
Probabilistic Spatial Queries on Existentially
Uncertain Data�

Xiangyuan Dai1, Man Lung Yiu1, Nikos Mamoulis1, Yufei Tao2, and Michail Vaitis3

1 Department of Computer Science, University of Hong Kong
{xydai, mlyiu2, nikos}@cs.hku.hk

2 Department of Computer Science, City University of Hong Kong
taoyf@cs.cityu.edu.hk

3 Department of Geography, University of the Aegean
vaitis@aegean.gr

Abstract. We study the problem of answering spatial queries in databases where
objects exist with some uncertainty and they are associated with an existential
probability. The goal of a thresholding probabilistic spatial query is to retrieve the
objects that qualify the spatial predicates with probability that exceeds a thresh-
old. Accordingly, a ranking probabilistic spatial query selects the objects with
the highest probabilities to qualify the spatial predicates. We propose adapta-
tions of spatial access methods and search algorithms for probabilistic versions
of range queries and nearest neighbors and conduct an extensive experimental
study, which evaluates the effectiveness of proposed solutions.

1 Introduction

Conventional spatial databases manage objects located on a thematic map with 100%
certainty. In real-life cases, however, there may be uncertainty about the existence of
spatial objects or events. As an example, consider a satellite image, where interesting
objects (e.g., vessels) have been extracted (e.g., by a human expert or an image segmen-
tation tool). Due to low image resolution and/or color definitions, the data extractor may
not be 100% certain about whether a pixel formation corresponds to an actual object x;
a probability Ex could be assigned to x, reflecting the confidence of x’s existence. We
call such objects existentially uncertain, since uncertainty does not refer to their loca-
tions, but to their existence. As another example of existentially uncertain data, consider
emergency calls to a police calling center, which are dialed from various map locations.
Depending on various factors (e.g., crime-rate of the caller’s district, caller’s voice, op-
erator’s experience, etc.), for each call we can generate a spatial event associated with
a potential emergency and a probability that the emergency is actual. Existential prob-
abilities are also a natural way to model fuzzy classification [1]. In this case, the class
label of a particular object is uncertain; each class label takes an existential probability
and the sum of all probabilities is 1.

We can naturally define probabilistic versions of spatial queries that apply on col-
lections of existentially uncertain objects. We identify two types of such probabilistic

� Supported by grant HKU 7149/03E from Hong Kong RGC.

C. Bauzer Medeiros et al. (Eds.): SSTD 2005, LNCS 3633, pp. 400–417, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Probabilistic Spatial Queries on Existentially Uncertain Data 401

spatial queries. Given a confidence threshold t, a thresholding query returns the objects
(or object pairs, in case of a join), which qualify some spatial predicates with probabil-
ity at least t. E.g., given a segmented satellite image with uncertain objects, consider a
port officer who wishes to find a set of vessels S such that every x ∈ S is the nearest
ship to the port with confidence at least 30%. Another example is a police station ask-
ing for the emergencies in its vicinity, which have high confidence. A ranking spatial
query returns the objects, which qualify the spatial predicates of the query, in order of
their confidence. Ranking queries can also be thresholded (in analogy to nearest neigh-
bor queries) by a parameter m. For instance, the port officer may want to retrieve the
m = 10 ships with the highest probability to be the nearest neighbor of the port.

Previous work on managing spatial data with uncertainty [20,15,12,21,5] focus on
locationally uncertain objects; i.e., objects which are known to exist, but their (uncer-
tain) location is described by a probability density function. The rationale is that the
managed objects are actual moving objects with unknown exact locations due to GPS
errors or transmission delays. On the other hand, there is no prior work on existentially
uncertain spatial data, to our knowledge. In this paper, we fill this gap by proposing
indexing and querying techniques for this important class of data. Our contributions are
summarized as follows:

– We identify the class of existentially uncertain spatial data and define two intuitive
probabilistic query types on them; thresholding and ranking queries.

– Assuming that the spatial attributes of the objects are indexed by 2-dimensional
indexes (i.e., R–trees), we propose search algorithms for probabilistic variants of
spatial range queries and nearest neighbor search.

– We show how extensions of R–trees that capture information about existential prob-
abilities in non-leaf node entries can be used to answer probabilistic queries at lower
I/O cost.

The rest of the paper is organized as follows. Section 2 provides background on
querying spatial objects with rigid or uncertain locations and extents. Section 3 defines
existentially uncertain data and query types on them. In Section 4 we study the eval-
uation of probabilistic spatial queries, when they are primarily indexed on their spa-
tial attributes, or when considering existential probability as an additional dimension.
Section 5 is a comprehensive experimental study for the performance of the proposed
methods. Section 6 discusses extensions of our methods for probabilistic versions of
complex query types and other (non-spatial) types of existentially uncertain data. Fi-
nally, Section 7 concludes the paper with a discussion about future work.

2 Background and Related Work

In this section, we review popular spatial query types and show how they can be pro-
cessed when the spatial objects are indexed by R–trees. In addition, we provide related
work on modeling and querying spatial objects of uncertain location and/or extent.

2.1 Spatial Query Processing

The most popular spatial access method is the R–tree [8], which indexes minimum
bounding rectangles (MBRs) of objects. R–trees can efficiently process main spatial

402 X. Dai et al.

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

x

y

q
p

2
p

3
p

1
p

8
p

7
p

4
p

5
p

6

e
1

e
2

e
3

5 10 15

5

10

15

e .MBR
2

e .MBR
1

e .MBR
3

Fig. 1. Spatial queries on R–trees

query types, including spatial range queries, nearest neighbor queries, and spatial joins.
Figure 1 shows a collection R = {p1, . . . , p8} of spatial objects (e.g., points) and an
R–tree structure that indexes them. Given a spatial region W , a spatial range query
retrieves from R the objects that intersect W . For instance, consider a range query
that asks for all objects within distance 3 from q, corresponding to the shaded area
in Figure 1. Starting from the root of the tree, the query is processed by recursively
following entries, having MBRs that intersect the query region. For instance, e1.MBR
does not intersect the query region, thus no object in the subtree pointed by e1 can
contain query results. On the other hand, e2 is followed by the search algorithm and the
points in the corresponding node are examined recursively to find the query result p7.

