
Comparing Diversity Heuristics

Marina Drosou and Evaggelia Pitoura

Computer Science Department

University of Ioannina, Greece

{mdrosou, pitoura}@cs.uoi.gr

Abstract

Result diversification has recently attracted much attention as a means of increasing user satisfac-

tion in recommender systems and web search. Selecting diverse items, however, has been proven to be

an NP-hard problem. In this paper, we focus of a common interpretation of diversity, namely content

diversity, and present a number of heuristics that have been proposed in the literature for tackling

this problem. We also provide a comprehensive experimental evaluation of their performance.

1 Introduction

Today, most user searches have an exploratory nature, in the sense that users are mostly interested in
retrieving various pieces of information about their search topic. Therefore, recently, result diversification
has attracted considerable attention as a means of enhancing user satisfaction in recommender systems
and web search (e.g. [18, 14]). Also, it can counteract the over-specialization problem, i.e. the retrieval
of too homogeneous results. Consider, for example, a user who wants to buy a car and submits a web
search to retrieve information. A diverse result, i.e. a result containing various brands and models with
different horsepower and other technical characteristics is intuitively more informative than a result that
contains a homogeneous result containing only cars with similar features.

Diverse items may be generally defined in three different ways, namely in terms of (i) novelty, i.e.
items that contain new information when compared to previously seen ones (e.g. [5, 17]), (ii) coverage,
i.e. items that belong to different categories (assuming that a taxonomy of categories exists, e.g. [2]) and
(iii) content (or similarity), i.e. items that are dissimilar to each other (e.g. [16]).

In this paper, we tackle the problem of selecting k diverse information pieces (or items) among the
results that satisfy the information needs of the users. We focus on content diversity among the various
items and seek to process them in such a way as to locate items that are distant (dissimilar) to each
other.

The problem of selecting k diverse results out of the available ones is related to the p-dispersion
problem which has been shown to be NP-hard [7, 8]. Due to the high complexity of the problem, we
employ heuristics that have been proposed in the literature in various research fields. We consider four
categories of heuristics: (i) greedy, (ii) interchange, (iii) neighborhood and (iv) clustering heuristics. We
implement all heuristics and perform an experimental evaluation on both synthetic and real datasets to
demonstrate the efficiency and effectiveness of each of them.

The rest of this paper is structured as follows. In Section 2, we define the k-diversity problem, while
in Section 3, we present a suite of heuristics for its efficient solution. Section 4 evaluates the performance
of the various heuristics. Section 5 briefly reviews related work and, finally, Section 6 concludes this
paper.

2 Problem Definition

There are various forms of diversity. Here, we focus on content diversity, so that users receive dissimilar
information. Specifically, given a set1 P of n items, we aim at selecting k items out of them, such that,
the average pairwise distance between the selected items is maximized. More formally:

1In this work, we use the term “set” loosely to denote a set with bag semantics or a multiset, where the same item may
appear more than once in the set.

1

Technical Report TR-2009-05

(a) (b)

Figure 1: Most diverse points of a circle for (a) k = 2 and (b) k = 3.

Definition 1 (k-diversity): Let P = {p1, . . . , pn} be a set of n items and k an integer with k ≤ n. Let
also d(pi, pj), pi, pj ∈ P , be a distance measure between items pi and pj. The k-diversity problem is to
locate a set S∗, S∗ ⊆ P , such that:

S∗ = argmax
S⊆P
|S|=k

f(S), where f(S) =
1

k(k − 1)

k
∑

i=1

k
∑

j>i

d(pi, pj) and pi, pj ∈ S (1)

The problem of selecting the k items having the maximum average pairwise distance out of n items is
similar to the p-dispersion problem. This problem, as well as a number of its variations (e.g. select p out
of n items so that the minimum distance between any two of them is maximized), have been extensively
studied in operations research and are in general known to be NP-hard [7, 8]. Thus, to solve large
instances of the problem, we need to rely on heuristics. A number of heuristics have been proposed in
the literature (e.g. [8]), ranging from applying exhaustive algorithms to adapting traditional optimization
techniques.

A general issue that hinders the development of efficient incremental solutions to the problem is that
the k − 1 most diverse items of a set P are not necessarily a subset of its k most diverse items. For
example, consider as items the points on the circumstance of a circle and their euclidean distances. The
two furthest apart points are (any) two antidiametric ones. However, no antidiametric points belong to
a set of three most diverse points (Figure 1).

