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Abstract. A global robust M-estimation scheme for maximum a posteriori (MAP) image super-resolution, which
efficiently addresses the presence of outliers in the low resolution images is proposed in this work. In iterative MAP
image super-resolution, the objective function to be minimized involves the highly resolved image, a parameter con-
trolling the step size of the iterative algorithm and a parameter weighing the data fidelity term with respect to the
smoothness term. Apart from the robust estimation of the high resolution image, the contribution of the proposed
method is twofold: (i) the robust computation of the regularization parameters controlling the relative strength of the
prior with respect to the data fidelity term and (ii) the robust estimation of the optimal step size in the update of the
high resolution image. Experimental results demonstrate that integrating these estimations into a robust framework
leads to significant improvement in the accuracy of the high resolution image.
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1 Introduction

Image super-resolution (SR) is a technique for enhancing the quality and the resolution of an

image. The objective is to improve the spatial resolution by using information from a set of several

different low-resolution (LR) images to produce an image with more visible detail in the high

spatial frequency features. The LR images may experience different degradations such as motion,

point spread function blurring, subsampling and additive noise. The reconstructed high-resolution

(HR) image can be successfully estimated if there exist sub-pixel shifts between the LR images. In

this manner, each frame of the LR sequence brings complementary information to the original HR

image.

Researchers studying the direct inverse solution recognized the limitations of the problem,

which is ill-posed due to interpolation, motion compensation, inverse filtering and additive noise.1–3

Even in cases of perfect motion registration and accurate knowledge of the point spread function

1



of the acquisition system, a significant dependence of the estimation of the HR image on degra-

dation conditions is observed. A large family of SR methods is based on a stochastic formulation

of the problem, which imposes a prior distribution on the image to be reconstructed and provides

estimates in a maximum a posteriori (MAP) framework, where the posterior distribution of the

HR image is maximized.1–9 In the same context, Bayesian approaches have also been proposed in

the literature.7, 10–14

More recent approaches have shown great potential in recognizing a human face by applying

super-resolution techniques. The work of Biligazyev et al.15 recognizes human faces by learning

the high-frequency components of facial images and applying them to the LR images in order to

create a HR image. Baker and Kanade16 learn a prior on the spatial distribution of facial images

in order to produce a HR image. A Bayesian approach for image super-resolution from a single

image is proposed by Tappen and Liu.17 This method is an alignment based approach that leverages

facial low-resolution images. A novel approach which model super-resolved faces in 3D space is

presented by Berretti et al.18 3D scans of low-resolution images are aligned in order to produce a

HR 3D face model called “superface”.

Violations of the assumptions of data fidelity to the assumed model are also likely to occur,

because SR methods are very sensitive to inaccuracies of their parameters. However, little has

been reported about suppressing the outliers artifacts (i.e., salt and pepper noise, misregistration

errors and occlusion). For instance, median filters have been efficiently used to treat the SR prob-

lem19 where robustness is introduced by applying a median filter in each term of back-projected

difference image.

In the same context, a robust color image super-resolution algorithm has previously shown

great potential for estimating high-resolution images with crisp details.20–22 A comparative study
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of M-estimators for image super-resolution was presented by El-Yamany and Papamichalis.20 The

main concern of this study is to provide a comparison of the trade off between the estimator robust-

ness and the edge preservation of the high-resolved image. In a preliminary work a robust image

super-resolution estimation was introduced. The use of L1 error norm in the objective function

provides a good framework for removing the outliers from the low-resolution images. The work

of El-Yamany and Papamichalis22 introduced a robust error norm in the objective function. The

iterative reconstruction process is repeated for every low-resolution image suppressing the outliers

without the use of regularization term in the objective function. An independent effort on reducing

the aliasing artifacts in a multiframe super-resolution framework using deblurring algorithms is

proposed by Robinson et al.23

Much research has focused on stochastic techniques in a MAP framework.24, 25 Patanavijit et

al.,25 used a Huber error norm for measuring the difference between the estimation of HR image

and each LR image. A factor that affects the super-resolution quality is also the Tikhonov regu-

larization term, which is used to remove artifacts from the final solutions. Based on a stochastic

Bayesian approach, the work of Patanvijit et al.24 performs image super-resolution by minimizing a

cost function. The Lorentzian error norm is utilized in order to measure the difference between the

estimated high-resolution image (projected onto the low-resolution grid) and each low-resolution

image. The authors combine the Tikhonov and the Lorentzian error norms together and use it as

regularizer to remove artifacts from the final solution and improve the convergence rate.