A nearest neighbor (NN) query takes as input a query object q and returns the clos-
est object in R to q. For instance, the nearest neighbor of q in Figure 1 is p7. A popular
generalization is the k-NN query, which returns the k closest objects to q, given a pos-
itive integer k. NN (and k-NN) queries can be efficiently processed if R is indexed by
an R–tree, using the best-first (BF) algorithm of [10]. A best-first priority queue PQ,
which organizes R–tree entries based on the (minimum) distance of their MBRs to q
is initialized with the root entries. The top entry of the queue e is then retrieved; if e
is a leaf node entry, the corresponding object is returned as the next nearest neighbor
(assuming objects with no extent). Otherwise, the node pointed by e is accessed and all
entries there are inserted to PQ. The process is repeated, until k objects are found. The
BF algorithm is shown [10] to be no worse in terms of I/O than any NN algorithm that
applies on the same R–tree. In order to find the NN of q in Figure 1, BF first inserts
to PQ entries e1, e2, e3, and their distances to q. Then the nearest entry e2 is retrieved
from PQ and objects p1, p7, p8 are inserted to PQ. The next nearest entry in PQ is p7,
which is the nearest neighbor of q. In Section 4, we will show how BF can be extended
to process probabilistic versions of nearest neighbor search on existentially uncertain
data.

2.2 Locationally Uncertain Spatial Data

Recently, there is an increasing interest on the modeling, indexing, and querying of ob-
jects with uncertain location and/or extent. For instance, consider a collection of moving
objects, whose positions are tracked by GPS devices. Exact locations are unknown due
to GPS errors and transmission delays; e.g., if the object is in motion its location might
be outdated when reaching the listening server. As a result, locations are approximated

Probabilistic Spatial Queries on Existentially Uncertain Data 403

by probability density functions (PDFs), which integrate GPS error ranges and known
moving object velocities. For instance, the uncertainty of a location can be modeled by
a 2-dimensional Gaussian function, centered at the coordinates tracked from the GPS.

In [20], objects are assumed to move and send their positions to a centralized server.
Each object o knows its last recorded location lo; given a threshold θ, if the object finds
itself θ units away from lo, it sends an update with its new position. In this way, the
server knows that objects are no more than θ away from their recorded locations. Based
on this framework, a spatial region Uo (or line segment if the object’s movement is
constrained on a line) coupled with a PDF models the set of possible locations for each
object o. The probability for o to intersect a query range W can be computed by apply-
ing the PDF to the spatial intersection of Uo and W . In this way, we can compute the
result of a probabilistic spatial range query, which includes all pairs 〈o, Po〉, where Po

is the probability that object o intersects W , and Po > 0.
Note that the probability of an object to intersect a given query range is independent

of that of other objects, a fact that makes range query processing straightforward. On the
other hand, the probability of objects to be the nearest neighbor of a reference object
q is not independent. Probabilistic nearest neighbor search for locationally uncertain
data has been studied in [5]. The algorithm proposed there first computes fast the set of
objects with Po > 0, using their (indexed) uncertainty regions Uo only. Then for each
object o in this set it integrates its probability to be closer to q than any other object,
using the PDFs, over all possible locations of o. This process can be very expensive
for arbitrary PDFs, however, [5] shows how to optimize it for basic uncertainty regions
and PDFs. [19] indexes the trajectory of an object as a cylindrical volume around the
tracked polyline (e.g., by a GPS), capturing uncertainty up to a certain distance from
the polyline. A similar approach is followed in [15], where recorded trajectories are
converted to sequences of locations connected by elliptical volumes.

[21] also models the uncertain locations of spatial objects by (circular) uncertainty
regions and discuss how to process simple and aggregate spatial range queries using the
fuzzy representations. In addition, they provide a methodology that sets the maximum
precision error given a desired guaranteed uncertainty of the query results. [12] studies
the evaluation of spatial joins between two sets of objects, for the case where the object
extents are ‘floating’ according to uncertainty distance bounds. An extension of the R–
tree that captures uncertainty in directory node entries is proposed. Both the filter and
refinement steps of RJ are then adapted to process the join efficiently.

Cheng et al. [4,6] study a problem related to probabilistic spatial range queries. The
uncertain data are not spatial, but ordinal (e.g., temperature values recorded from sen-
sors). Due to measurement/sampling errors, an actual value is modeled by a range of
possible values and a PDF that captures their probability. [6] indexes such uncertain
data for efficient evaluation of probabilistic range queries (e.g., ‘find all temperatures
between 30◦F and 40◦F together with their probability to be in this range’). [4] classi-
fies queries on such data to entity-based queries asking for the set of objects satisfying
a query predicate and value-based queries asking for a PDF describing the distribution
of a query result when it is a single aggregate value (e.g., the sum of values, the max-
imum value, etc.). This work also proposes generic query evaluation techniques and
entropy-based measures for quantifying the quality of a probabilistic query result (e.g.,

404 X. Dai et al.

how certain it is). Finally, [11] studies the evaluation of queries over uncertain or sum-
marized data, where the user specifies thresholds (precision, recall, laxity) regarding the
quality (i.e., accuracy) of the desired result. The query is initially applied on the uncer-
tain data and based on how accurate the retrieved result is, some of the actual objects
may be probed, in order to refine the accuracy of the result and bring its quality to the
desired levels.