In the following section, we describe various families of heuristics for tackling the k-diversity problem.

3 Content Diversity Heuristics

In this section, we describe a suite of heuristics for locating solutions to the k-diversity problem. These
heuristics have been employed for solving variations of the problem in more than one research areas. We
classify the examined heuristics into four categories: (i) greedy, (ii) interchange, (iii) neighborhood and
(iv) clustering heuristics (Figure 2). In the following sections, we describe heuristics in each category and
discuss their weaknesses and strong points.

3.1 Greedy Heuristics

The greedy heuristics are the ones most commonly used since they are intuitive and some of them are
also relatively fast (e.g. [18, 2, 11, 4]). Greedy heuristics make use of two sets: the set P of candidate
items and a set S which contains the selected ones. Items are iteratively moved from P to S and vice
versa until |S| = k and |P | = n−k. There are two main variations: (i) the Greedy Construction heuristic
and (ii) the Greedy Deletion one.

Algorithm 1 Greedy Construction Heuristic

Input: The set of candidate items P and the number of wanted items k.
Output: A set S with k most diverse items.

1: find pi, pj , s.t. d(pi, pj) = max{d(pi, pj) : pi, pj ∈ P, pi 6= pj}
2: S ← {pi, pj}
3: while |S| < k do
4: find pi ∈ P\S, s.t. setdist(pi, S) = max{setdist(pj , S) : pj ∈ P\S}
5: S ← S ∪ {pi}
6: end while
7: return S

2

Technical Report TR-2009-05

Figure 2: Classification of content diversity heuristics.

In the Greedy Construction (GC) heuristic, S is initialized with the two furthest apart items in P .
Then, at each iteration, one more item is added to S. The item that is added is the one that has the
maximum item-set distance from S (Algorithm 1). We define the item-set distance, denoted setdist(pi, S),
between an item pi and a set of items S as the average distance between pi and the items in S, that is:

setdist(pi, S) =
1

|S|

∑

pj∈S

d(pi, pj) (2)

The complexity of GC in terms of distance computations is O(n2), where n is the size of P . However,
this is due to the first step of the algorithm where the two furthest apart items have to be located. The
rest of the algorithm requires O(k2n) distance computations. Therefore, to reduce the execution time of
GC, we also consider the variation where S is initialized by selecting the two furthest apart items from
a randomly selected subset of P with size equal to h, h < n, instead of using the whole set. We will
later show that this modification greatly reduces the execution time without affecting the diversity of the
selected items considerably.

Algorithm 2 Greedy Deletion Heuristic

Input: The set of candidate items P and the number of wanted items k.
Output: A set S with k most diverse items.

1: S ← P
2: while |S| > k do
3: find pi, pj , s.t. d(pi, pj) = min{d(pi, pj) : p1, pj ∈ S, pi 6= pj}
4: find pz , s.t. setdist(pz , S\{pz}) = min{setdist(pz , S\{pz}) : pz ∈ {pi, pj}}
5: S ← S\{pz}
6: end while
7: return S

Algorithm 3 Semi-Greedy Deletion Heuristic

Input: The set of candidate items P and the number of wanted items k.
Output: A set S with k most diverse items.

1: S ← P
2: while |S| > k do
3: find pi, pj , s.t. d(pi, pj) = min{d(pi, pj)| : pi, pj ∈ S, pi 6= pj}
4: randomly set pz ← pi or pz ← pj

5: S ← S\{pz}
6: end while
7: return S

In the Greedy Deletion (GD) heuristic, S is initialized with all items in P . Then, at each iteration,
one item is deleted from S, until k of them remain. To delete an item, the two closest items of S are
first located and then the one that has the smallest item-set distance from the remaining points in S is
chosen for deletion (Algorithm 2). We also consider the Semi-Greedy Deletion (SGD) variation, where

3

Technical Report TR-2009-05

one of those two items is chosen randomly for deletion (Algorithm 3). Those heuristics are more time
consuming than the constuction alternative, since they require O(n3) distance computations.

3.2 Interchange Heuristics

Interchange heuristics have also been used in the literature for solving the k-diversity problem (e.g.
[15, 12]). Generally, these heuristics are initialized with a random solution S and then iteratively attempt
to improve that solution by interchanging an item in the solution with another item that is not in the
solution. There are two main variations: (i) The First Pairwise Interchange (FI) heuristic (Algorithm 4)
performs at each iteration the first met interchange that improves the solution, while (ii) the Best Pairwise
Interchange (BI) heuristic considers all possible interchanges and performs the one that improves the
solution the most (Algorithm 5).

