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Abstract. A human behavior recognition method with an application
to political speech videos is presented. We focus on modeling the be-
havior of a subject with a conditional random field (CRF). The unary
terms of the CRF employ spatiotemporal features (i.e., HOG3D, STIP
and LBP). The pairwise terms are based on kinematic features such as
the velocity and the acceleration of the subject. As an exact solution to
the maximization of the posterior probability of the labels is generally
intractable, loopy belief propagation was employed as an approximate
inference method. To evaluate the performance of the model, we also
introduce a novel behavior dataset, which includes low resolution video
sequences depicting different people speaking in the Greek parliament.
The subjects of the Parliament dataset are labeled as friendly, aggressive
or neutral depending on the intensity of their political speech. The dis-
crimination between friendly and aggressive labels is not straightforward
in political speeches as the subjects perform similar movements in both
cases. Experimental results show that the model can reach high accuracy
in this relatively difficult dataset.
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1 Introduction

Recognizing human behaviors from video sequences is a challenging task for
the computer vision community [1, 10, 13]. A behavior recognition system may
provide information about the personality and psychological state of a person
and its applications vary from video surveillance to human-computer interaction.

The problem of human behavior recognition is challenging for several reasons.
First, constructing a visual model for learning and analyzing human movements
is difficult. Second, the fine differences between similar classes and the short
duration of human movements in time make the problem difficult to address.
In addition, annotating behavioral roles is time consuming and requires knowl-
edge of the specific event. The variation of appearance, lighting conditions and



frame resolution makes the recognition problem amply challenging. Finally, the
inadequate benchmark datasets are another obstacle that must be overcome.

In this paper, we are interested in characterizing human activities as behav-
ioral roles in video sequences. The main contribution of this work is twofold.
First, we introduce a method for recognizing behavioral roles (i.e., friendly, ag-
gressive and neutral) (Figure 1). These behavioral classes are similar, as the
involved people perform similar body movements. Our goal is to recognize these
behavioral states by building a model, which allows us to discriminate and cor-
rectly classify human behaviors. To solve this problem, we propose an approach
based on conditional random fields (CRF) [5]. Motivated by the work of Domke
[2], which takes into account both model and inference approximation meth-
ods to fit the parameters for several imaging problems, we develop a structured
model for representing scenes of human activity and utilize a marginalization
fitting for parameter learning. Secondly, to evaluate the model performance, we
introduce a novel behavior dataset, which we call the Parliament dataset [16],
along with the ground truth behavioral labels for the individuals in the video se-
quences. More specifically, we have collected 228 low-resolution video sequences
(320× 240, 25fps), depicting 20 different individuals speaking in the Greek par-
liament. Each video sequence is associated with a behavioral label: friendly,
aggressive and neutral, depending on the intensity of the political speech and
the specific individual’s movements.

(a) (b) (c)

Fig. 1. Sample frames from the proposed Parliament dataset. (a) Friendly, (b) Aggres-
sive, and (c) Neutral

The remainder of the paper is organized as follows: in Section 2, a brief
review of the related work is presented. Section 3 presents the proposed approach
including the model’s specifications and the details of the method. In Section 4,
the novel behavior recognition dataset is presented and experimental results are
reported. Finally, conclusions are drawn in Section 5.

2 Related Work

The human activity categorization problem has remained a challenging task in
computer vision for more than two decades. Many surveys [1, 10] provide a good



overview of human behavior recognition methods and analyze the properties of
human behavior categorization. Previous work on characterizing human behavior
has shown great potential in this area.

In this paper, the term “behavior” is used to describe both activities and
events which are apparent in a video sequence. We categorize the human be-
havior recognition methods into two main categories: single- and multi-person
interaction methods.

Single-person methods. Much research has focused on single person behavior
recognition methods. A major family of methods relies on optical flow which has
proven to be an important cue. Earlier approaches are based on describing behav-
iors by using dense trajectories. The work of Wang et al. [17] focused on tracking
dense sample points from video sequences using optical flow. Yan and Luo [18]
have also proposed an action descriptor based on spatio-temporal interest points
(STIP) [7]. To avoid overfitting they have proposed a novel classification tech-
nique by combining the Adaboost and sparse representation algorithms. Our
earlier work Vrigkas et al. [15] focused on recognizing single human behaviors
by representing a human action with a set of clustered motion trajectories. A
Gaussian mixture model was used to cluster the motion trajectories and the
action labeling was performed by using a nearest neighbor classification scheme.

Multi-person interaction methods. Social interactions are an important
part of human daily life. Fathi et al. [3] modeled social interactions by esti-
mating the location and orientation of the faces of the persons taking part in
a social event, computing a line of sight for each face. This information is used
to infer the location an individual person attended. The type of interaction is
recognized by assigning social roles to each person. The authors were able to
recognize three types of social interactions: dialogue, discussion and monologue.
Human behavior on sport datasets was introduced by Lan et al. [6]. The idea
of social roles in conjunction with low-level actions and high-level events model
the behavior of humans in a scene. The work of Ramanathan et al. [12] aimed at
assigning social roles to people associated with an event. They formulated the
problem by using a CRF model to describe the interactions between people. Tran
et al. [14] presented a graph-based clustering algorithm to discover interactions
between groups of people in a crowd scene. A bag-of-words approach was used
to describe the group activity, while a SVM classifier was used to recognize the
human activity.