The work of Tanaka et al.26 addresses the problem of estimating a high-resolution image in a

robust framework. The authors provide an accurate algorithm for extracting single-motion regions

and their registration parameters, whereas the whole algorithm is executed in three steps. In the

first step, the algorithm estimates the motion parameters between the low-resolution images and
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the reference (current high-resolution estimation) image. Then, the region associated with the

registration parameters is extracted and finally, the algorithm defines the registration parameters

inside the motion region.

Robust image super-resolution algorithms are usually sensitive to their assumed model of data

and noise. The work of Farsiu et al.27 introduces a L1 norm minimization approach for robust

image super-resolution using a bilateral prior as a regularizer in order to deal with different data

and noise models. This approach preserves the edges of the high-resolved image whereas, it is fast

and prone to motion errors, blur and outliers.

The main contribution of this work is the employment of a fully robust image super-resolution

technique combined with a MAP framework. The objective function to be minimized employs a

regularization term, which controls the smoothness of the reconstructed high-resolved image. The

regularization parameters and the optimal step size of the update equation are computed using ro-

bust M-estimators in contrast to previous works,22, 24 which employ robust M-estimators only in the

estimation of the high-resolution image. Both the regularization parameters and the optimal step

size are computed in a closed form from the input data providing thus, more robustness to the es-

timation of the high-resolved image by retaining crisp details and fully removing the outliers. The

proposed method can efficiently reconstruct a high-resolution image from several low-resolution

images which suffer from salt and pepper noise, speckle noise, large misregistration errors and

occlusion. A four page summary of this work was presented by Vrigkas et al.28 Experiments show

that the reconstructed HR image is of higher quality than in standard MAP-based methods22, 24

employing robust estimation only for the estimation of the high-resolution image.
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2 Image formation model

The image degradation process3 is modeled by motion (rotation and translation), a linear blur, and

subsampling by pixel averaging along with additive Gaussian noise. We assume that p LR images,

each of size M = N1 ×N2, are obtained from the acquisition process. The following observation

model is assumed, where all images are ordered lexicographically

y = Wz+ n. (1)

The set of LR frames is described as y = [yT
1 ,y

T
2 , . . . ,y

T
p ]

T , where yk, for k = 1, ...p, are the p

LR images. The desired HR image z is of size N = l1N1 × l2N2, where l1 and l2 represent the

up-sampling factors in the horizontal and vertical directions, respectively. The term n represents

zero-mean additive Gaussian noise. In eq. (1), the degradation matrix W = [WT
1 ,W

T
2 , . . . ,W

T
p ]

T

performs the operations of motion, blur and subsampling. Thus, matrix Wk, for the k-th frame,

may be written as

Wk = DBkM(sk), (2)

where D is the N1N2×N subsampling matrix, Bk is the N ×N blurring matrix, and M(sk) is the

N ×N rigid transformation matrix with parameters (rotation angle and translation vector) denoted

by sk for the k-th frame. Finally, n is additive Gaussian noise.

A regularized approach using the image prior information of the HR image (Gaussian assump-

tion) can be used to make the inverse problem well-posed. Considering that each LR image may

result from a different degradation process, which implies that different weighting should be given
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to it in the desired solution, the following channel-weighted cost function is proposed:2

L(z, s) =

p∑
k=1

||yk −Wk(sk)z||2 + αk(z)||Qz||2, (3)

where Q is a matrix applying a high pass filter (in our case the Laplacian) and penalizes disconti-

nuities in the final solution. The regularization parameters αk(z) control the relative contribution

between the error term for the k-th LR image (residual norm ||yk −Wk(sk)z||2) and the smooth-

ness norm ||Qz||2. In eq. (3), it is implied that the registration sk parameters are collected in s in

this type of formulation.

3 Robust image super-resolution

In our previous work,2 it has been shown that the regularization parameters αk(z) may be obtained

in closed form from the images:

αk(z) =
||yk −Wkz||2

2||yk||2 − ||Qz||2
, (4)

where we have omitted the dependence of matrix Wk on the registration parameters sk to simplify

the notation.