Algorithm 4 First Pairwise Interchange Heuristic

Input: The set of candidate items P and the number of wanted items k.
Output: A set S with k most diverse items.

1: Set S to be a random solution
2: while at least one change occurs in S do
3: find pi, pj , s.t. d(pi, pj) = min{d(pi, pj) : pi, pj ∈ S, pi 6= pj}
4: for all pz ∈ P\S do
5: S′ ← {S\{pi}} ∪ {pz}
6: S′′ ← {S\{pj}} ∪ {pz}
7: if f(S′) > f(S) and f(S′) ≥ f(S′′) then
8: S ← S′

9: break
10: end if
11: if f(S′′) > f(S) and f(S′′) ≥ f(S′) then
12: S ← S′′

13: break
14: end if
15: end for
16: end while
17: return S

Algorithm 5 Best Pairwise Interchange Heuristic

Input: The set of candidate items P and the number of wanted items k.
Output: A set S with k most diverse items.

1: Set S to be a random solution
2: while at least one change occurs in S do
3: find pi, pj , s.t. d(pi, pj) = min{d(pi, pj) : pi, pj ∈ S, pi 6= pj}
4: for all pz ∈ P\S do
5: S′ ← {S\{pi}} ∪ {pz}
6: S′′ ← {S\{pj}} ∪ {pz}
7: if f(S′) > f(S) and f(S′) ≥ f(S′′) then
8: S ← S′

9: end if
10: if f(S′′) > f(S) and f(S′′) > f(S′) then
11: S ← S′′

12: end if
13: end for
14: end while
15: return S

The worst case complexity of both variations is O(nk). While each distinct iteration of FI is on
average faster than an iteration of BI, BI is more likely to require less iterations to converge. There are
two ways to limit the iterations performed by interchange heuristics. We can either set a bound, on the
maximum number of possible interchanges to be performed or allow interchanges to continue as long as
the solution improves by a given threshold.

Another heuristic that can be classified into this category is Simulated Annealing (SA). Simulated
Annealing attempts to avoid local maxima by also accepting interchanges that do no improve the solution.
Such interchanges are accepted with a probability that decreases as time passes (Algorithm 6). The
performance of Simulated Annealing heavily depends on a number of tuning parameters. However, it is
generally exponential as well.

4

Technical Report TR-2009-05

Algorithm 6 Simulated Annealing Heuristic

Input: The set of candidate items P , the number of wanted items k and the parameters FREEZELIMIT ∈ Z
+,

SIZEFACTOR ∈ Z
+, CUTOFF ∈ Z

+, TEMPFACTOR ∈ [0, 1], MINPERCENT ∈ [0, 1].
Output: A set S with k most diverse items.

1: Set S to be a random solution
2: T ← max{d(pi, pj) : pi, pj ∈ P, pi 6= pj}
3: iterations← 0
4: while iterations < FREEZELIMIT do
5: trials← changes← 0
6: while trials < SIZEFACTOR and changes < CUTOFF do
7: trials← trials + 1
8: pi ← a random point in {S}
9: pj ← a random point in {P\S}

10: S′ ← {S\{pi}} ∪ {pj}
11: e← f(S′)− f(S)
12: r ← a random number in (0, 1)
13: if e > 0 or r < exp(e/T) then
14: S ← S′

15: changes← changes + 1
16: end if
17: end while
18: T ← T · TEMPFACTOR
19: if f(S) has increased then
20: iterations← 0
21: end if
22: if changes/trials < MINPERCENT then
23: iterations← iterations + 1
24: end if
25: end while
26: return S

3.3 Neighborhood Heuristics

Neighborhood heuristics are construction algorithms that start with a solution S containing one random
item and then iteratively add items to the solution. The items to be added are chosen based on the
notion of r-neighborhood of an item pi ∈ P , N(pi, P, r), defined as:

N(pi, P, r) = {pj ∈ P : d(pi, pj) ≤ r} (3)

