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ABSTRACT

In many human activity recognition systems the size of the unlabeled
training data may be significantly large due to expensive human ef-
fort required for data annotation. Moreover, the insufficient data col-
lection process from heterogenous sources may cause dissimilarities
between training and testing data. To address these limitations, a
novel probabilistic approach that combines learning using privileged
information (LUPI) and active learning is proposed. A pool-based
privileged active learning approach is presented for semi-supervising
learning of human activities from multimodal labeled and unlabeled
data. Both uncertainty and distance from the decision boundary are
used as a query inference strategies for selecting an unlabeled ob-
servation and query its label. Experimental results in four publicly
available datasets demonstrate that the proposed method can identify
with high accuracy complex human activities.

Index Terms— Learning using privileged information, active
learning, hidden conditional random fields, activity recognition

1. INTRODUCTION

Standard human activity classification systems assume that both
training and testing sequences represent similar types of informa-
tion [1]. However, in real-world applications, this may not always
be possible due to data acquisition constraints. To overcome this
limitation, Vapnik and Vashist [2] introduced the learning using
privileged information (LUPI) paradigm. Their method is based
on a max-margin classification scheme, called SVM+, and encodes
additional information about the training data, which is accessible
only during training but never during testing. The goal of privileged
information is to build a stronger classifier, that is able to cope
with incomplete data during testing. The applications of the LUPI
paradigm may vary from clustering [3] and textual description [4],
to facial expression [5] and human activity [6] recognition.

In the literature, many variants of SVM+ have been proposed,
including SVM+ with L1 regularization [7], multi-task SVM+ [§]
and risk bound minimization [9]. Although SVM+ and its variants
promise good classification results with respect to the standard SVM,
they require tuning more parameters for optimizing the loss function
for the regular and the privileged feature space.

Niu et al. [6] combined multiple instance learning and privileged
information to classify human activities and events from web data,
while domain adaptation is also considered to address the problem
of multimodal data association. Wang et al. [10] exploited privi-
leged information using a latent max-margin model. Hidden vari-
ables were used as an additional level of abstraction to propagate

privileged information and learn the corresponding label.

Most of the recognition systems including LUPI-based classifi-
cation systems assume that labeled training data are easy to obtain.
However, knowing a priori the label of all training examples may not
always be feasible for large databases as the cost for manually label-
ing all samples may be prohibitively large. To address this limitation,
active learning has been proposed [11]. The idea of active learning
is closely related to semi-supervised learning as during training, la-
beled and unlabeled data co-exist. The aim of active learning is to
actively select the most informative unlabeled samples according to
a specified criterion, query their label and use them as training data
to construct a stronger classifier. Active learning has been used with
several classification models such as SVM [12], conditional random
fields [13] and radial basis function networks [14].

An interesting application of active learning is the automatic
annotation of ongoing activities in unsegmented video sequences
for detecting and localizing human actions [15]. Hasan and Roy-
Chowdhury [16] proposed an incremental algorithm for actively
learning new actions from streaming videos. However, one of the
main problems of active learning is how to define an effective cri-
terion for selecting unlabeled samples [17]. To this end, the same
authors [18] combined entropy and mutual information to handle
inter and intra-relationships between training data through incre-
mental update of the classification model to learn human activities.
Finally, Long et al. [19] considered an action recognition method
that exploits active learning to cope with multiple and noisy labels.

Previous methods can either handle information that is not
available during testing, or cope with missing labels during training
but cannot address both problems simultaneously. In this work,
we propose a novel classification method that combines the LUPI
paradigm and active learning for identifying human activities in a
semi-supervised framework using hidden conditional random fields
(HCRFs) [20], called active-HCRF+ (a-HCRF+). The proposed
method exploits privileged information as an additional input during
training to learn the conditional probability distribution between hu-
man activities and observations. To reduce tedious human effort in
data annotation, an incremental pool-based active learning technique
is adopted to actively select unlabeled training samples for which
the uncertainty about their actual class label is reduced.

2. ACTIVE PRIVILEGED LEANING

We consider a labeled dataset with N video sequences, which con-
sists of triplets D = {(x1,;, X} ;,y:) }i1, where x; ; € RM<*T is
an observation sequence of length 7" with 5 = 1...T, which be-

longs in feature space X'. Furthermore, y; corresponds to a class la-



Fig. 1. Graphical representation of the chain structure model. The
grey nodes are the observed features (z; and x7), and the unknown
labels (y). The white nodes are the hidden variables (h).

bel defined in a finite label set ). Also additional information about
the observations x; is encoded in a feature vector x; ; € RMsxxT
and belongs to feature space X'*. This information is provided only
at the training step and it is not available during testing, while not
any assumption about the form of the privileged data is made. In
what follows, we omit indices ¢ and j for simplicity.