3 Existentially Uncertain Spatial Data

An object x is existentially uncertain if its existence is described by a probability Ex,
0 < Ex ≤ 1. We refer to Ex as existential probability or confidence of x. Note that
since we can have Ex = 1, we (trivially) regard a 100% known object x as existentially
uncertain. This allows us to model object collections which are mixtures of uncertain
and certain data. On the other hand, Ex = 0 corresponds to an object x that definitely
does not exist, so there is no need to store it in a database. Figure 2 shows a collection
R = {p1, p2, . . . , p8} of 8 existentially uncertain points. Next to each point label pi,
is its existential probability Epi enclosed in parentheses (e.g., Ep1 = 0.2). Given such
object collections, we are interested in answering spatial queries that take uncertainty
into account. We can easily define probabilistic versions of basic spatial query types:

Definition 1. Let R be a collection of existentially uncertain objects. A probabilistic
spatial range query takes as input a spatial region W and returns all (x, Px) pairs,
such that x ∈ R and x intersects W with probability Px > 0. A probabilistic nearest
neighbor query takes as input an object q and returns all (x, Px) pairs, such that x ∈ R
and x is the nearest neighbor of q, with probability Px > 0.

In the above definitions the output of a probabilistic query is a conventional query
result coupled with a positive probability that the item satisfies the query. The case
of probabilistic range queries is simple; Px = Ex for each object that qualifies the
spatial predicate. Consider, for instance, the shaded window W , shown in Figure 2. Two
objects p1 and p2 intersect W , with confidences Ep1 = 0.2 and Ep2 = 0.5, respectively.
Similar to locationally uncertain data, the probability of an object x to qualify a spatial
range query is independent of the locations and confidences of other objects.

p1

p2 p3

p4

p5

p6

p7

p8

x

y

(0.1)

(0.3)

(0.5)
(0.2)

(0.2)

(0.5)

(0.1)
(0.5)

q

W

5 10 15

5

10

15

Fig. 2. NN search example

Probabilistic Spatial Queries on Existentially Uncertain Data 405

On the other hand, the probability of an object to be the nearest neighbor depends
on the locations and probabilities of other objects. Consider again Figure 2 and assume
that we want to find the potential nearest neighbor of q. The nearest point to q (i.e.,
p7) is the actual NN iff p7 exists. Thus, (p7, Ep7) is a query result. In order for the
second nearest point p6 to be the NN of q (i) p7 must not exist and (ii) p6 must exist.
Thus, (p6, (1 − Ep7) · Ep6) is another result. By continuing this way, we can explore
the whole set of points in R and assign a probability to each of them to be the NN of q.

This nearest neighbor query example not only shows the search complexity in un-
certain data, but also unveils that the result of probabilistic queries may be arbitrarily
large. For instance, the result of any NN query is as large as |R|, if Ex < 1 for all
x ∈ R. We can define practical versions of probabilistic queries with controlled out-
put by either thresholding the results of low probability to occur or ranking them and
selecting the most probable ones:

Definition 2. Let (τ, Pτ) be an output item of a probabilistic spatial query Q. The
thresholding version of Q takes as additional input a threshold t, 0 < t ≤ 1 and re-
turns the results for which Pτ ≥ t. The ranking version of Q takes as additional input a
positive integer m and returns the m results with the highest Pτ .

For example, a thresholding range (window) query W with t = 0.6 on the objects
of Figure 2 returns ∅, whereas a ranking range query W with m = 1 returns (p2, 0.5).

4 Evaluation of Probabilistic Queries

Like spatial queries on exact data, probabilistic spatial queries can be efficiently pro-
cessed with the use of appropriate access methods. In this section, we explore alternative
indexing schemes and propose algorithms for probabilistic queries on them. We focus
on the most important spatial query types; namely, range queries and nearest neighbor
queries.

4.1 Algorithms for 2D R–Trees

The most straightforward way to index a set R of existentially uncertain spatial data is to
create a 2-dimensional R–tree on their spatial attribute. The confidences of the spatial
objects are stored together with their geometric representation or approximation (for
complex objects) at the leaves of the tree. We now study the evaluation of probabilistic
queries on top of this indexing scheme.

Range Queries. Probabilistic range queries can be easily processed in two steps; a
standard depth-first search algorithm is applied on the R–tree to retrieve the objects that
qualify the spatial predicate of the query. For each retrieved object x, Px = Ex. If the
query Q is a thresholding query, the threshold t is used to filter out objects with Px < t.1

If Q is a ranking query, a priority queue maintains the m results with the highest Px,
during search, and outputs them at the end of query processing.

1 Especially for thresholding range queries of very large thresholds t, a viable alternative could
be to use a B+–tree that indexes objects based on their probability to efficiently access the
objects x with Ex ≥ t and then filter them using the spatial query predicate.

406 X. Dai et al.

Nearest Neighbor Search. As discussed, NN search is more complex compared to
range queries, because the probability of an object to qualify the query depends on
the locations and confidences of other objects. Figure 3 shows an elegant and efficient
algorithm that computes the probability Px of x to be nearest neighbor of q, for all x
having Px > 0.

Algorithm PNN2D(q, 2D R–tree on R)
1. P first := 1; /*Prob. of no object before x*/
2. while P first > 0 and more objects in R do
3. x := next NN of q in R (use BF [10]);
4. Px := P first · Ex;
5. output (x,Px);
6. P first := P first · (1 − Ex);

Fig. 3. Probabilistic NN on a 2D R–tree

Algorithm PNN2D applies best-first NN-search [10] on the R–tree to incremen-
tally retrieve the nearest neighbors of q, without considering confidences. It also in-
crementally maintains a variable P first which captures the probability that no object
retrieved before the current object x is the actual NN. P first is equal to

∏
(1 − Ey),

for all objects y seen before x. Thus the probability of x to be the nearest neighbor of
q is P first · Ex. In the example of Figure 2, PNN2D gradually computes Pp7 = 0.1,
Pp6 = (1 − 0.1) · 0.1 = 0.09, Pp8 = (1 − 0.1)(1 − 0.1) · 0.2 = 0.162, Pp4 =
(1−0.1)(1−0.1)(1−0.2) ·0.5 = 0.324, etc. Note that all objects of R in this example
are retrieved and inserted to the response set. In other words, PNN2D does not termi-
nate, until an object x with Ex = 1 is found; if no such object exists, all objects have a
positive probability to be the nearest neighbor.