Estimation of the registration parameters s and the HR image z may be obtained by an alter-

nating optimization scheme.1–3 At a first step, the registration parameters may be computed by a

variety of methods involving block matching schemes1–3 or algorithms combining feature extrac-

tion and mutual information.8 Having fixed the registration parameters, we may use a gradient
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descent method with a properly calculated step size to minimize (3) with respect to the HR image:

ẑn+1 = ẑn − εng(ẑ)n,

ẑn+1 = ẑn −
p∑

k=1

εnkW
T
k (Wkẑ

n − yk) + αk(z)||Qz||2.
(5)

The parameter εn is the step size at the n-th iteration which may be obtained in closed form directly

from the image data1 by:

εnk =

pM∑
m=1

[Wg]m [(Wkz− yk)]m +

p∑
k=1

αk(z)
N∑
i=1

[Qg(z)]i [Qz]i

pM∑
m=1

[Wg]2m [(Wkz− yk)]
2
m +

p∑
k=1

αk(z)
N∑
i=1

[Qg(z)]i

, (6)

where the operator [·]i takes the i-th element of the vectorized matrix inside the brackets.

Super-resolution reconstruction is an ill-posed inverse problem due to the existence of the addi-

tive noise. In order to stabilize the inversion process in cases of non Gaussian noise, we introduce

a super-resolution algorithm that uses robust error norm in the data fidelity term of the objective

function. This approach is based on the class of robust M-estimators. The objective function uses

a regularization term that can help the super-resolution algorithm to remove any artifacts from

the final solution. We are interested in estimators whose influence function is differentiable and

bounded, like the Lorentzian estimator, defined as:

ρ(x, σ) = log
(
1 + 1

2

(
x
σ

)2)
,

ψ(x, σ) = 2x
2σ2+x2 ,

(7)

where σ is the scale factor and ψ is the influence function, defined as the first derivative of the
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robust estimator ρ.

The scale factor controls a threshold beyond which all points are considered to be outliers.

Violations in the mathematical model in (1) and consequently in the data term in (3) may yield

large errors which can severely influence the reconstruction process. The choice of the scale factor

σ plays a crucial role in controlling the outliers. Errors falling beyond that threshold are assigned

smaller weights and the corresponding outlying measures are suppressed. For small values of the

scale factor, the influence function decreases faster assigning smaller weights to errors that outstrip

the value of this parameter. If the value of σ is relatively small the contribution of the LR frames

will be canceled leading to bad estimation of the HR image, due to the insufficient information

provided by the LR frames. On the other hand, if the value of the scale factor is chosen to be

arbitrary large, outliers will significantly contribute to the estimation of the HR image. El-Yamani

and Papamichalis22 have presented a method for calculating the outlier threshold, which is based

on the similarity between a reference LR frame and the k-th motion-compensated LR frame.

Formulating the observation model of (1) in a M-estimation framework the solution for the HR

image is obtained by the following minimization problem:

z∗ = argmin
z

{
M∑
i=1

[ρ (Wkz− yk;σk)]i + αk(z)||Qz||2
}
. (8)

Note that in (8), different outlier thresholds are assigned to different LR frames.

Following the calculation of the regularization term in (4), the robust regularization parame-

ter, determining the trade-off between the fidelity of the observed data and the image prior now
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becomes:

αk(z) =

M∑
i=1

[ρ (yk −Wkz; σk)]
2
i

2||yk||2 − ||Qz||2
. (9)

To obtain a robust solution of (8), the gradient descent scheme of (6) is transformed to its robust

counterpart:

ẑn+1 = ẑn −
p∑

k=1

εnkW
T
k ψ (Wkẑ

n − yk; σk) + αk(z)||Qz||2, (10)

where the influence function ψ of the robust estimation is now involved.

It must be noted that the choice of the step-size parameter εnk plays an important role in the be-

havior of the gradient descent method. This parameter must be small enough to prevent divergence

and large enough to provide fast convergence. A constant step-size could be the easiest solution

but this is an inappropriate approach for the most of the robust image super-resolution problems.

After some manipulation, following the spirit of the approach,1 a robust closed form solution of

the optimal step size may be obtained:

εnk =

pM∑
m=1

[Wg]m [ψ (Wkz− yk; σk)]m +

p∑
k=1

αk(z)
N∑
i=1

[Qg(z)]i [Qz]i

pM∑
m=1

[Wg]2m [ρ (Wkz− yk; σk)]
2
m +

p∑
k=1

αk(z)
N∑
i=1

[Qg(z)]i

. (11)

Note that both the robust estimator ρ and its influence function ψ appear in (11).

This optimal step size (11) is calculated for every single LR image. Having an adaptive step

size, provides a better convergence and also keeps off the algorithm from trapping into erroneous

solutions.

