YMAL: "BEva Xdotnuo Xuotdoeny Lyeolaxoy Bdocwy
AeSOUEVLY

Eftychia Koletsou', Kostas Stefanidis?, Marina Drosou!, Evaggelia Pitoura!

! Dept. of Computer Science, University of loannina, Greece. {ekoletso, mdrosou, pitoura}@cs.uoi.gr

2Dept. of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong. kstef@cuhk.edu.hk

Abstract—Xe avtriv v enidelln Aoyiowixol napOLGLA-
Couue TLg YMAL OUGTACELS, Eva TAaiolo epyaoiag mov enexte{ver
T GYECLAXE CLCTHUATA BACEWY DEBOUEVLY (LE AELTOLEYLXSTNTA
GLGTACEWY. TUYXEXPLIEVA, TpoTeElvouue, Lall Le To ANOTENE-
ocpata wiag £pdTNONG, VA CUCTHVOUUE GTO YpPHOTY EMLTAEOY
anoteAéopata tov ovondZovue “You May Also Like” ¥ YMAL
anoteréopata. o va utoloyicovue Tt YMAL anoteAéopata
T i ouyxexpLUéEvn EpdTnoy, Xpnoukonololue eite wévo To
TEPLEYOUEVO TOL ATOTEAECUATOS TNG EPADTNOTNS (TomLxn Tpocéy-
Yiom) elTe XL TO NEPLEYOUEVO NG Bdoms dedowévwy (xaboluxn
npocéyyLon).

I. INTRODUCTION

The typical interaction of a user with a database system is
by formulating queries. This interaction mode assumes that
users are to some extent familiar with the content of the
database and also have a clear understanding of their infor-
mation needs. However, as databases get larger and accessible
to a more diverse and less technically-oriented audience, a new
“recommendation”-oriented form of interaction seems attrac-
tive and useful.

In this paper, motivated by the way recommenders work,
we consider “recommending” to the users tuples not in the
results of their queries but of potential interest. For instance,
when asking for movies with detectives, we could recommend
movies with policemen as well. When looking for drama movies
produced in England with Oscar nominations, we could also
recommend similar movies with BAFTA awards. We call such
results “You May Also Like” or YMAL results for short. YMAL
results are useful because they let users see other tuples in the
database that they may be unaware of.

Extending database queries with recommendations has also
been suggested in two very recent works, namely [2] and [1].
[2] proposes a general framework and a related engine for the
declarative specification of the recommendation process, while
here, instead, we propose a specific recommendation method for
relational databases. Recommendations in [1] are based on the
past behavior of similar users whereas we consider the content
of the database. A preliminary version of our recommendation
functionality is presented in [3].

In this demonstration paper, we briefly describe YMAL rec-
ommendations for relational databases and present the archi-
tecture of our system for processing recommendation requests
(Section II). We also describe our demonstration of YMAL
recommendations for a relational movies database system (Sec-
tion III).

II. YMAL RECOMMENDATION SYSTEM OVERVIEW

Assume a relational database system D and a set of users
interacting with it by posing traditional select-project-join
(SPJ) queries. Given a query @, a typical database system

returns a set of results Res(Q) in the form of tuples, possibly
produced by joining several relations of D. Besides Res(Q), we
would like to locate and recommend to users a set of tuples
that may also be of interest to them. We call this set of tuples
“You May Also Like” tuples or YMAL results. We denote this
set as YMAL(Q).

To compute YMAL recommendations, we exploit the content
and schema of the current query result and database instance.
We consider an SPJ query @ of the form:

select A from R where P1 AND P2,
R denotes a set of relations of D, A a set of attributes
{A1,..., Ay} of the relations of D, P1 the conjunction of the
join conditions for @@ and P2 the conjunction of the remaining
selection conditions for . For processing recommendation
requests, we re-write the submitted query @ into a set of queries
referred to as YMAL queries. An YMAL query is of the form:
select B from S where P.

In the following, we will show our query re-writing mechanism
for computing B, S, and P. This mechanism is based on either
(i) local analysis of the intrinsic properties of the result Res(Q)
or (ii) global analysis of the properties of the database D.
The union of the results of YMAL queries constitute the YMAL
recommendations, or YMAL(Q).

Next, we describe the main components of the architecture
of our system. A high level representation is depicted in Fig. 1.
Once a query ) is submitted, we compute its actual result set.
Using the query results, we construct a set of YMAL queries
by re-writing (. The results of these queries correspond to the
YMAL results.

Attribute Selection Generator. This component takes as input
the submitted query @ and returns the attributes B that will ap-
pear in the select clause of the YMAL queries. In a local-based
approach, where only Res(Q) is employed, all YMAL queries
have the same select clause which contains all attributes B
that appear in the conditions P2 of the initial query.