Thresholding and ranking. As discussed in Section 3, the user may want to restrict
the response set by thresholding or ranking. Figure 4 shows PTNN2D; the thresholding
version of PNN2D, which returns only the objects x with Px ≥ t. The only differences
with the non-thresholding version are the termination condition at line 2 and the filtering
of results having Px < t (line 5). As soon as P first < t, we know that the next objects,
even with 100% confidence cannot be the NN of q, so we can safely terminate. For
example, assume that we wish to retrieve the points in Figure 2 which are the NN of
q with probability at least t = 0.23. First p7 with Pp7 = Ep7 = 0.1 is retrieved,
which is filtered out at line 5 and P first is set to 0.9 ≥ t. Then we retrieve p6 with
Pp6 = P first · Ep6 = 0.09 (also disqualified) and set P first = 0.81 ≥ t. Next, p8 is
retrieved with Pp8 = 0.162 (also disqualified) and P first = 0.648 ≥ t. The next object
p4 satisfies Pp4 = 0.324 ≥ t, thus (p4, 0.324) is output. Then P first = 0.324 ≥ t and
we retrieve p3 with Pp3 = 0.0972 (disqualified). Finally, P first = 0.2268 < t and the
algorithm terminates having produced only (p4, 0.324).

PRNN2D (Figure 5), the ranking version of PNN2D, maintains a heap H of m
objects with the largest Px found so far. Let Pm be the m-th largest Px in H ; as soon as
P first < Pm, we know that the next objects, even with 100% confidence cannot be the

Probabilistic Spatial Queries on Existentially Uncertain Data 407

in the set of m most probable NN of q, so we can safely terminate. For example, assume
that we wish to retrieve the point with the highest probability of being the NN of q in
Figure 2. PRNN2D progressively maintains the object with the highest Px. After each
of the first 4 object accesses, Pm becomes 0.1, 0.1, 0.162, and 0.324. The algorithm
terminates after the 4-th loop, when P first = 0.324 and Pm = Pp4 = 0.324; this
indicates that the next object can have Px at most Pp4 , thus p4 has the highest chances
among all objects to be the NN of q.

Algorithm PTNN2D(q, 2D R–tree on R, t)
1. P first := 1; /*Prob. of no object before x*/
2. while P first ≥ t and more objects in R do
3. x := next NN of q in R (use BF [10]);
4. Px := P first · Ex;
5. if Px ≥ t then output (x,Px);
6. P first := P first · (1 − Ex);

Fig. 4. Probabilistic NN on a 2D R–tree with thresholding

Algorithm PRNN2D(q, 2D R–tree on R, m)
1. P first := 1; /*Prob. of no object before x*/
2. H := ∅; /*heap of m objects with highest Px*/
3. P m := 0; /*Px of m-th object in H*/
4. while P first > P m and more objects in R do
5. x := next NN of q in R (use BF [10]);
6. Px := P first · Ex;
7. if Px > P m update H to include x;
8. P first := P first · (1 − Ex);
9. P m := m-th probability in H ;

Fig. 5. Probabilistic NN on a 2D R–tree with ranking

4.2 Using Augmented R–Trees to Improve Efficiency

We can enhance the efficiency of the probabilistic search algorithms, by augmenting
some statistical information to the R–tree directory node MBRs. A simple and intuitive
method is to store with each directory node entry e a value emaxE; the maximum Ex for
all objects x indexed under e. This value can be used to prune R–tree nodes, while pro-
cessing thresholding or ranking queries. Similar augmentation techniques are proposed
in [12,6] for locationally uncertain data.

Table 1 summarizes the conditions for pruning R-tree entries (and the correspond-
ing sub-trees) which do not point to any results, during range or NN thresholding and
ranking queries. For range queries, we can directly prune an entry e when: (i) e.MBR
does not intersect the query range, or (ii) its emaxE satisfies the condition in the table.
On the other hand, for NN search, a disqualified entry cannot be directly pruned, be-
cause the confidences of objects in the pointed subtree may be needed for computing

408 X. Dai et al.

the probabilities of objects with greater distances to q, but high enough probabilities to
be included in the result.

Let us assume for the moment that for each non-leaf entry e we know the exact
number of objects enum in its subtree. Figure 6 shows the thresholding NN algorithm for
the augmented 2D R-tree. BF is extended as follows. If a non-leaf entry e is de-heaped
for which P first · emaxE < t, the node where e points is not immediately loaded (as
in PTNN2D) but e is inserted into a set L of deleted entries. For objects retrieved later
from the Best-First heap, we use entries in L to compute Pmin

x and Pmax
x ; lower and

upper bounds for Px. If Pmin
x ≥ t, we know that x is definitely a result. If Pmax

x < t,
we know that x is definitely not a result. On the other hand, if Pmin

x < t ≤ Pmax
x

(Lines 6–16), we must refine the probability range for x. For this purpose, we pick an
entry e in L and load the corresponding node ne. If ne is a leaf node, we access the
objects e′ in ne. If q is nearer to e′ than x, P first is updated with the confidence of
e′. Otherwise, its confidence does not affect P first and we enqueue e′ to the Best-First
Queue. If ne is a non-leaf node, for each entry e′ ∈ ne, we enqueue e′ to the Best-First
Queue if d(q, e′) > d(q, x), or insert e′ into L otherwise. In either case, the probability
range of x shrinks. The process is repeated while the range covers t.

It remains to clarify how Pmin
x and Pmax

x for an object x are computed. Note that
L only contains entries whose minimum distance to q are smaller than d(q, x). For
an entry e in the list L, the confidence of each object in its subtree is in the range
(0, emaxE]. In addition, there exists at least one object in e whose confidence is exactly
emaxE. Thus, Pmin

x corresponds to the case where for all objects under all entries in
L are closer to q than x is and they all have the maximum possible confidences. Pmax

x

corresponds to the case, where for all e ∈ L, with maximum distance from q greater
than d(q, x), there is only one object with emaxE confidence (for all other objects under
e the confidence converges to 0):

Pmin
x = P first · Ex ·

∏

e∈L∧mindist(q,e)≤d(q,x)

(1 − emaxE)enum

(1)

Pmax
x = P first · Ex ·

∏

e∈L∧maxdist(q,e)≤d(q,x)

(1 − emaxE) (2)

In order to refine the probability range at Line 7 we must pick an entry e in L. We
can use several heuristics for determining which e to select: (i) the one with the largest
emaxE, (ii) the one with the largest emaxE ·enum, (iii) the one with the smallest d(q, e),
or (iv) by random. By experimentation, we found that heuristic (iii) achieves the best
results in most cases.