3 Behavior Recognition Using CRF

In this paper, we present a supervised method for human behavior recognition.
We assume that a set of training labels is provided and every video sequence is
pre-processed to obtain a bounding box of the human in every frame and every
person is associated with a behavioral label.

The model is general and can be applied to several behavior recognition
datasets. Our method uses CRFs (Figure 2) as the probabilistic framework for



modeling the behavior of a subject in a video. First, spatial local features are
computed in every video frame capturing the roles associated with the bounding
boxes. Then, a set of temporal context features are extracted capturing the rela-
tionship between the local features in time. Finally, the loopy belief propagation
(LBP) [8] approximate method is applied to estimate the labels.

Let rtj ∈ R be the behavioral role label of the jth person in a bounding box
at frame t, where R is the set of possible behavioral role labels and t ∈ [0, T ] is
the current frame. Let xtj represent the feature vector of the observed j

th person
at frame t. Our goal is to assign each person a behavioral role by maximizing
the posterior probability:

r = argmax
r

p(r|x;w). (1)

It is useful to note that our CRF model is a member of the exponential family
defined as:

p(r|x;w) = exp (E(r|x;w)−A(w)) , (2)

where w is a vector of parameters, E(r|x) is a vector of sufficient statistics and
A(w) is the log-partition function ensuring normalization:

A(w) = log
∑
r

exp (E(r|x;w)) . (3)

Different sufficient statistics E(r|x;w) in (2) define different distributions.
In the general case, sufficient statistics consist of indicator functions for each
possible configuration of unary and pairwise terms:

E(r|x;w) =
∑
j
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t
j , x

t
j ;w1) +

∑
j

∑
k∈Nj
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where Nj is the neighborhood system of the jth person for every pixel in the
bounding box. In our model temporal and spatial neighbors are considered. We
use eight spatial and 18 temporal neighbors. The parameters w1 and w2 are
the unary and the pairwise weights that need to be learned and Ψu(r

t
j , x

t
j ;w1),

Ψp(r
t
j , r

t+1
k , xtj , x

t+1
k ;w2) are the unary and pairwise potentials, respectively.

Unary potential: This potential predicts the behavior label rtj of the jth

person in frame t indicating the dependence of the specific label on the location
of the person. It may be expressed by:

Ψu(r
t
j , x

t
j ;w1) =

∑
ℓ∈R

∑
j

w11(r
t
j = ℓ)ψu(x

t
j), (5)

where ψu(x
t
j) are the unary features and 1(·) is the indicator function, which is

equal to 1, if the jth person is associated with the ℓth label and 0 otherwise. The
unary features are computed as a 36-dimensional vector of HoG3D values [4]
for each bounding box. Then, a 64-dimensional spatio-temporal feature vector
(STIP) [7] is computed, which captures the human motion between frames. The



spatial relationship of each pixel in the bounding box and its 8×8 neighborhood
is computed using a 16-dimensional Local Binary Pattern (LBP) feature vector
[9]. The final unary features occur as a concatenation of the above features to a
116-dimensional vector.

Pairwise potential: This potential represents the interaction of a pair of
behavioral labels in consecutive frames. We define the following function as the
pairwise potential:

Ψp(r
t
j , r

t+1
k , xtj , x

t+1
k ;w2) =

∑
ℓ∈R,
m∈Nℓ

∑
j,
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w21(r
t
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t
j , x

t+1
k ),

(6)
where ψp(x

t
j , x

t+1
k ) are the pairwise features. We compute a 4-dimensional spatio-

temporal feature vector, which is the concatenation of the 2D velocity and accel-
eration of the jthperson along time. The acceleration features play a crucial role
in the distinction between the behavioral classes, as different persons in different
behavioral classes perform similar movements. In addition, the L2 norm of the
difference of the RGB values at frames t and t+1 is computed. We use eight spa-
tial and 18 temporal neighbors creating an 18-dimensional feature vector. The
final pairwise features are computed as the concatenation of the above features
to a 22-dimensional vector.

To learn the model weights w = {w1, w2}, we employ a labeled training set
and seek to minimize:

w = argmin
w

∑
r

L(r,x;w), (7)

where L(·, ·) is a loss function, which quantifies how well the distribution (2) is
defined by the parameter vector w matches the labels r.

We select a clique loss function [2], which is defined as the log-likelihood of
the posterior probability p(r|x;w):

L(r,x;w) = − log p(r|x;w). (8)

The loss function is minimized using a gradient-descent optimization method. It
can be seen as the empirical risk minimization of the Kullback-Leibler divergence
between the true and predicted marginals.