In robust image super-resolution reconstruction, it is necessary to define a process for automat-
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ically computing the value of the outlier threshold parameter. In statistics, the Median Absolute

Deviation (MAD) criterion29 is considered to be one of the most accurate robust measures of the

variability of a univariate sample of quantitative data. For the k-th LR image:

MADn
k = median

i

{
|rnk,i([Wkz

n−1;yk]i)−median
j

(rnm,j([Wmz
n−1;ym)]j)|

}
, (12)

where n = 0, 1, 2, . . . refers to the n-th iteration of the algorithm and

rnk,i(Wkz
n−1;yk) = [Wkz

n−1 − yk]i, (13)

is the residual error of the i-th datum between the estimation of the degraded HR image and the

k-th LR frame. The MAD is a measure of statistical dispersion. It is a robust statistic, being more

resilient to outliers in a data set. In order to use MAD criterion as a consistent estimator for the

estimation of the scale factor, we consider σn
k = K ·MADn

k, where K is a constant which depends

on the distribution. For normally distributed data with standard deviation 1, K = 1/Φ−1(3/4) ≈

1.4826, where Φ−1 is the inverse of the cumulative distribution function for the standard normal

distribution.29 In that case, for the k-th LR frame the scale factor σk is computed as follows:

σn
k = 1.4826 ·MADn

k, k = 1, 2, · · · , p. (14)

The scale factor σn
k is obtained in an automatic way according to (14) from all the LR frames. In

general, the estimation of σn
k depends on the similarity between the k-th LR frame and the degraded

estimation of the HR image at the n-th iteration. Thus, the scale factor is computed as the median

of the residuals. The overall algorithm is summarized in Algorithm 1.

10



Algorithm 1 Robust super-resolution image reconstruction algorithm.
Input: Low-Resolution images yk, k = 1, 2, · · · , p.
Output: High-Resolution image estimate ẑn.

• First estimate of the HR image ẑ0 using (10).

• Initial estimate of scale factor σ0
k with the median of the residual errors for k = 1, 2, · · · , p.

• Register the upscaled yk to ẑ0, k = 1, 2, · · · , p;8 n := 1;

• do

– do
∗ Random selection of a LR image yk.
∗ if yk is visited

· Compute the robust regularization parameter αk(ẑ
n) using (9).

· Estimate the optimal step size εnk according to (11).
· Compute scale factor σn

k given in (14).
· Update ẑn using (10).

∗ end
∗ Declare yk visited.

– until all yk are visited.

– n := n+ 1;

– Declare all yk, k = 1, ...p unvisited.

• until ∥ẑn+1 − ẑn∥/∥ẑn∥ < ϵ or a predefined number of iterations is reached.

Following a similar approach, El-Yamany and Papamichalis22 introduced the Lorentzian es-

timator (7) to minimize the objective function and estimate the HR image. They developed a

heuristic way of computing the scale factor as a function of the ground truth image and the es-

timated highly resolved image. Moreover, their step size was defined to be the half of the scale

factor value. The Tikhonov regularization has also been used in order to obtain a fine solution for

the three channels of color.

The Lorentzian M-estimator is a very popular estimator amongst image reconstruction tech-

niques. The work of Patanavijit et al.24 combines the Lorentzian estimator with a Laplacian
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regularization function in order to find a solution to the problem of super-resolution. In their work,

the choice of the scale factor, the step size and the regularization parameter is heuristic.

4 Experimental results

In order to evaluate the proposed methodology, four different sets of experiments were conducted

on synthetic data sets. Sequences of low resolution images were created by blurring, down-

sampling and degrading by noise an original image. At first, the images were downsampled by

a factor of 2 (4 pixels to 1). Then, a point spread function of a 5× 5 Gaussian kernel with standard

deviation of 1 was applied and the resulting images were degraded by white Gaussian noise in

order to obtain a signal to noise ratio of 30 dB.

To highlight the importance of the proposed fully robust super-resolution scheme we compared

it to approaches that employ a robust estimator only in the HR image update and integrate a heuris-

tic scheme for the step size.22, 24 We also compared several robust estimators in that framework:

the truncated least squares (TLS), the Geman-McClure and the Lorentzian error norms.

In all experiments, in order to have a first estimate of the HR image, a LR image was chosen

at random and it was upscaled by bicubic interpolation. Convergence of the super-resolution al-

gorithm was achieved when ∥ẑn+1 − ẑn∥/∥ẑn∥ < 10−5 or until 20 iterations were reached. The

convergence of the iterative algorithm is guaranteed by the contraction mapping theorem.30 Ac-

cording to this theorem, the iterative model (5) converges to a unique solution ẑ. Therefore, our

algorithm always converges.