Table 1. Checking disqualified entries using augmented 2D R–trees

query type range search NN search

thresholding emaxE < t P first · emaxE < t

ranking emaxE ≤ P m P first · emaxE ≤ P m

Probabilistic Spatial Queries on Existentially Uncertain Data 409

Algorithm PTNN2Daug(q, augmented 2D R–tree on R, t)
1. P first := 1; /*Prob. of no object before x*/
2. L := ∅; /*List of disqualified non-leaf entries*/
3. while P first ≥ t and more objects in R do
4. x := next NN of q in R (use BF [10]); /* during BF-search, each non-leaf entry

with P first · emaxE < t is removed from Best-First heap and inserted into L*/
5. compute P min

x and P max
x by using P first, L and Ex;

6. while P min
x < t ≤ P max

x do
7. pick an entry e in L;
8. remove the entry e from L, read node ne pointed by e;
9. for each entry e′ ∈ ne

10. if mindist(q, e′) > d(q, x) then
11. enheap e′ in the Best-First heap;
12. else if ne is a non-leaf node then
13. insert e′ into L;
14. else /*e′ is an object*/
15. P first := P first · (1 − Ee′);
16. compute P min

x and P max
x by using P first, L and Ex;

17. if P min
x ≥ t then output (x,P min

x ,P max
x);

18. P first := P first · (1 − Ex);

Fig. 6. Probabilistic NN on a augmented 2D R–tree with thresholding

So far, we have assumed that for each non-leaf entry e the number of objects enum

in its subtree is known (e.g., this information is augmented, or the tree is packed). We
can still apply the algorithm for the case where this information is not known, by using
an upper bound for enum: f level(e), where level(e) is the level of the entry e (leaves are
at level 0) and f is the maximum R–tree node fanout. This upper bound replaces enum

in Equation 1.
Let us now show the functionality of the PTNN2Daug algorithm by an example.

Consider the augmented R–tree of Figure 7 that indexes the pointset of Figure 2 and
assume that we want to find the points that are the NN of q with probability at least
t = 0.23. First, the entries in the root are enheaped in the Best-First heap. Next, the
entry e2 is dequeued. Since it disqualifies the query (P first · emaxE

2 = 0.2 < t),
it is inserted into the list L. Then, the entry e3 is dequeued. Its objects p4, p5, p6 are
enheaped in the Best-First Queue. The nearest object p6 is dequeued. From Equations
1 and 2, we derive a probability range for Pp6 by using P first and L. p6 is disqualified
as Pmax

p6
= Ep6 = 0.1 < t. Then, P first = 0.9 ≥ t and we retrieve p4. Since

Pmin
p4

= 0.9 · 0.5 · (1 − 0.2)3 = 0.2304 ≥ t, p4 is a result. Next, P first = 0.45 ≥ t
and the next entry retrieved from the priority queue of the BF algorithm is e1. We do
not access the node pointed by e1, since we know that for each object x indexed under
e1, Px ≤ emaxE

1 ·P first = 0.225 < t. Thus, e1 is inserted into L. Next, p5 is dequeued
and discarded as Pmax

p5
= 0.45 · 0.5 · (1 − 0.2) · (1 − 0.5) < t. Now, the Best-First

heap becomes empty and the algorithm terminates. Note that the PTNN2D algorithm
accesses all nodes of the tree in this example, whereas PTNN2Daug saves two leaf node
accesses.

410 X. Dai et al.

p1

p2 p3

p4

p5

p6

p7

p8

x

y

(0.1)

(0.3)

(0.5)
(0.2)

(0.2)

(0.5)

(0.1)
(0.5)

q
p2 p3 p1 p8 p7 p4 p5 p6

e1 e2 e3

(0.1)(0.2)(0.5)(0.3) (0.2) (0.1)(0.5)(0.5)

e .MBR
2

e .MBR
1

e .MBR
3

(0.5)(0.2)(0.5)

5 10 15

5

10

15

Fig. 7. Example of augmented 2D R–tree

The ranking NN algorithm that operates on the augmented R–tree is shown in Figure
8. It has several differences from the thresholding NN algorithm. A heap H is employed
to organize objects o by their Pmin

o . Pm denotes the m-th highest Pmin
o in the heap.

Observe that more complicated techniques are used for updating H , as the accesses to
L may affect the order of objects in H . Each object o in H maintains P first

o , which
is the value of P first when o is enheaped (line 21). At Lines 18–19, P first

o (for some
entries in H) is updated for each object e′ found no further than o from q. The new
P first

o value is used to update Pmin
o and potentially the order of objects in H at lines

23–24. Note that H may store more than m entries, since there may be objects o in
it satisfying Pmax

o ≥ Pm ≥ Pmin
o . However, entries o are removed from H once

Pmax
o < Pm. The algorithm does not need to access any more objects from the Best-

First heap as soon as P first < Pm. In case H has more than m objects at that point,
we need to refine the probability ranges of the objects in H (by processing entries in
L) until we have the best m objects. In this case, entries e are removed from L once
mindist(q, e) > max{d(q, o) : o ∈ H} because such entries cannot be used to refine
the probability ranges of the objects in H .

We provide some insight for the space/time complexity of thresholding NN queries
for the augmented tree approach. The worst case is that, for all disqualified entries (if
any), their child nodes are accessed for refining the probability range of the objects
seen. Therefore, the value of k estimated in Section 4.1 can be used as the upper bound
in this case. The list L stores disqualified non-leaf entries in the tree and the cost of
refining the probability range of an object is directly proportional to the size of L. Thus,
the space/time complexity depends on the size of L. As the minimum distance of all
entries in L from the query point is at most the distance of the last object seen (in BF-
search), the maximum size of L can be estimated by using the value of k. In practice,
the average size of L is quite small (10–100) and the space/time required is much less
than that in the worst case.