Having set the parameters w, an exact solution to Eq. (1) is generally in-
tractable. For this reason, approximate inference is employed to solve this prob-
lem. In this paper, LBP [8] is used for computing the marginals using the full
graphical model as depicted in Figure 2. For comparison purposes and for better
insight of the proposed method, we have also tested a variant of the full graphical
model by transforming it into a tree-like graph (Figure 3). This is accomplished
by ignoring the spatial relationship between the observation nodes x and keeping
only the temporal edges between the labels r. In this case, tree-reweighted belief
propagation [11] is considered for inference.
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Fig. 2. Graphical representation of the model. The observed features are represented
by x and the unknown labels are represented by r. Temporal edges exist also between
the labels and the observed features across frames.
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Fig. 3. Tree-like graphical representation of the model. The observed features are rep-
resented by x and the unknown labels are represented by r.

4 Experiments

The experiments are applied to the novel Parliament dataset [16]. The number
of features are kept relatively small in order not to increase the model’s complex-
ity. Additionally, to show that the proposed method can perform well, different
model variants are compared.

To evaluate our method, we collected a set of 228 video sequences, depicting
political speeches in the Greek parliament, at a resolution of 320× 240 pixels at
25 fps. The video sequences were manually labeled with one of three behavioral
roles: friendly, aggressive, or neutral, according to specific body movements.
These behaviors were recorded for 20 different subjects. The videos were acquired
with a static camera and contain uncluttered backgrounds. Figure 1 delineates
some representative frames of the Parliament dataset.

We used 5-fold cross validation to split the dataset into training and test sets.
Accordingly, the model was learned from 183 videos, while the algorithm was
tested on the remaining five videos and the recognition results were averaged
over all the examined configurations of training and test sets. Within each class,
there is a variation in the performance of an action. Each individual exhibits the
same behavior in a different manner by using different body movements. This is
an interesting characteristic of the dataset which makes it quite challenging.



Table 1. Behavior classification accuracies (%) using the graphical model with only
temporal edges (3) and the full graphical model (2) presented in Figure 2.

Classification Accuracy(%)

Method Friendly Aggressive Neutral

Tree model (tree-reweighted BP) 100 49.23 84.48
Full model (loopy BP) 100 60.73 95.79

Table 2. Comparison between variants of the proposed method.

Method Accuracy(%)

CRF (unary only) 81.0
CRF (unary no spatio-temporal) 69.7
CRF (pairwise no spatio-temporal) 69.7
Full CRF model 85.5

We evaluated the proposed model with different variants of the method. First,
we compared the full graphical model (Figure 2) with a variant of the method,
which considers the graphical model as a tree-like graph (Figure 3). As it can be
observed in Table 1, the full graphical model performs better than the tree-like
graph, which uses only temporal edges between the labels. The second model
ignores the spatial relationship between the features and the classification error
is increased. Generally, the full graphical model provides strong improvement of
more than 8% with respect to the tree model.

In the second set of experiments, we evaluated three variants of the proposed
CRF model. First, we used the CRF model with only the unary potentials ig-
noring the pairwise potentials. The second variant uses only unary potential
without the spatio-temporal features. Finally, the third configuration uses the
full model without the spatio-temporal pairwise features. The classification re-
sults comparing the different models are shown in Table 2.

We may observe that the CRF model, which does not use spatio-temporal
feature in either the unary potentials or the pairwise potentials, attains the
worst performance between the different variants. It is worth mentioning that
the first variant, which uses only unary features, performs better than the other
two variants, which do not use spatio-temporal features. However, this is not a
surprising fact, as in the case of the no spatio-temporal variants the classification
is performed for each frame individually ignoring the temporal relationship be-
tween consecutive frames. The use of spatio-temporal features appears to lead to
better performance than all the other approaches. We also observe that the full
CRF model shows significant improvement over all of its variants. The full CRF
model leads also to a significant increase in performance of 85.5%, with respect
to the model with no spatio-temporal features. This confirms that temporal and



spatial information combined together constitute an important cue for action
recognition.

Figure 4 illustrates the overall behavior recognition accuracy, where the full
CRF model exhibits the best performance in recognizing each of the three be-
haviors. The main conclusion we can draw from the confusion matrices is that
adding temporal edges to the graphical model helps reduce the classification er-
ror between the different behavioral states. It is also worth noting that, due to
missed and relatively close features in consecutive frames, the classes “friendly”
and “aggressive” are often confused as the subject performs similar body move-
ments. Feature selection may be employed to solve this problem.

(a) (b)

(c) (d)

Fig. 4. Confusion matrices of the classification results for the CRF model employing
(a) only unary potentials, (b) only unary potentials without spatio-temporal features,
(c) the full model without spatio-temporal pairwise features, and (d) the full model.

5 Conclusion

In this paper, we have presented a method for recognizing human behaviors in a
supervised framework using a CRF model. We have also introduced a new chal-



lenging dataset (Parliament), which captures the behaviors of some politicians
in the Greek parliament during their speeches. Several variants of the method
were examined reaching an accuracy of 85.5%.

A direction of future research would be to study how the use of voice fea-
tures and pose can help improve recognition accuracy. We are also interested
in studying feature selection techniques to better separate the classes “friendly”
and “aggressive”. With these improvements, we plan to apply this method to
several other datasets.
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