A quantitative evaluation of the obtained HR images is given by the peak signal to noise ratio

(PSNR) defined by:

PSNR = 10 log10
2552

||z− ẑ||2
, (15)
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where ẑ is the estimated HR image and z is the ground truth.

The structural similarity measure index (SSIM)31 is a metric that represents a visual distortion

between a reference image and the observe LR image. The SSIM is regarded as a function between

two images z and ẑ and it is expressed as:

SSIM(z, ẑ) =
(2µzµẑ + C1)(2σzẑ + C2)

(µ2
z + µ2

ẑ + C1)(σ2
z + σ2

ẑ + C2)
, (16)

where µz and µẑ denotes the mean intensity of the ground truth and the estimated HR image,

respectively. σz and σẑ are the standard deviations of the two images and C1 and C2 are constants

added to avoid instability.

Finally, we have further used the visual information fidelity measure (VIF)32 in order to assess

the quality of the estimated HR image. It is a measure of statistical modeling that could ideally

be extracted by the eyebrain system from non-overlapping blocks in a wavelet subband in the

high-resolution and the reference images.

(a) (b) (c) (d)

1

Fig 1 Representative frames of low-resolution images for (a) Susie, (b) Claire, (c) Helmet and (d) Clock sequences.

In the first set of experiments, 20 frames of the Susie sequence (Figure 1(a)) were used and

50% of them were degraded by salt and pepper noise. Two cases were examined: corruption of

5% and 10% of the pixels in the respective frame. Figures 2(a) and 3(a) depict the reconstructed

HR images of the fully robust image super-resolution algorithm for this experiment using three
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different types of M-estimators (e.g., Lorentzian, Geman-McClure and TLS) with 5% and 10%

salt & pepper noise respectively. In Figures 2(b) and 3(b) the reconstructed HR images with a

robust estimator employed only into the estimation of the HR image and not for the parameters εnk

and αk(z) are shown.

TLS Geman-McClure Lorentzian

(a)

(b)

1

Fig 2 Reconstructed high-resolution images for 20 frames of the Susie sequence, with salt & pepper noise at 5%. (a)
Robust parameters εk and αk(z) and (b) no robust parameters.

TLS Geman-McClure Lorentzian

(a)

(b)

1

Fig 3 Reconstructed high-resolution images for 20 frames of the Susie sequence, with salt & pepper noise at 10%. (a)
Robust parameters εk and αk(z) and (b) no robust parameters.
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Table 1 presents the statistics of the PSNR for the proposed algorithm for 10 realizations of the

experiment in each case. In this table, the term “partially-robust” refers to the employment of a

robust estimator only for the computation of the HR image using (10) but not for the parameters

αk(z) and εnk , which were computed by (4) and (6), respectively. The term term “fully-robust”

indicates that a robust estimator was also employed for the computation of αk(z) and εnk , which

were computed using (9) and (11), respectively. The PSNR values in bold indicate the best recon-

structed HR image with respect to the robust estimator. In terms of PSNR, the proposed method

achieves better reconstruction results with respect to the partially-robust technique and the methods

of El-Yamany and Papamichalis22 and Patanavijit et al.24 for all three robust M-estimators.

Table 2 shows the statistics using the SSIM index. Notice that, the best performance is accom-

plished for the fully-robust method. In Table 3, the VIF statistics for the Susie sequence are shown.

As it can be seen, our method achieves better results for the TLS and the Geman-McClure esti-

mator for 5% salt & pepper noise, while it is better than the other methods for 10% salt & pepper

noise, when the Lorentzian estimator is employed. The values in bold indicate the best reconstruc-

tion result with respect to the robust estimator. Notice that, the TLS estimator underperforms when

used with the methods of El-Yamany and Papamichalis22 and Patanavijit et. al.24

In the second set of experiments, 20 frames of the Claire sequence (Figure 1(b)) were used from

which 50% were degraded by speckle noise. Speckle noise is a granular noise which downgrades

the quality of an image. Let xk be the image to which we want to add speckle noise then:

yk = xk + n× xk, (17)

where n is uniformly distributed random noise with zero mean and standard deviation σ2 and yk
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Table 1 Performance evaluation of the compared robust image super-resolution methods with respect to the PSNR (in
dB) for the reconstructed image Susie, with salt & pepper noise at 5% and 10%.

