in Figure 6(a). Still,
this cost is reasonable, since the construction of a probabilistic dia-
mond is comparable to the construction of 2 ·D · |Λ| subdiamonds,
which in turn corresponds to one refinement step (considering the
subdiamond as a query window). Construction times pay off, when
the query load on the database is reasonable. Figure 6(a) illustrates
the construction time as a function of the speed of the objects (up-
per x-axis values) and the number of time steps between succes-
sive observations (lower x-axis values). From a theoretical point
of view, both parameters linearly increase the number of reach-
able states, i.e., the density of the sparse vectors representing the
uncertain position of an object at one point of time. The results
reflect the theoretical considerations showing a quadratic runtime
behavior with respect to both parameters. In a streaming scenario
with several updates/insertions per second and large probabilistic
diamonds (due to high speed of objects or large intervals between
observations), the construction of probabilistic diamonds can be
performed in parallel and is therefore still feasible. Figure 6(b)
shows the construction cost as a function of parameter |Λ| (which
determines the number of subdiamonds). Theoretically this param-
eter should have a linear impact on the construction time. However

our implementation exploits the monotonicity of the uncertain tra-
jectories regarding probabilistic subdiamonds; a trajectory which is
not included in the probability of a subdiamond, is also excluded
from larger subdiamonds in the same dimension and direction. This
explains the sublinear runtime w.r.t. |Λ|.

5.2 Query Performance
In the first set of query performance experiments, we compare

the cost of using UST-tree with two competitors on synthetic data
(see Figure 7). Scan+ is a scan based query processing implemen-
tation, i.e., without employing any index [8]. For each pair of two
successive observations of an object, refinement is performed im-
mediately, i.e., there is no filter cost. We enhanced the implemen-
tation of Scan+ by prepending a simple temporal filter, which only
considers observation pairs which temporally overlap the query
window. The R*-Tree competitor approximates all possible loca-
tions (i.e. state-time pairs) between two successive observations of
an object using only 2(o, ti, tj). These MBRs are then indexed us-
ing a conventional R*-Tree [2]. In Figure 7(a), we show the average
CPU cost per query (I/O cost is not the bottleneck in this problem),
for the three competitors. The cost are split into filter and refine-
ment costs. Although the R*-Tree has lower filter cost, the overall
query performance of the UST-tree is around 3 times better than
that of the R*-Tree (note the logarithmic scale). This is attributed
to the effectiveness of the different filter steps used by the UST-
tree; the overhead of the UST-tree filter is negligible compared to
the savings in refinement cost.

Figure 7(b) shows the cost and the effectiveness of the individ-
ual filter steps of the filter-refinement pipeline used by the UST-
tree. The bars show the overall runtime (query time) of each fil-
ter and the numbers on top of the bars show the effectiveness of
the filter in terms of remaining (observation pair) candidates af-
ter the corresponding filter has been applied. We clearly see that
the spatio-temporal filters reduce the number of candidates and,
thus, the number of required refinements, drastically. We can also
observe that the probabilistic filter can reduce the number of re-
finements by 30% after applying the sequence of spatio-temporal
filters. Comparing the cost of the probabilistic filter (which is com-
parable to that of the spatio-temporal filter) to the cost of candidate
refinement, we can observe that the cost required to perform the
probabilistic filter can be neglected. This experiment shows that
each of the filters incorporated in the UST-tree indeed pays off in
terms of CPU cost.

Although I/O cost is not the bottleneck under our setting, the I/O
costs of R*-Tree and the UST-tree are illustrated in Figure 7(c) for
completeness. Filter cost here means all costs which occur during
the traversal of the corresponding index structure, i.e., access to in-
termediate and leaf nodes. Refinement cost includes the number of
page accesses to refine the observation pairs that pass the filter step,
assuming one I/O per such pair. Note, that the cost of a refinement
can be much higher than one page access (e.g. if the Markov Chain,
which can become very large does not fit in one disk page) under
different settings. The UST-tree has higher filtering cost, since the
representation of the probabilistic diamonds requires more space
and the tree is larger than the R*-Tree, which only stores MBR
approximations but incurs much higher I/O cost for refinements.

The above experiments unveil that the most costly operation is
the refinement of spatio-temporal diamonds; thus, we now take a
closer look at the effectiveness of the three different methods on
pruning spatio-temporal diamonds. The next experiments measure
the number of spatio-temporal diamonds which have to be refined
at the refinement step; these results can be directly translated to
runtime differences of the different approaches.
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Figure 8: Experiments on Synthetic Data
Size of the Catalogue |Λ|. An important tuning parameter for the
index is the size of the catalogue which is used for building the
probabilistic diamond approximations. In Figure 8(a), it can be
observed that the filter effectiveness converges at around |Λ| = 10
(default value for the experiments). Depending on the query param-
eter τ , a too small catalogue yields up to twice as much candidates
which have to be refined. Note that the number of refinement can-
didates does not decrease monotonically in |Λ|. In general a larger
catalogue results in a linear function with a larger approximation
error. However, the step-function for the conservative approxima-
tion becomes smoother which results in a smaller approximation
error. Because of these two contrary effects a larger catalogue does
not always result in higher filter effectiveness.
Query Parameters. The characteristics of the query have differ-
ent implications on the index performance. Increasing the spatial
extent of the query obviously yields more candidates since more
diamonds in the database are affected (cf. Figure 8(b)). The spatio-
temporal filter utilizing the diamond approximations becomes more
effective in comparison to the ST-MBR-Filter. The percentage of
the diamonds which can be pruned using the probabilistic filter re-
mains rather constant (at around 30%) in comparison to the spatio-
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Figure 9: Experiments on Real Data (∀)

temporal filter. Another query parameter is the temporal extent of
the query. Increasing the length of the query time window T 2 in-
creases the number of refinement candidates. The results are very
similar to the results when increasing the spatial extent of the query;
we do not include the comparison plot due to space limitations.