In other words, all items that have a smaller or equal distance to pi than r belong to its r-neighborhood.
At each iteration, only items outside the r-neighborhoods of all already selected items are considered.
Out of these items, one is chosen to be added to the solution. There are several options regarding which
item to add. The First Item Outside the Neighborhood (FiN) heuristic adds the fist located item in P
that is outside those r-neighborhoods, while the Closest Item Outside the Neighborhood (ClN) heuristic
adds the one that has the smallest sum of distances to the already selected items. Finally, the Furthest
Item Outside the Neighborhood (FuN) heuristic adds the item that has the largest sum of distances to the
already selected items. Note that, the selection of r plays an important role as it restricts the number of
items that are considered at each iteration. In fact, given a value of r, a solution S with |S| = k may not
even exist. Algorithm 7 shows generic pseudo-code for all the heuristics of this category. These heuristics
begin with a random item and iteratively add one more item to the solution until k items have been
selected. Therefore, in the worst case, they require O(k2n) distance computations.

A factor that influences the performance of all neighborhood heuristics is the value of r. To determine
an r value leading to good solutions, one must have a view of how items are spread throughout the
available space. One time-efficient way to get an estimation for r is to initially set r to be equal with
the average distance of k randomly selected items. If a solution with k items cannot be located with this
initial value, we can reduce r by a percentage and run the neighborhood heuristic again.

3.4 Clustering Heuristics

The k-diversity problem bears certain resemblances to clustering, in the sense that selecting k diverse
items can be seen as selecting k representatives of the initial set P of items, i.e. clustering P into k groups
and selecting their medoids. However, the two problems are also different. For example, outliers that are
expected to be recovered when selecting diverse items are generally suppressed by clustering algorithms.

5

Technical Report TR-2009-05

Algorithm 7 Neighborhood Heuristics

Input: The set of candidate items P , the number of wanted items k and a radius r.
Output: A set S with k most diverse items.

1: pi ← random point of P
2: S ← {pi}
3: OUT ← P\{pj : pj ∈ N(pi, P, r)}
4: while |OUT | > 0 do
5: select a point pi ∈ OUT to be added // first, closest or furthest
6: OUT ← OUT\{pj : pj ∈ N(pi, P, r)}
7: S ← S ∪ {pi}
8: end while
9: return S

Nonetheless, it is interesting to see how clustering algorithms behave when employed to tackle the k-
diversity problem. In this work, we employ the widely-used k-medoids (KM) heuristic [10] (Algorithm 8).
The number of required distance computations is O(Ik(n − k)2), where I is the number of performed
iterations. The number of iterations I is not bounded. Both I and the overall performance of k-medoids
heavily depend on the initialization of the algorithm. Usually, concerning clustering algorithms, the
method of multiple restarts is employed, where the algorithm is run a number of times and the best
located solution is kept.

Algorithm 8 k-medoids Algorithm

Input: The set of candidate items P and the number of wanted items k.
Output: A set S of k medoids.

1: Set S = {s1, . . . , sk} to be a random solution
2: while at least one change occurs in S do
3: for all pi ∈ P\S do
4: assosiate pi with the medoid sj , s.t. d(pi, sj) = min{d(pi, sj) : pi ∈ P, sj ∈ S}
5: end for
6: for all clusters Si do
7: update corresponding medoid si ← p∗j , s.t. p∗j = arg minpj∈Si

∑

pz∈Ci
d(pz , pj)

8: end for
9: end while

10: return S

4 Evaluation

In this section, we compare the heuristics of Section 3 in terms of efficiency and effectiveness and present
our evaluation results using both synthetic and real data. All heuristics were implemented in JDK 6. We
ran our experiments on a Windows XP PC with a 2.4 GHz Intel Core 2 Processor and 2.00 GB of RAM.

4.1 Synthetic Data

To evaluate the performance of the heuristics, we create synthetic datasets consisting of data items in the
Euclidean space, where each dimension takes values in [0, 1000]. In our experiments, we vary the size n
of the datasets as well as the dimensions D of the items. Our datasets contain items drawn from either a
uniform or a normal distribution centered in the middle of R

D with a standard deviation equal to 150 in
all dimensions. We also create datasets that contain items from five different normal distributions with
a standard deviation equal to 50 spread throughout the available space. We measure distances among
items using the Euclidean distance metric. We report results averaged over ten runs of the heuristics. We
use “div” to denote the average diversity of the located solutions. Also, time is measured in milliseconds.
Table 1 summarizes the notation used for the heuristics of Section 3.

4.1.1 Greedy Heuristics

We begin our experimental evaluation by examining the behavior of the greedy heuristics. Concerning
GC, we examine the cases for which h = n (i.e. initializing the heuristic with the whole set of candidate
items), h = n/2 and h = 2 (i.e. initializing the heuristic with two random items).