2.1. a-HCRF+ model formulation

The a-HCRF+ model is defined by a chained structured undirected
graph G = (V, &) (Fig. 1). The proposed model is a member of
the exponential family and the probability of the class label given an
observation sequence is given by:

Z exp (

where h = {hq, ha,...,hr}, with h; € H is a set of latent vari-
ables and w = [0, w] is a vector of model parameters. Finally,
E(y,h|x;w) is a function of sufficient statistics and A(w) is the
partition function ensuring normalization:
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Different sufficient statistics E'(y|x, x"; w) define different dis-
tributions. Generally, sufficient statistics consist of indicator func-
tions for each possible configuration of unary and pairwise terms:
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where the parameters € and w are the unary and the pairwise
weights, respectively, that need to be learned.
The unary potential is expressed by:
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and it is a state function consisting of three different feature func-
tions. The label feature function models the relationship between
the label y and the hidden variables h;, and it is expressed by:
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where 1(-) is the indicator function, which is equal to 1, if its ar-
gument is true and O otherwise. The observation feature function,
which models the relationship between the hidden variables h; and
the observations x, is defined by:

D 0:1(

a€H

B2(hj,x;5;02) = 1(h; = a)x (6)

Finally, the privileged feature function, which models the relation-
ship between the hidden variables h; and the privileged information
Xj, is defined by:
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The pairwise potential is expressed by:
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It is a transition function and represents the association between a
pair of connected hidden states h; and hy and the label y.

2.2. Learning and inference

In the training step, the optimal parameters w* are estimated by
maximizing the following loss function:

N
L(w) = log p(yi|xi, xi; w) —

i=1

[[wl*. )
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The first term is the log-likelihood of the posterior probability
p(y|x,x"; w) and quantifies how well the distribution in Eq. (1)
defined by the parameter vector w matches the labels y. The second
term is a Lo regularization Gaussian prior with variance 0. The use
of hidden variables makes the optimization of Eq. (9) non-convex,
thus, a global solution is not guaranteed and we can estimate w™ that
are locally optimal. The loss function is optimized using the limited-
memory BFGS (LBFGS) method [21] to minimize the negative log-
likelihood of the data.

Having computed the optimal parameters w™ in the training
step, our goal is to estimate the optimal label configuration over the
testing input. We maximize the posterior probability and marginal-
ize over the latent variables h and the privileged information x*:

y=argmax y > p(y,hlx,x"w)p(x*|x;w).  (10)
Yy h x*

In the general case, the training samples x and x* may be
considered to be jointly Gaussian, thus the conditional distribu-
tion p(x*|x;w) is also a Gaussian distribution. We quantized the
continuous space of features to a large number of discrete values
to approximate the true value of the marginalization of Eq. (10).
However, an exact solution to Eq. (10) is generally intractable.
Therefore, approximate inference is employed for estimation of
the marginal probability by applying the loopy belief propagation
algorithm [22].

2.3. Active learning

In active learning, we suppose that during training we have access
to a labeled dataset £ = {(x,,, %}, ,yi) e, with Ny video se-
quences and an unlabeled dataset U = {(x,,,,x5,)} i, with Ny



video sequences. We assume that pairs of original X" and privileged
information X'* are always available during training for both labeled
and unlabeled datasets and only the corresponding label y; may be
missing. Our method is an incremental pool-based active learning
approach, where at each iteration the most informative sample from
U is selected. That is, the model selects samples that minimize the
class label uncertainty. First, we learn the a-HCRF+ classifier on the
labeled dataset. Then, we iteratively select an unlabeled sample pair
u = (Xu, Xy, ) and obtain the class posterior p(y. |u; w). In particu-
lar, we use two different strategies for selecting an unlabeled sample
and ask for its label.

The first selection criterion is the entropy H(y.|u; w), which
measures how uncertain the classifier is about the class label y,, on
the unlabeled sample u. Therefore, the most uncertain sample that
maximizes the entropy is selected:

i = arg max <— > p(yulu; w) log pyuu; W)> .o an

Yu

The second criterion corresponds to the ratio of class posteri-
ors [14]. We estimate the class posterior for each unlabeled ob-
servation v and every class. Then, for these two classes that ex-
hibit the largest posterior values y1 = argmax, p(y.|u;w) and
y2 = argmax, .. DP(yulu;w), respectively, we select the unla-
beled sample w that minimizes the ratio between the largest class
posteriors:

U = arg min IM .
veu  P(yzlu; w)
The ratio of class posteriors criterion allows to select an observa-
tion that lies closer to decision boundary of the learned classifier.
Specifically, the main steps of proposed pool-based active learning
methodology are summarized in Algorithm 1.