4.3 Evaluation of Probabilistic Queries Using 3D R–Trees

An alternative method for indexing existentially uncertain data is to model the confi-
dences Ex of objects x as an additional dimension and use a 3D R–tree to index the
objects. Now, each non-leaf entry e in the tree, apart from the spatial dimensions, has
a range [eminE , emaxE] within which the existential probabilities of all objects in its
subtree fall. Since every entry e still stores an emaxE, the methods discussed in Section

Probabilistic Spatial Queries on Existentially Uncertain Data 411

Algorithm PRNN2Daug(q, augmented 2D R–tree on R, m)
1. P first := 1; /*Prob. of no object before x*/
2. L := ∅; /*List of disqualified non-leaf entries*/
3. H := ∅; /*heap of objects, organized by P min

o */
4. P m := 0; /*P min of m-th object in H*/
5. while P first > P m and more objects in R do
6. x := next NN of q in R (use BF [10]); /* during BF-search, each non-leaf entry

with P first · emaxE < t is removed from Best-First heap and inserted into L*/
7. compute P min

x and P max
x by using P first, L and Ex;

8. while P min
x < P m ≤ P max

x do
9. pick an entry e in L;
10. remove the entry e from L, read node ne pointed by e;
11. for each entry e′ ∈ ne

12. if mindist(q, e′) > d(q, x) then
13. enheap e′ on Best-First heap;
14. else if ne is a non-leaf node then
15. insert e′ into L;
16. else /*e′ is an object*/
17. P first := P first · (1 − Ee′);
18. for each entry o ∈ H such that d(q, e′) ≤ d(q, o)
19. P first

o := P first
o · (1 − Ee′);

20. compute P min
x and P max

x by using P first, L and Ex;
21. if P min

x > P m then enheap(H ,(x,P first
x :=P first,P min

x ,P max
x));

22. if H is changed then
23. recompute, for each o ∈ H , P min

o and P max
o by using P first

o , L and Eo;
24. P m := m-th P min in H ;
25. remove entries o from H with P max

o < P m;
26. P first := P first · (1 − Ex);
27. while |H | > m and |L| > 0 do
28. repeat Lines 9–19;
29. repeat Lines 22–25;
30. remove e from L with mindist(q, e) > max{d(q, o) : o ∈ H};

Fig. 8. Probabilistic NN on a augmented 2D R–tree with ranking

4.2 for the augmented 2D R–tree can be directly applied for the 3D R–tree. Moreover,
we can utilize eminE to derive tighter probability ranges:

P min
x = P first · Ex ·

∏

e∈L∧mindist(q,e)≤d(q,x)

(1 − eminE)(1 − emaxE)(e
num−1) (3)

P max
x = P first · Ex ·

∏

e∈L∧maxdist(q,e)≤d(q,x)

(1 − eminE)(e
num−1)(1 − emaxE) (4)

If the exact number enum of object in the subtree pointed by e is not known, we can
use the fanout f and the minimum node utilization (0.4 for R*–trees) and replace enum

by f level(e) in Equation 3 and by (0.4 · f)level(e) in Equation 4.

412 X. Dai et al.

5 Experimental Evaluation

In this section, we evaluate the efficiency of the proposed techniques. All algorithms
were implemented in C++. Experiments were run on a PC with a Pentium 4 CPU of
2.3GHz. In all experiments, the page size was set to 1Kb, unless otherwise stated. No
memory buffers are used for caching disk pages between different queries; the number
of node accesses directly reflects the I/O cost.

We compare the performances of five indexes and their corresponding algorithms
for thresholding and ranking range queries and nearest neighbor search. The five in-
dexes are (i) a simple 2D R–tree (denoted by 2D), (ii) a 2D R–tree, where each non-leaf
entry e is augmented with emaxE (denoted by 2D AUG), (iii) a 2D R–tree, where each
non-leaf entry e is augmented with emaxE and enum (i.e., the number of objects in the
subtree indexed by it), denoted by 2D AUG COUNT, (iv) a 3D R–tree (denoted by 3D),
and (v) a 3D R–tree, where each non-leaf entry e is augmented with enum (denoted
by 3D COUNT). When comparing the indexes note that (i) captures minimum informa-
tion in non-leaf entries and occupies the least space, whereas index (v) is at the other
end (entries capture maximum information and the index occupies the most space). For
each experiment, the measured I/O cost is the average cost of 20 queries with the same
parameter values (but with different locations randomly chosen from the dataset).

5.1 Description of Data

For our experiments, we used various real datasets of different sizes and object distri-
butions, described in Table 2. The datasets TG and SF are obtained from [2] while the
other datasets are obtained from the R–tree Portal (www.rtreeportal.org).

Due to the lack of a real spatial dataset with objects having existential probabilities,
we generated probabilities for the objects, using the following methodology. First we
generated K = 20 anchor points randomly on the map, following the data distribution.
These points model locations around which there is large certainty for the existence of
data (e.g., they could be antennas of receivers close to which information is accurate).
For each point x of the dataset, we (i) find the closest anchor a and (ii) assign an ex-
istential probability proportional to 1

(c·dist(x,a))θ . Thus, the distribution of probabilities
around the anchors is a Zipfian one. The probabilities are normalized (using c) with
respect to the maximum probability (1) corresponding to the anchor point. By changing
θ (default value: 1) we can control the skew.

5.2 Experimental Results

Table 2 shows the performances of the five indexes for thresholding and ranking NN
queries on different datasets. We fix t = 0.002 for thresholding NN queries and m = 10
for ranking NN queries.2 Observe that the augmented and 3D R–trees perform better
than the 2D R–tree, even though they are larger in size. The algorithms of Figures 6 and
8 manage to prune a large number of nodes that do not contain query results, which are

2 A small value for t is necessary in order to observe difference between the indexes. Larger
values for t will be tested in a subsequent experiment.