6

Technical Report TR-2009-05

Table 1: Heuristics notation.

Notation Heuristic

GC Greedy Construction

GD Greedy Deletion

SGD Semi-Greedy Deletion

FI First Pairwise Interchange

BI Best Pairwise Interchange

SA Simulated Annealing

FiN First Item Outside the Neighborhood

ClN Closest Item Outside the Neighborhood

FuN Furthest Item Outside the Neighborhood

KM k-medoids

RA Random Selection

In Table 2, we show results for 4-dimensional datasets of size n = 400 when varying k for the GC, GD
and SGD heuristics. We also report the average diversity and execution time when randomly selecting k
items (denoted RA). Naturally, the average achieved diversity decreases as k increases, since more items
have to be selected. We see that GC consistently outperforms both greedy deletion variations, both in
terms of achieved diversity and execution time. As k increases, the execution time of GC increases as
well, while the execution time of GD and SGD is not affected considerably. However, GD and SGD
consume much more time than the GC alternative, without achieving better diversity. We also observe
that reducing the initially examined set of items in GC by half (i.e. using h = n/2) reduces the execution
time without affecting the diversity of the solution. Using h = 2 further improves execution time with
only a slight decrease in diversity. Finally, GD and SGD consume similar time but GD locates solutions
with higher diversity.

Next, we fix k = 40 and repeat the experiment for different input sizes (Table 3). As n increases, better
solutions can be located by all heuristics since there are more candidate items available to choose from.
GC continues to locate solutions with higher diversity. The execution time of GD and SGD increases
rapidly for higher values of n (by more than an order of magnitude when tripling the dataset size). The
execution time of GC increases as well along with n but only linearly.

Finally, we conduct an experiment for different data dimensionalities (Table 4). The execution time
of all heuristics increases slightly along with D, since each distance computation requires more time.
However, this increase is not significant. The achieved diversity increases along with D as well, since for
a fixed n the data space becomes sparser.

4.1.2 Interchange Heuristics

We continue our experimental evaluation by examining the behavior of the interchange heuristics. We
allow FI and BI to run until convergence, since we observed that trying to limit the number of iterations as
described in Section 3.2 heavily influences the diversity of the located solutions. For SA, we experimented
with a number of configurations. Here, we report results for FREEZELBIIT = 5, SIZEFACTOR =
10(n − k), CUTOFF = 10, TEMPFACTOR = 0.9 and MINPERCENT = 0.5.

Table 5 shows results when varying k. Surprisingly, FI locates better solutions than BI, even though
one would expect the best-interchange strategy to lead to better solutions. However, it also consumes
more time. Generally, SA locates better solutions than the other two heuristics, especially for larger
values of k. However, the cost in execution time is much higher. This trade-off can probably be tuned
by calibrating SA’s parameters. This calibration depends on the input of the heuristic though and is not
easy to be achieved.

Table 6 shows results when varying n. It is interesting to notice that, while FI continues to locate
better solutions, BI scales better in terms of execution time as n increases. This is not the case when
varying the number of dimensions D (Table 7), where both heuristics exhibit similar behavior. SA
continues to outperform both FI and BI in terms of achieved diversity at the cost of high execution time.

7

Table 2: Greedy heuristics:
Average achieved diversity and execution time for n = 400 and D = 4.

Uniform dataset

k

GC GC GC
GD SGD RA

(h = n) (h = n/2) (h = 2)

div time div time div time div time div time div time

20 1133.67 29.70 1133.16 17.10 1106.35 12.40 1064.03 1121.90 946.47 1111.00 784.18 0.00

30 1103.12 39.20 1102.99 31.20 1088.28 25.00 1026.84 1121.90 921.00 1114.10 790.03 0.00

40 1079.85 57.80 1079.81 45.30 1068.47 43.80 991.92 1111.00 906.20 1103.10 790.45 0.00

50 1061.54 81.10 1061.54 70.30 1053.93 67.10 967.45 1112.50 886.83 1101.60 787.94 0.00

60 1045.47 109.40 1045.47 93.70 1038.77 89.10 955.13 1117.00 881.29 1118.80 768.02 0.00

Normal dataset

k

GC GC GC
GD SGD RA

(h = n) (h = n/2) (h = 2)

div time div time div time div time div time div time

20 692.15 29.70 691.65 15.80 673.56 12.40 666.86 1123.40 618.93 1112.50 399.97 0.00