Salt & Pepper at 5%

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 22.1 0.4 22.2 25.2 0.2 25.3 26.6 0.5 26.8 27.2 0.5 26.9

TLS 11.1 0.4 10.9 13.9 0.1 13.8 22.3 0.6 22.4 26.7 0.3 26.8
Geman 21.4 0.8 22.1 22.0 0.1 22.0 25.6 0.7 25.4 26.6 0.1 26.5

Salt & Pepper at 10%

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 22.1 0.8 21.9 25.1 0.2 25.0 26.0 0.7 26.3 26.9 0.4 26.9

TLS 11.3 0.4 11.0 14.0 0.0 14.0 20.6 0.5 20.7 25.9 0.5 26.0
Geman 22.2 0.6 22.0 22.1 0.1 22.1 25.7 0.3 25.8 25.4 0.4 25.3

Table 2 Performance evaluation of the compared robust image super-resolution methods with respect to the SSIM
statistics for the reconstructed image Susie, with salt & pepper noise at 5% and 10%.

Salt & Pepper at 5%

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.7 0.0 0.7 0.7 0.0 0.7 0.6 0.0 0.6 0.9 0.0 0.9

TLS 0.2 0.0 0.2 0.4 0.0 0.4 0.7 0.0 0.7 0.9 0.0 0.9
Geman 0.6 0.1 0.6 0.7 0.0 0.7 0.7 0.0 0.7 0.9 0.0 0.9

Salt & Pepper at 10%

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.7 0.0 0.7 0.8 0.0 0.8 0.6 0.0 0.6 0.9 0.0 0.9

TLS 0.3 0.0 0.3 0.4 0.0 0.4 0.7 0.1 0.8 0.9 0.0 0.9
Geman 0.7 0.0 0.7 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

is the degraded low-resolution image. Experiments have been conducted for 1% and 2% config-

urations of speckle noise in randomly selected LR image frames. In Figures 4(a) and 5(a) the

reconstructed HR images for the Claire sequence are shown, with speckle noise at 1% and 2%,

using the proposed method. The reconstructed HR images for the same sequence and the same
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Table 3 Performance evaluation of the compared robust image super-resolution methods with respect to the VIF
statistics for the reconstructed image Susie, with salt & pepper noise at 5% and 10%.

Salt & Pepper at 5%

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.6 0.0 0.6 0.8 0.0 0.8 0.5 0.0 0.5 0.9 0.0 0.9

TLS 0.1 0.0 0.1 0.1 0.0 0.1 0.8 0.1 0.8 0.9 0.0 0.9
Geman 0.1 0.0 0.5 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

Salt & Pepper at 10%

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.6 0.0 0.5 0.8 0.0 0.8 0.5 0.0 0.5 0.9 0.0 0.9

TLS 0.1 0.0 0.1 0.1 0.0 0.1 0.7 0.1 0.7 0.9 0.0 0.9
Geman 0.5 0.0 0.5 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

amount of noise using the partially-robust technique are shown in Figures 4(b) and 5(b). As it can

be observed, the fully-robust method is able to fully wipe away speckle noise and reconstruct a

clean image while the partially-robust method suffers from noise artifacts.

TLS Geman-McClure Lorentzian

(a)

(b)

1

Fig 4 Reconstructed high-resolution images for 20 frames of the Claire sequence, with speckle noise at 1%. (a) Robust
parameters εk and αk(z) and (b) no robust parameters.

In Table 4, the PSNR values for the reconstructed Claire sequence with speckle noise 1% and
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TLS Geman-McClure Lorentzian

(a)

(b)

1

Fig 5 Reconstructed high-resolution images for 20 frames of the Claire sequence, with speckle noise at 2%. (a) Robust
parameters εk and αk(z) and (b) no robust parameters.

2% are shown. The robust variant is the most accurate SR method for all three M-estimators. Tables

5 and 6 present the SSIM and VIF statistics for the same sequence. As it can be seen, the TLS

estimator is does not perform very well when associated with the El-Yamany and Papamichalis22

and Patanavijit et al.24 methods.

The third set of experiments, contains a sequence of 10 LR frames depicting a football helmet

(Figure 1(c)). In order to simulate motion errors, a global translational model is assumed. 30%

of randomly selected LR images were transformed by translation of 15 pixels along the horizontal

and vertical directions whereas a rotation of 20 degrees was also applied. The misalignment is

large and the standard super-resolution reconstruction methods can not account for it with out a

robust estimator. The reconstructed HR images for the proposed method are depicted in Figure

6(a) and for the partially-robust method are shown in Figure 6(b). As it can be seen, the proposed

method can successfully suppress the effect of outliers resulting to an image free of noise artifacts.