Probabilistic Spatial Queries on Existentially Uncertain Data 413

otherwise visited in the simple 2D R–tree index. The cost of 2D R–tree variants (i.e.,
methods {2D, 2D AUG, 2D AUG COUNT} does not change much with the database size.
By the analysis in Section 4.1, the number of points to be examined is independent of
the data size for 2D R–trees. The analysis in [18] shows that the cost increases slowly as
the data size increases. On the other hand, the I/O costs of 3D R–tree variants increase
slowly as the database size increases. This is due to the fact that 3D R–trees group
entries using both spatial and probability dimensions, but the query algorithms mainly
search for objects based on spatial dimensions.

Table 2. I/O cost of thresholding/ranking NN on different datasets, t = 0.002, m = 10

Dataset Size 2D 2D AUG 2D AUG COUNT 3D 3D COUNT

(TG) San Joaquin roads 18623 122.7/116.7 45.2/41.0 37.3/34.2 36.5/32.9 35.4/31.6
(GR) Greece roads 23268 115.3/108.2 40.5/34.8 34.2/29.8 37.0/31.9 32.8/28.5
(LB) Long Beach roads 53145 107.5/100.1 37.3/32.7 32.4/28.2 44.7/41.1 42.0/38.0
(LA) LA streets 131461 135.4/132.3 43.1/42.3 38.1/36.9 48.4/47.4 45.6/45.2
(SF) San Francisco roads 174956 131.5/129.3 42.1/42.4 37.0/37.1 46.0/45.6 41.4/41.7
(TS) Tiger streams 194971 130.7/129.2 40.5/40.4 36.0/35.8 50.6/48.6 45.4/44.7

Figure 9 shows the I/O performance of the indexes for thresholding and ranking
queries on the SF dataset. Methods {2D AUG, 2D AUG COUNT, 3D, 3D COUNT} per-
form much better than the simple 2D R–tree for all tested values of t and m. For
t ≥ 0.02, less than 5 accesses are required to find the query result when using the
four advanced indexes and the algorithms of Figures 6 and 8. When comparing these
indexes, we observe that augmenting enum is not a good idea; using the fanout f gives
accurate enough estimations of Pmin and Pmax. Thus the extra space (translated to
extra accesses) required for augmenting enum does not pay off. In addition, the aug-
mented R–tree performs better than the 3D R–tree. First, the 3D R–tree occupies more
space (the capacity of each non-leaf node is smaller) and results in more accesses, since
the extra space is not compensated by tighter Pmin and Pmax (see Equations 3 and 4).
Second, since the 3D R–tree groups entries to nodes using the existential probabilities
as well as spatial dimensions, it does not achieve as good partitionings as the one using
the spatial dimensions only; however, search is performed primarily using the spatial
dimensions.

In the next experiment, we compare the performances of the indexes by varying the
skewness θ of existential probability distribution of the objects (using the SF dataset).
Figure 10 shows the experimental results for this case. We fix t = 0.002 and m = 10
for thresholding and ranking queries, respectively. The cost of the 2D R–tree increases
much faster than the other trees when θ increases. For large θ there are a few, high
probabilities around the anchors and the rest are very small. Thus, most points have
low existential probabilities and the distances of the results from the query increase,
causing an increase in the cost of 2D; only spatial information is used in the algorithms
of Figures 4 and 5. On the other hand, the advanced NN algorithms on the augmented
and 3D structures manage to prune disqualified directory nodes early.

414 X. Dai et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

I/O

threshold

2D
AUG COUNT

AUG
3D COUNT

3D

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160 180 200

I/
O

m

2D

AUG COUNT

AUG

3D COUNT

3D

(a) thresholding queries (b) ranking queries

Fig. 9. Queries on the SF dataset, θ = 1

 0

 100

 200

 300

 400

 500

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

I/O

theta

2D
AUG COUNT

AUG
3D COUNT

3D

 0

 100

 200

 300

 400

 500

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

I/O

theta

2D
AUG COUNT

AUG
3D COUNT

3D

(a) thresholding queries, t = 0.002 (b) ranking queries, m = 10

Fig. 10. Queries on the SF dataset, varying θ

We also study the effect of page size on the performances of the indexes. As Figure
11 shows, the I/O costs of all indexes are inversely proportional to the page size. This
is expected, due to the decrease of the number of nodes and heights of the trees.

Finally, we examine the performances of range queries on the indexes, using the SF
dataset. For range queries, we use an additional parameter len, which is the extent of
the query window in each dimension. The default value of len is set to 5% of values
range (domain) at each dimension. Figure 12a and 12b show the cost of thresholding
and ranking queries as a function of t and m respectively. Except for the simple 2D R–
tree, all indexes follow similar trends as in probabilistic nearest neighbor queries. The
cost of range queries on the 2D R–tree is independent of t and m as all points within the
spatial range are retrieved. Observe that for very small t, the augmented and 3D indexes
may perform worse than the 2D R–tree because (i) they prune no or very few directory
entries that have lower emaxE than t and (ii) they are larger in size than the simple 2D
R–tree. Similarly, Pm decreases with m, affecting the costs of the advanced methods.
The 3D R–tree performs worse than the augmented 2D R–tree also for range queries.
Figure 12c shows the cost of thresholding queries as a function of len, at t = 0.002.
As expected, the costs of all methods increase linearly with len2. In summary, in most
cases of probabilistic NN and range queries, a 2D R–tree with augmented emaxE non-
leaf entries achieves the best performance.

Probabilistic Spatial Queries on Existentially Uncertain Data 415

 0

 50

 100

 150

 200

 250

 300

 512 1024 2048 4096 8192

I/O

page size(bytes)

2D
AUG COUNT

AUG
3D COUNT

3D

 0

 50

 100

 150

 200

 250

 300

 512 1024 2048 4096 8192

I/O

page size(bytes)

2D
AUG COUNT

AUG
3D COUNT

3D

(a) thresholding queries, t = 0.002 (b) ranking queries, m = 10

Fig. 11. Queries on the SF dataset, varying page size

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.005 0.01 0.015 0.02

I/O

t

2D
AUG COUNT

AUG
3D COUNT

3D

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140 160 180 200

I/O

m

2D
AUG COUNT

AUG
3D COUNT

3D

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25

I/O

length(%)

2D
AUG COUNT

AUG
3D COUNT

3D

(a) thresholding queries vs t (b) ranking queries vs m (c) thresholding queries vs len

Fig. 12. Range queries on the SF dataset

6 Discussion

We have defined and studied in detail probabilistic range and nearest neighbor queries
on existentially uncertain spatial data. In this section, we briefly discuss probabilistic
versions of other spatial query types and queries on other (non-spatial) existentially
uncertain data.