30 664.62 40.60 664.38 31.40 652.68 23.40 640.13 1112.50 596.27 1114.00 388.15 0.00

40 643.56 59.30 643.56 48.40 637.07 43.70 611.68 1121.70 570.81 1103.10 399.05 0.00

50 626.06 81.30 625.96 71.90 619.97 62.40 587.14 1115.40 561.72 1106.20 397.38 1.50

60 610.84 109.30 610.84 93.80 607.82 93.80 574.63 1123.30 553.29 1109.40 376.52 1.60

Clustered dataset

k

GC GC GC
GD SGD RA

(h = n) (h = n/2) (h = 2)

div time div time div time div time div time div time

20 578.84 28.10 578.46 18.70 570.97 12.50 514.86 1107.70 482.24 1112.70 444.38 0.00

30 560.35 39.20 560.35 31.30 554.45 25.10 486.40 1104.70 463.26 1107.90 436.45 0.00

40 548.80 59.50 548.75 46.70 545.44 46.80 475.20 1112.60 461.82 1104.60 433.01 0.00

50 540.33 79.70 540.30 68.70 537.75 62.40 471.69 1114.20 454.40 1100.00 437.58 1.60

60 533.11 109.30 533.11 93.70 531.11 89.30 470.41 1103.20 455.74 1103.00 432.73 0.00

Table 3: Greedy heuristics:
Average achieved diversity and execution time for k = 40 and D = 4.

Uniform dataset

n

GC GC GC
GD SGD RA

(h = n) (h = n/2) (h = 2)

div time div time div time div time div time div time

200 1007.47 36.00 1007.47 25.00 999.82 18.80 939.92 246.80 866.55 242.10 770.87 0.00

400 1079.85 57.80 1079.81 45.30 1068.47 43.80 991.92 1111.00 906.20 1103.10 790.45 0.00

600 1113.75 84.40 1113.46 68.80 1103.32 64.00 1017.29 2906.20 911.02 2962.70 789.28 0.00

Normal dataset

n

GC GC GC
GD SGD RA

(h = n) (h = n/2) (h = 2)

div time div time div time div time div time div time

200 560.99 36.00 560.99 25.10 555.66 20.50 529.74 248.30 496.65 243.70 385.09 0.00

400 643.56 59.30 643.56 48.40 637.07 43.70 611.68 1121.70 570.81 1103.10 399.05 0.00

600 691.37 84.40 691.37 70.40 682.96 64.10 654.54 2926.60 622.49 2984.60 391.80 1.50

Clustered dataset

n

GC GC GC
GD SGD RA

(h = n) (h = n/2) (h = 2)

div time div time div time div time div time div time

200 513.77 36.10 513.77 22.00 510.93 18.70 450.23 247.00 438.66 245.40 436.35 0.00

400 548.80 59.50 548.75 46.70 545.44 46.80 475.20 1112.60 461.82 1104.60 433.01 0.00

600 568.90 81.30 568.89 71.90 564.94 64.10 501.99 2895.30 480.43 2909.40 435.33 0.00

8

Table 4: Greedy heuristics:
Average achieved diversity and execution time for k = 40 and n = 400.

Uniform dataset

D

GC GC GC
GD SGD RA

(h = n) (h = n/2) (h = 2)

div time div time div time div time div time div time

2 760.17 54.70 760.17 42.30 754.08 35.80 606.93 1032.90 564.46 1014.10 534.64 0.00

4 1079.85 57.80 1079.81 45.30 1068.47 43.80 991.92 1111.00 906.20 1103.10 790.45 0.00

6 1309.98 60.90 1310.15 48.50 1300.71 46.90 1274.58 1181.10 1150.14 1193.80 970.41 0.00

Normal dataset

D

GC GC GC
GD SGD RA

(h = n) (h = n/2) (h = 2)

div time div time div time div time div time div time

2 466.42 57.80 466.42 42.30 461.97 37.70 403.98 1029.60 387.56 1021.90 260.94 0.00

4 643.56 59.30 643.56 48.40 637.07 43.70 611.68 1121.70 570.81 1103.10 399.05 0.00

6 768.96 59.50 768.91 48.50 760.31 45.30 750.24 1182.80 705.07 1178.00 497.90 0.00

Clustered dataset

D

GC GC GC
GD SGD RA

(h = n) (h = n/2) (h = 2)

div time div time div time div time div time div time

2 423.37 53.20 423.37 44.00 421.09 40.60 358.16 1029.60 334.42 1026.70 306.18 0.00

4 548.80 59.50 548.75 46.70 545.44 46.80 475.20 1112.60 461.82 1104.60 433.01 0.00

6 654.61 62.60 654.61 46.90 652.05 46.90 591.68 1182.80 555.03 1192.30 513.24 0.00

Table 5: Interchange heuristics:
Average achieved diversity and execution time for n = 400 and D = 4.