On the other hand, the partially-robust technique is of sightly lower quality.
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Table 4 Performance evaluation of the compared robust image super-resolution methods with respect to the PSNR (in
dB) for the reconstructed image Claire, with speckle noise at 1% and 2%.

Speckle at 1%

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 22.3 0.5 22.3 27.8 0.1 27.8 23.3 0.4 23.3 29.9 0.1 30.5

TLS 10.4 0.3 10.3 11.5 0.1 11.5 16.9 0.6 16.8 28.2 0.6 28.3
Geman 21.6 0.8 21.3 23.2 0.16 23.2 29.0 0.4 29.0 29.8 0.5 30.0

Speckle at 2%

method in22 method in24 partially-robust fully-robust

M-stimator mean std med mean std med mean std med mean std med
Lorentzian 22.6 0.7 22.7 27.9 0.1 27.9 22.2 0.8 22.6 31.2 0.8 31.5

TLS 10.5 0.1 10.5 11.5 0.1 11.5 14.3 0.5 14.0 29.5 0.5 29.4
Geman 21.6 0.5 21.5 23.2 0.1 23.1 28.8 0.6 29.4 31.1 0.2 31.1

Table 5 Performance evaluation of the compared robust image super-resolution methods with respect to the SSIM
statistics for the reconstructed image Claire, with speckle noise at 1% and 2%.

Speckle at 1%

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.8 0.0 0.8 0.8 0.0 0.8 0.6 0.2 0.6 0.9 0.1 0.9

TLS 0.4 0.1 0.4 0.5 0.0 0.5 0.6 0.1 0.7 0.9 0.1 0.9
Geman 0.8 0.0 0.8 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

Speckle at 2%

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.8 0.0 0.8 0.8 0.0 0.8 0.5 0.2 0.5 0.9 0.0 0.9

TLS 0.3 0.1 0.4 0.5 0.0 0.5 0.7 0.1 0.7 0.7 0.0 0.9
Geman 0.8 0.1 0.7 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

Tables 7, 8 and 9 present the PSNR, SSIM index and VIF numerical results respectively for

this experiment comparing the proposed fully-robust method against the partially-robust version,

and the methods of El-Yamany and Papamichalis22 and Patanavijit et. al.24 The values in bold

indicate the best performance for the corresponding robust estimator. Notice that the proposed
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Table 6 Performance evaluation of the compared robust image super-resolution methods with respect to the VIF
statistics for the reconstructed image Claire, with speckle noise at 1% and 2%.

Speckle at 1%

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.3 0.0 0.3 0.7 0.0 0.7 0.4 0.1 0.4 0.8 0.2 0.8

TLS 0.1 0.0 0.1 0.1 0.0 0.1 0.3 0.1 0.3 0.7 0.1 0.7
Geman 0.3 0.2 0.2 0.6 0.0 0.6 0.6 0.0 0.6 0.7 0.1 0.8

Speckle at 2%

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.4 0.0 0.4 0.7 0.0 0.7 0.3 0.1 0.3 0.8 0.1 0.8

TLS 0.1 0.0 0.1 0.1 0.0 0.1 0.4 0.2 0.4 0.7 0.0 0.7
Geman 0.3 0.0 0.3 0.7 0.0 0.7 0.7 0.0 0.7 0.8 0.0 0.8

TLS Geman-McClure Lorentzian

(a)

(b)

1

Fig 6 Reconstructed high-resolution images for 20 frames of the Helmet sequence. (a) Robust parameters εk and
αk(z) and (b) no robust parameters.

method performs better than the other methods in all experiments and the worst performance is

achieved by the TLS estimator for all methods.

Finally, the fourth set of experiments, consists of a sequence of seven LR frames (Figure 1(d)).

In two out of seven consecutive frames an object appears representing occlusion. Occlusion was
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Table 7 Performance evaluation of the compared robust image super-resolution methods with respect to the PSNR (in
dB) for the reconstructed image Helmet.

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 20.4 0.5 20.4 23.1 0.0 23.1 18.4 0.4 18.9 23.8 0.4 23.0

TLS 7.5 0.4 7.3 14.4 0.1 14.4 19.9 0.6 20.0 23.0 0.0 23.0
Geman 20.4 0.9 20.5 22.7 0.1 22.7 22.5 0.3 22.5 23.0 0.0 23.0

Table 8 Performance evaluation of the compared robust image super-resolution methods with respect to the SSIM
statistics for the reconstructed image Helmet.