Extended query types. Given two spatial datasets R and S, a probabilistic spatial join
returns all (〈r, s〉, Pr∧s) pairs, such that r ∈ R, s ∈ S, and r intersects s with proba-
bility Pr∧s > 0. We can easily define thresholding and ranking versions of this query.
Extending the well-known R–tree join algorithm [3] for probabilistic joins is straight-
forward, because Pr∧s depends solely on Er and Es (i.e., Pr∧s = Er∧s = Er ·Es) and
is independent of the probabilities of other pairs. Given two spatial datasets R and S and
a positive integer k, a closest pairs (CP) query [9,7] returns from the Cartesian product
R × S the k 〈r, s〉 object pairs with the smallest distance. The probabilistic version of
a CP query is challenging, due to the interdependence of the existential probabilities of
qualifying pairs. The problem can be solved by extending the techniques for probabilis-
tic NN queries and it is left for future work. Other interesting spatial query types for
which we can define probabilistic versions are aggregate nearest neighbor queries [13],
skyline queries [14], and reverse nearest neighbor search [17].

416 X. Dai et al.

Spatio-temporal and ordinal data. Our methods can be easily extended for the case,
where the objects also carry temporal attributes, i.e., they are spatio-temporal. In this
case, the queries also include the time dimension e.g.,‘find the most probable nearest
neighbor at some moment in the whole past history’. R–trees that index object tra-
jectories (e.g., [16]) can be used by our algorithms for searching. The temporal range
may also be restricted to some timestamps or time interval (e.g.,‘find the most probable
nearest neighbor at some moment in the whole past history’). Finally, although our dis-
cussion so far has been on spatial (or spatio-temporal) data, the queries and solutions
can be directly refer to ordinal data of any dimensionality (e.g., uncertain transmissions
of combinations of measures, like temperature values).

7 Conclusions

In this paper, we presented the interesting problem of evaluating spatial queries for ex-
istentially uncertain data. Variants of common spatial queries, like range and nearest
neighbor search, have probabilistic versions for this data model. We proposed algo-
rithms for these probabilistic versions and several extensions of spatial access methods
(i.e., R–trees) where these algorithms are applied. In addition, we discuss how more
complex spatial queries can be processed in our framework. Finally, we conducted ex-
tensive experiments to evaluate the search algorithms and the corresponding spatial
indexes. In most of the tested cases, the data structure that performs best is a R–tree,
where non-leaf entries are augmented with maximum existential probabilities of the
sub-tree they point at. In the future, we plan to study in detail more advanced query
types and extend our methods to apply on data that are both existentially and location-
ally uncertain, as well as results of fuzzy classifiers [1].

References

1. P. M. Atkinson and N. J. Tate, editors. Advances in Remote Sensing and GIS Analysis. John
Wiley & Sons, 1999.

2. T. Brinkhoff. A framework for generating network-based moving objects. GeoInformatica,
6(2):153–180, 2002.

3. T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using r-trees.
In Proc. of ACM SIGMOD, 1993.

4. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over impre-
cise data. In Proc. of ACM SIGMOD, 2003.

5. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying imprecise data in moving object
environments. IEEE TKDE, 16(9):1112–1127, 2004.

6. R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient indexing methods for
probabilistic threshold queries over uncertain data. In Proc. of VLDB, 2004.

7. A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest pair queries
in spatial databases. In Proc. of ACM SIGMOD, 2000.

8. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. of ACM
SIGMOD, pages 47–57, 1984.

9. G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial databases. In
Proc. of ACM SIGMOD, 1998.

Probabilistic Spatial Queries on Existentially Uncertain Data 417

10. G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM TODS,
24(2):265–318, 1999.

11. I. Lazaridis and S. Mehrotra. Approximate selection queries over imprecise data. In Proc. of
ICDE, pages 140–152, 2004.

12. J. Ni, C. V. Ravishankar, and B. Bhanu. Probabilistic spatial database operations. In Proc. of
SSTD, 2003.

13. D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor queries. In Proc.
of ICDE, 2004.

14. D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm for skyline
queries. In Proc. of ACM SIGMOD, 2003.

15. D. Pfoser and C. S. Jensen. Capturing the uncertainty of moving-object representations. In
Proc. of SSD, 1999.

16. D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query processing for mov-
ing object trajectories. In Proc. of VLDB, 2000.

17. Y. Tao, D. Papadias, and X. Lian. Reverse knn search in arbitrary dimensionality. In Proc.
of VLDB, 2004.

18. Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An efficient cost model for optimization of
nearest neighbor search in low and medium dimensional spaces. IEEE TKDE, 16(10):1169–
1184, 2004.

19. G. Trajcevski, O. Wolfson, F. Zhang, and S. Chamberlain. The geometry of uncertainty in
moving objects databases. In Proc. of EDBT Conf., 2002.

20. O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha. Updating and querying databases
that track mobile units. Distributed and Parallel Databases, 7(3):257–387, 1999.

21. X. Yu and S. Mehrotra. Capturing uncertainty in spatial queries over imprecise data. In Proc.
of DEXA, 2003.

	Introduction
	Background and Related Work
	Spatial Query Processing
	Locationally Uncertain Spatial Data

	Existentially Uncertain Spatial Data
	Evaluation of Probabilistic Queries
	Algorithms for 2D R--Trees
	Using Augmented R--Trees to Improve Efficiency
	Evaluation of Probabilistic Queries Using 3D R--Trees

	Experimental Evaluation
	Description of Data
	Experimental Results

	Discussion
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