Uniform dataset

k
FI BI SA RA

div time div time div time div time

20 1090.42 437.50 1013.87 298.50 1133.96 2117.10 784.18 0.00

30 1017.95 684.40 913.16 512.40 1103.03 4090.60 790.03 0.00

40 1002.14 1064.10 901.68 731.20 1079.72 8651.6 790.45 0.00

50 972.96 1273.30 876.29 992.30 1061.18 9634.40 787.94 0.00

60 940.65 1528.20 853.19 1089.10 1045.44 16082.80 768.02 0.00

Normal dataset

k
FI BI SA RA

div time div time div time div time

20 672.73 620.40 649.44 442.10 692.06 1884.5 399.97 0.00

30 646.52 1150.00 605.23 726.50 664.41 3926.5 388.15 0.00

40 616.14 1756.20 560.61 998.30 643.51 6581.2 399.05 0.00

50 594.93 2145.40 529.58 1331.20 625.92 9509.5 397.38 1.50

60 583.30 2987.60 501.44 1687.50 610.83 21037.4 376.52 1.60

Clustered dataset

k
FI BI SA RA

div time div time div time div time

20 504.95 473.60 510.24 220.20 579.02 1751.50 444.38 0.00

30 503.98 892.30 476.33 437.40 560.35 3910.80 436.45 0.00

40 493.88 1490.60 468.81 635.90 548.71 7196.80 433.01 0.00

50 487.08 2295.30 461.69 774.90 540.30 10824.90 437.58 1.60

60 479.56 2929.60 455.81 932.90 533.10 18570.30 432.73 0.00

9

Table 6: Interchange heuristics:
Average achieved diversity and execution time for k = 40 and D = 4.

Uniform dataset

n
FI BI SA RA

div time div time div time div time

200 929.70 581.30 887.22 510.90 1007.37 3909.30 770.87 0.00

400 1002.14 1064.10 901.68 731.20 1079.72 8651.60 790.45 0.00

600 1011.28 1590.70 878.09 704.60 1113.88 13243.70 789.28 0.00

Normal dataset

n
FI BI SA RA

div time div time div time div time

200 532.93 653.00 505.50 596.90 560.66 2842.10 385.09 0.00

400 616.14 1756.20 560.61 998.30 643.51 6581.20 399.05 0.00

600 654.42 3134.50 580.02 1203.20 691.41 12703.30 391.80 1.50

Clustered dataset

n
FI BI SA RA

div time div time div time div time

200 469.45 612.50 460.82 362.50 513.78 3639.10 436.35 0.00

400 493.88 1490.60 468.81 635.90 548.71 7196.80 433.01 0.00

600 504.98 1948.40 463.21 609.30 568.77 12115.70 435.33 0.00

Table 7: Interchange heuristics:
Average achieved diversity and execution time for k = 40 and n = 400.

Uniform dataset

D
FI BI SA RA

div time div time div time div time

2 598.53 554.70 552.92 495.40 759.99 5570.20 534.64 0.00

4 1002.14 1064.10 901.68 731.20 1079.72 8651.60 790.45 0.00

6 1270.88 1354.70 1193.36 1056.30 1310.23 6829.70 970.41 0.00

Normal dataset

D
FI BI SA RA

div time div time div time div time

2 408.05 1345.20 340.04 618.70 466.28 6775.10 260.94 0.00

4 616.14 1756.20 560.61 998.30 643.51 6581.20 399.05 0.00

6 749.90 1848.50 669.02 956.20 769.04 7988.90 497.90 0.00

Clustered dataset

D
FI BI SA RA

div time div time div time div time

2 366.55 901.40 341.25 528.30 423.41 7595.30 306.18 0.00

4 493.88 1490.60 468.81 635.90 548.71 7196.80 433.01 0.00

6 600.73 1804.80 577.17 690.70 654.49 8167.10 513.24 0.00

10

Technical Report TR-2009-05

Table 8: Neighborhood heuristics:
Average achieved diversity and execution time for n = 400 and D = 4.