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.7 0.0 0.7 0.8 0.0 0.8 0.7 0.1 0.6 0.9 0.0 0.9

TLS 0.1 0.0 0.1 0.5 0.0 0.5 0.7 0.1 0.7 0.8 0.0 0.8
Geman 0.7 0.0 0.7 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

Table 9 Performance evaluation of the compared robust image super-resolution methods with respect to the VIF
statistis for the reconstructed image Helmet.

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.7 0.0 0.7 0.7 0.0 0.7 0.5 0.1 0.5 0.8 0.1 0.8

TLS 0.2 0.0 0.2 0.4 0.0 0.4 0.6 0.1 0.6 0.7 0.0 0.7
Geman 0.7 0.1 0.7 0.7 0.0 0.7 0.7 0.0 0.7 0.8 0.0 0.8

intentionally added in order to simulate accidental changes in the scene and it is treated as an

outlier by the method. The reconstructed HR images for the proposed method using the three M-

estimators are illustrated in Figure 7(a). Figure 7(b) depicts the reconstructed HR images when

the partially-robust approach is employed. As it can be seen, there is a visible noise distortion in

the reconstructed images which is caused by the non robust computation of the parameters εk and

αk(z).

The PSNR, SSIM index and VIF statistic results are presented in Tables 10, 11 and 12 respec-

tively. The values in bold represent the best performance for the corresponding robust estimator.
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TLS Geman-McClure Lorentzian

(a)

(b)

1

Fig 7 Reconstructed high-resolution images for 20 frames of the Clock sequence. (a) Robust parameters εk and αk(z)

and (b) no robust parameters.

Our method performs better in all cases of experiments and is able to fully reconstruct a HR image

suppressing the outliers in the cases where partial occlusion is apparent in the low resolution im-

ages. For the method of El-Yamany and Papamichalis22 the least good estimator seems to be the

Geman-McClure, whereas for the method of Patanavijit et al.24 the least good estimator seems to

be the TLS. Let us recall that in all experiments involving the proposed method the parameters εk

and αk(z) were robustly estimated and the outlier threshold was computed using the MAD criterion

(14) suppressing thus, many outliers, which have been occurred by noise artifacts, misregistration

errors or occlusion.
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Table 10 Performance evaluation of the compared robust image super-resolution methods with respect to the PSNR
(in dB) for the reconstructed image Clock.

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 25.1 0.1 25.1 25.1 0.0 25.1 22.0 0.18 22.2 25.8 0.1 25.8

TLS 24.1 0.1 24.07 10.1 0.1 10.1 16.8 0.4 16.1 24.8 0.2 24.8
Geman 9.8 0.2 9.7 24.7 0.2 24.6 25.1 0.3 25.2 25.2 0.1 25.2

Table 11 Performance evaluation of the compared robust image super-resolution methods with respect to the SSIM
statistics for the reconstructed image Clock.

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.8 0.0 0.8 0.8 0.0 0.8 0.7 0.0 0.7 0.9 0.0 0.9

TLS 0.8 0.0 0.8 0.7 0.0 0.7 0.7 0.2 0.7 0.9 0.0 0.9
Geman 0.5 0.0 0.5 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

Table 12 Performance evaluation of the compared robust image super-resolution methods with respect to the VIF
statistics for the reconstructed image Clock.

method in22 method in24 partially-robust fully-robust

M-Estimator mean std med mean std med mean std med mean std med
Lorentzian 0.7 0.0 0.7 0.7 0.0 0.7 0.7 0.0 0.7 0.9 0.0 0.9

TLS 0.7 0.0 0.7 0.3 0.0 0.3 0.5 0.2 0.5 0.8 0.0 0.8
Geman 0.2 0.0 0.2 0.7 0.0 0.7 0.7 0.0 0.7 0.8 0.0 0.8

5 Conclusions

In this paper, we presented a fully robust image super-resolution algorithm, where the estimation

of the HR image was integrated in two steps. First, the regularization parameters were robustly es-

timated in an automatic manner and then, the optimal step size of the update of the high-resolution

image was computed for every single LR frame. The outlier threshold was automatically esti-

mated in a robust framework as the residual error between the estimation of the degraded HR

image and the upscaled k-th LR frame. We demonstrated that under different assumptions and dif-
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ferent M-estimators we can derive a powerful super-resolution algorithm that suppresses the effect

of outliers.
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