12

Algorithm 1 Pool-based active learning using a-HCRF+
1: procedure ACTIVEHCRFPLUS(L, U, X, X*,))

2: w < argmin (—L(w)) > Train a-HCRF+ on L.
3: while U/ # () do
4: Select an unlabeled observation @ according to Egs. (11)

or (12) and query its label y.
L LUL(d,yu)};
U+ U\ {a};

5 > Update labeled dataset L.
6:

7: end while

8

9

> Update unlabeled dataset /.

w < argmin (—L(w)) > Update a-HCRF+ parameters.

w
: end procedure

3. EXPERIMENTAL RESULTS

We used four publicly available human activity recognition bench-
mark datasets. The Parliament dataset [23] contains 228 video se-
quences of political speeches, belonging in three behavioral cate-
gories: friendly, aggressive, and neutral. The TV human interaction
(TVHI) dataset [24], is a group of 300 video sequences and contains
four kinds of interactions: hand shakes, high fives, hugs, and kisses.
The two-person interaction (TPI) dataset [25] consists of approxi-
mately 300 video sequences captured by a Microsoft Kinect sensor.
The sequences are categorized in eight different interaction classes
including approaching, departing, pushing, kicking, punching, ex-
changing objects, hugging, and shaking hands. Finally, the unstruc-
tured social activity attribute (USAA) dataset [26] contains around

100 videos per class for training and testing, while it includes eight
different semantic class videos of social occasions such as birthday
party, graduation party, music performance, non-music performance,
parade, wedding ceremony, wedding dance, and wedding reception.

As video representation for all datasets, we used spatio-temporal
interest points (STIP) [27]. Furthermore, for the Parliament and
TVHI datasets, we extracted the mel-frequency cepstral coefficients
(MFCC) [28] features along with their first and second order deriva-
tives. Audio features are also used as privileged information for
these datasets. For the TPI dataset, we used the provided poses as
privileged information, and for the USAA dataset we used the pro-
vided attribute annotation as privileged information. The number of
hidden states was estimated based on cross validation, varying their
from 3 to 20. The L. regularization scale term o for was set to
10*, with k € {—3,...,3}. The proposed model was trained with
a maximum of 400 iterations for the termination of the LBFGS op-
timization method. For each dataset we used 5-fold cross validation
to split into training and test sets. Finally, the initial training set was
split into labeled and unlabeled set so that the size of the unlabeled
set may vary from 10% to 50% of the total size of the original train-
ing set and the remaining videos form the labeled training set.

According to which selection criterion is employed (entropy or
ratio of class posteriors), we proposed two variants of the method,
called a-HCRF+ (entropy) and a-HCRF+ (ratioCP). We compared
the proposed method with several baseline methods that may or may
not use privileged information and/or active learning. First, we com-
pared it with ordinary SVM [29] and HCRF [20], as if they could ac-
cess both the original and the privileged information at test time. We
also compared with state-of-the-art methods that employ privileged
information such as SVM+ [2], the rank transfer SVM+ (rt-SVM+)
[4], which exploits a max-margin technique to transfer knowledge
from the privileged to the original feature space, and the method of
Wang and Ji [5], which exploits a loss inequality regularization (LIR)
to address the sensitiveness of the loss function against the inequality
constraints. However, these methods do not employ active learning,
thus, we also compare with the method of Druck et al. [13], which
applies generalized expectation criteria such as entropy (GEE) to se-
lect the most uncertain samples. Finally, we transformed standard
SVM to an active learning based method (a-SVM) using entropy as
selection criterion. For the SVM-based methods we consider a one-
versus-one decomposition of multi-class classification scheme and
average the results for every possible configuration, while the opti-
mal parameters were selected using cross validation.

We assess the impact of privileged active learning by measuring
the classification accuracy of both variants of the proposed method
with varying number of unlabeled data. The obtained results are
depicted in Figure 2. We may observe that for all datasets both pool-
based active learning variants (entropy and ratio of class posteriors)
always have superior performance than GEE and a-SVM methods
as the size of unlabeled training observations increases. Specifically,
for the TVHI dataset GEE may perform better only for the a-HCRF+
(ratioCP) variant, while for the USAA dataset a-HCRF+ (ratioCP)
and a-SVM achieve similar results. This indicates the strength of
the proposed privileged active learning method to recognize human
actions from weakly labeled data without loosing accuracy due to
the uncertainty of the model about class of each observation.