Changing the value of τ obviously only affects the probabilistic
filter (cf. Figure 8(c)). The higher τ is set, the more candidates can
be pruned by the probabilistic filter. From a value of around 20%,
the candidates which have to be refined decrease linearly with τ .
Influencing Variables of ST Diamonds. The size of the spatio-
temporal diamonds is generally affected by two parameters. One
is the time interval between successive observations, since a larger
interval increases the space that can be reached by the moving ob-
ject between the two observations. For this experiment, the number
of time steps between successive observations in the data set was
chosen randomly from the intervals on the x-axis in Figure 8(d).
The second parameter is the speed of the object and has a similar
effect. The speed corresponds to the parameter ε, which reflects
the maximum distance of points which can be reached by an object
within one time step (cf. Figure 8(e)). Since larger spatio-temporal
diamonds usually result in more objects which intersect the query
window, the number of candidates to be refined increase when in-
creasing these two parameters. Interestingly, the effectiveness of
the ST-Diamond Filter decreases over the ST-MBR-Filter, whereas
the pruning effectiveness of the Probabilistic Filter increases. This
shows, that the probabilistic filter copes better with more uncer-
tainty in the data than the other two filters.
Database Size. We evaluated the scalability of the UST-tree by in-
creasing the amount of observations (cf. Figure 8(f)). The number
of results increases linearly with the database size. The experiment
also shows that the number of refined candidates increase linearly.
Real Data. The experiments on the real world data, show similar
behavior as those on the synthetic data. Due to space limitations,
we only show excerpts from the evaluation. Figure 9(a) illustrates
the results for PSTτ∀ queries when varying the value of τ . It is
notable that the ST-Diamond Filter seems to even perform better
(compared to the ST-MBR-Filter) on the real dataset. The reason
for this is that the real dataset has much more inherent irregular-



ity (regarding the locations and the movement of obejcts). This
favors the ST-Diamond filter over the MBR approximation (since
diamonds are more skewed as in Figure 2(b)). The probabilistic
filter is apparently not affected. When varying the query extent (cf
Figure 9(b)) the results resemble the results on the synthetic dataset.

6. RELATED WORK
The problem of managing, mining and querying spatio-temporal

data has received continuous attention over the past decades (for a
comprehensive coverage, see [9]). Specifically for efficient query
processing a vast amount of indexing structures for different pur-
poses and data characteristics has been developed (an overview and
a classification can be found in [14] and [16]). From this body of
work, our approach is mostly related to spatio-temporal data index-
ing for predictive querying, for example indexes like [19, 12] and
approaches like [20]. Still, these papers neither consider probabilis-
tic query evaluation nor model the data with stochastic processes.

However, in scenarios where data is inherently uncertain, such as
in sensor databases, answering traditional queries using expected
values is inadequate, since the results could be incorrect [3]. One
of the first works that deal with uncertainty in trajectories is [17].
This work reviews the sources of error which yield to uncertain
trajectories and proposes a filter refinement approach for simple
query types. The prevalent approach is to bound the possible posi-
tions of an object at each point of time by simple a spatial structure
resulting in a spatio-temporal approximation. Examples include
static ellipses [25, 24, 23], dynamic MBRs (Minimum Bounding
Rectangles) [15] and dynamic ellipses [22, 13] yielding skewed
cylinders, diamonds and beads, respectively. To answer queries
most of the existing works restrict the possible queries. Often no
specific assumption is made about the probability density function
(pdf) of the object positions over time ([17, 25, 24, 23, 22, 28,
7]). Thus quantifiers such as “always”, “sometimes”, “definitely”
and “possibly” are used to indicate whether an object intersects a
given spatio-temporal query window. These types of queries can
be answered by only considering the spatio-temporal approxima-
tions. As a consequence, these approaches do not compute proba-
bilities for objects to qualify the queries. A possibility for returning
probabilistic results is to restrict the temporal window of the query,
such that queries refer to exactly one point in time (cf. [5, 28]).
All the aforementioned approaches avoid modeling and consider-
ing the time dependencies between successive object locations (see
Section 2). These dependencies were first considered in [8], where
a Markov Chain model is used, and [18], where certain event detec-
tion is the main focus (this work does not handle window queries).

Our work is also inspired by methods for indexing uncertain spa-
tial data. The U-Tree [20, 21] and its extension [29] bound each
spatial uncertain object with an MBR and additionally associate it
with a set of “probabilistically constrained regions” (PCR). These
PCRs can be used for probabilistic pruning during query process-
ing. For efficiency reasons the set of PCRs are conservatively ap-
proximated by a linear function over the parameters of the PCRs.

7. CONCLUSIONS
In this work, we proposed the UST-tree which is an index struc-

ture for uncertain spatio-temporal data. The UST-tree adopts and
incorporates state-of-the art techniques from several fields of re-
search in order to cope with the complexity of the data. We showed
how the most common query types (spatio-temporal ∃- and ∀-window
queries) can be efficiently processed using probabilistic bounds which
are computed during index construction. To the best of our knowl-
edge, this is the first approach that supports query evaluation on
very large uncertain spatio-temporal databases, adhering to possi-
ble worlds semantics. Outside the scope of this work is the con-

sideration of an object’s location before its first and after its last
observation. In both cases, the resulting diamond approximation
would be unbounded. An approach to solve this problem is to de-
fine a maximum time horizon for which diamond approximations
are computed. Beyond this horizon, we can use the stationary dis-
tribution of the model M to infer the location of an object.
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