In a global-based approach, where the content of the
database is also taken into account, we use a special select
clause. We simply construct this clause by removing from the
set of attributes appearing in the relations of the from clause
of the under-construction YMAL query, the non-informative
attributes, such as the primary and foreign key attributes
containing meaningless values.

Relation Selection Generator. This component takes as input
the query ) and returns the relations S that will appear in the
from clause of the YMAL queries. In the local-based approach,
S = R, while in the global-based approach, S is a superset of
R. To compute S, we maintain correlations among relations. A
relation R; is correlated to a relation R; with a score p that



User Query

User Interface

SQL Query| YmaL Results | Query Results
(1) @)

Attribute
Selection Selection
Generator Generator

WAL Query Generator

SQL Query Query Results 'YMAL Queries
(2) (2) @)

Constraint
Selection
Generator

YuAL Engine

Relation

DB System

Database

DBMS

Fig. 1. YMAL system architecture.

reflects the result size of their join. This way, we construct S by
adding to R the k most correlated relations to those in R, where
k is determined by an input cardinality constraint. The higher
the score p of a relation, the more correlated the relation.

Constraint Selection Generator. This component generates the
selection conditions that the YMAL queries contain taking as
input both @ and Res(Q). Again, we distinguish between two
cases; selection conditions are located either with respect to a
local analysis of the intrinsic properties of the result Res(Q),
or based on a global analysis of the properties of the database
D.

In the former case, given a query ) with attributes A =
{A;,..., Ay} appearing in the relations R, we first compute the
power-set A" consisting of all subsets of A. Then, the selection
operator constructs the YMAL queries’ constraints with respect
to A*.

Definition 1: Given a query @, its attribute power-set A*
and the result set Res(Q), the selection operator outputs, for
each set of attributes of the form {A4;,..., A;} in A", a selection
condition of the form:

A; =a;, AND ... AND A]' = aj,,
where a;, € dom(A;), aj, € dom(A;) and the set of values
{ai,,...,aj,} is the most frequently appeared value set in
Res(Q) for {A;,..., A;}.

For each selection condition that is returned by the selection
operator, a different YMAL query is constructed.

In the latter case, selection conditions are generated taking
into consideration not only the query results but also statistics
maintained for the database content. In particular, for each
attribute set in A", we locate the relative value set V that
appears frequently in both Res(Q) and D using the formula:
f”}i;i;(i;)(") where freq°*(?)(V) denotes the number of oc-
currences of V in Res(Q) and freq” (V) denotes the number of
occurrences of V in D.

YMAL Query Generator. In this step, we construct the YMAL
queries. To perform this operation, we employ the outputs of
the previous steps. This component is also responsible for iden-
tifying the join conditions for each generated query. YMAL(Q)
consists of the union of results of the produced YMAL queries.

III. DEMONSTRATION

We have implemented our system for computing a set of
recommended results for a given query in Java on top of

Movies Database

You have provided the following guestion:

Query:

SELECT roda, gerne FROM movies, cast, person, genre WHERE movies.mid= cast.
person.ped =Cast pad and genne.mad=movies.md and person. fiame = Bess' and
person.narme=Fawers)

Total Results: 1014

Results about: role and genre
Nightclub Dance Extra Musical
Passenger Drama
Passenger Romance
Extra at craps table Comedy
Waoman with Mr, Pape Comedy
Spoctator at Medusa Presanta Fantasy
Lobby. Extra Musical
Wadding Guest Camedy
Wedding Guest Family
Waeadding Guest Fantasy
Nightelub Table Extra Mystery
Court Deputy Drama
Court Daputy Film-Naoir

Mrs. Lawrence Comedy

You May Also Like:
Ralated results with 'Bass’ Flowers' ara;
# Because of similar role
Sam {11} Harmis
# Because of similar genra
Mo (1) Howsrd
# Becauso of similar role and ganre
arry Steers

B See More

G

Cotmp ctar Scierece Dapt

Fig. 2.  Query results and YMAL recommendations.

MySQL. Implementation on top of an existing database system
has a number of advantages, such as portability and ease of
implementation. Qur system can be accessed via a simple web
browser using an intuitive GUI.

We demonstrate our method using a movies database. Users
can submit their queries via SQL or by employing available
input forms. After executing the query, users are presented with
the results of the query and also a set of YMAL results (Fig. 2).
An ezplanation is also provided along with each YMAL result,
i.e. how this specific recommendation is related to the original
query result. At first, we present one result tuple of each YMAL
query. If the user clicks on this, more tuples from the result of
this YMAL query appear as well.

REFERENCES

[1] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query rec-
ommendations for interactive database exploration. In SSDBM,
2009.

[2] G. Koutrika, B. Bercovitz, and H. Garcia-Molina. Flexrecs: Ex-
pressing and combining flexible recommendations. In SIGMOD,
2009.

[3] K. Stefanidis, M. Drosou, and E. Pitoura. “you may also like”
results in relational databases. In PersDB, 2009.