Detailed results of the proposed method compared with state-
of-the-art methods are presented in Table 1. We may observe that
for all four datasets the proposed a-HCRF+ (entropy) method out-
performs the state-of-the-art. For this variant, the classification
performance significantly increased with respect to the LUPI-based
SVM+ method for all datasets (e.g., 20% improvement of the Parlia-
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Fig. 2. Comparison of classification accuracies with respect to the
number of unlabeled data for (a) the Parliament [23], (b) the TVHI
[24], (c) the TPI [25], and (d) the USAA [26] datasets.

Table 1. Comparison of the classification accuracies (%) for the
Parliament [23], TVHI [24], TPI [25], and USAA [26] datasets. The
results were averaged for all different configurations (mean =+ stan-
dard deviation).

Method Parliament [23]  TVHI [24] TPI [25] USAA [26]
Methods without privileged information and without active learning

HCREF [20] 97.6 £ 0.6 81.3+0.7 81.4+08 54.0+£0.8
SVM [29] 72.6+0.4 75.9+06 794+04 474+0.1
Methods without privileged information and with active learning

GEE [13] 82.3+ 0.6 83.8+08 66.1+0.7 454+0.6
a-SVM 80.5 4+ 0.3 71.5+05 80.6+02 544+£0.2
Methods with privileged information and without active learning

SVM+ [2] 78.440.2 75.0+02 79.4+03 485+0.1
rt-SVM+ [4] 57.7+04 652+0.1 56.3+0.2 56.3+£0.2
LIR [5] 59.2+0.2 748+02 624+03 485+0.2
Methods with privileged information and with active learning

a-HCRF+ (entropy) 98.1+0.9 858+0.5 852+0.6 56.9+0.4
a-HCRF+ (ratioCP) 93.0+0.2 85.1+08 838+1.0 552+£0.5

ment dataset). Moreover, significant improvement is obtained, when
the proposed method is compared to the active learning counterpart
methods. Furthermore, the performance of the a-HCRF+ (ratioCP)
variant achieves similar results to its counterpart that uses entropy
as a selection criterion. Although the ratio of class posteriors for
the Parliament and TVHI datasets may perform worse than standard
HCRF model the overall performance is still better than the other
methods. This is because of the presence of closely related classes
as for some observation close to the decision boundary between two
classes the logarithmic ratio of class posteriors may approach zero.

The corresponding confusion matrices for the a-HCRF+ (en-
tropy) variant for the best split for each dataset are shown in Figure 3.
It is worth mentioning that for the Parliament and TVHI datasets the
classification errors between different classes are relatively small.
For the TPI dataset, only a few classes are highly correlated to each
other (e.g., the class shake hands is confused with the classes push
and hug). On the other hand, the USAA dataset, shows high con-

handShakel
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hug

kiss|

departing

kickingr 0.00 0.00 0.00

pushingr 0.00 0.00

shaking handsf 0.00 0.00
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non music performance12.87 7.92 4.95 [PAE] 594 10.89 0.99 4
parader10.99 14.29 1.10 0.00 0.00 0.00 0.001

wedding ceremonygsy#8 10.87 10.87 0.00 16.30 2.17 2.17 0.00-
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Fig. 3. Confusion matrices for the classification results for the best
split of the proposed a-HCRF+ (entropy) variant for (a) the Parlia-
ment [23], (b) the TVHI [24], (c) the TPI [25], and (d) the USAA
[26] datasets.

fusion between the different classes (e.g., wedding ceremony is con-
fused with the class birthday party). This is because of the large
intra-class variabilities, since different classes may have similar at-
tribute representation of human actions.

4. CONCLUSION

In this paper, the problem of human activity recognition in a semi-
supervised framework is investigated. A combination of learning us-
ing privileged information and active learning into a unified frame-
work indicated that human actions can effectively be recognized.
Moreover, two variants of the proposed a-HCRf+ method were pro-
posed. The fist uses entropy as a measure of uncertainty of the actual
class of unlabeled observations and the second selects an unlabeled
observation that lies closer to the decision boundary. Several types of
auxiliary information were used indicating that the proposed method
is not limited to a specific form of privileged information. The exper-
imental results on four different publicly available datasets were very
promising and supported the fact that both LUPI and active learning
schemes, when used together, achieve superior performance than the
state-of-the-art. In future work, we plan to investigate other query
selection criteria and how active learning can be used to recognize
actions from unsegmented sequences.
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