Uniform dataset

k
FiN ClN FuN RA

div time div time div time div time

20 851.09 0.00 653.00 17.30 1109.17 20.40 784.18 0.00

30 860.61 0.00 725.06 21.80 1060.27 35.90 790.03 0.00

40 847.09 3.10 769.25 37.60 1004.71 43.60 790.45 0.00

50 789.18 4.70 557.88 126.50 991.50 96.90 787.94 0.00

60 798.96 3.10 547.02 168.80 1023.24 196.80 768.02 0.00

Normal dataset

k
FiN ClN FuN RA

div time div time div time div time

20 479.88 1.50 334.05 15.60 672.98 20.30 399.97 0.00

30 471.00 1.60 373.48 26.60 654.44 45.30 388.15 0.00

40 488.45 1.60 402.48 29.70 627.07 70.20 399.05 0.00

50 504.34 0.00 426.78 46.90 595.01 89.10 397.38 1.50

60 500.54 6.30 389.90 93.80 578.85 134.40 376.52 1.60

Clustered dataset

k
FiN ClN FuN RA

div time div time div time div time

20 404.05 1.60 259.87 23.30 557.74 18.70 444.38 0.00

30 421.75 4.70 333.08 39.20 534.02 37.60 436.45 0.00

40 426.45 11.00 386.67 56.20 514.60 51.60 433.01 0.00

50 444.78 15.60 395.30 81.20 496.27 59.40 437.58 1.60

60 370.97 21.70 280.39 182.80 492.90 142.10 432.73 0.00

4.1.3 Neighborhood Heuristics

Next, we evaluate the performance of the neighborhood heuristics. To determine the input radius r of
these heuristics (Equation 3), we use the following approach. We initially set r to be equal with the
average distance of k randomly selected items from the dataset. If a solution with k items cannot be
located by the heuristic, we reduce r by half and run the heuristic again. Tables 8 to 10 show the results
of our experiments. All three neighborhood heuristics are fast to compute (the initial value of r was
usually reduced two or three times by all heuristics). We observe that the FiN and ClN heuristics do not
manage to locate good solutions for the problem, since the improvement from the random case (RA) is
not very significant. FuN on the other hand locates good solutions, comparable to the ones located by
the greedy and interchange heuristics. Its execution time is lower than that of the interchange heuristics
and can be compared with that of GC, as long as n does not increase much. Generally, neighborhood
heuristics have the disadvantage that a good initial value of r must be estimated. In case this is possible,
out of the three variations, FuN is the best choice.

4.1.4 Clustering Heuristics

Interestingly, the k-medoids algorithm does not manage to locate good solutions for the problem. In
fact, the diversity of the selected items is almost always less than that of the random case (Tables 11 to
13). This, however, is not very surprising. For example, as k increases and more clusters are formed over
the same data, some medoids are placed near in space. What is most interesting to notice is that KM
is the only heuristic that achieves increasing diversity as k increases, in contrast to all other heuristics.
Therefore, KM may have some practical use in highly dense spaces.

4.1.5 Summary

As demonstrated in the previous sections, there is no category of heuristics that outperforms the others.
Instead, there are some heuristics (belonging to different categories) that can be considered better than
the rest.

11

Table 9: Neighborhood heuristics:
Average achieved diversity and execution time for k = 40 and D = 4.

Uniform dataset

n
FiN ClN FuN RA

div time div time div time div time

200 768.77 0.00 588.73 31.10 959.88 35.90 770.87 0.00

400 847.09 3.10 769.25 37.60 1004.71 43.60 790.45 0.00

600 883.04 4.70 718.42 73.40 1026.56 70.40 789.28 0.00

Normal dataset

n
FiN ClN FuN RA

div time div time div time div time

200 444.01 1.50 427.32 6.20 520.43 25.00 385.09 0.00

400 488.45 1.60 402.48 29.70 627.07 70.20 399.05 0.00

600 883.04 4.70 718.42 73.40 672.17 115.70 391.80 1.50

Clustered dataset

n
FiN ClN FuN RA

div time div time div time div time

200 388.93 7.80 305.95 40.60 466.24 21.90 436.35 0.00

400 426.45 11.00 386.67 56.20 514.60 51.60 433.01 0.00

600 425.66 9.20 375.99 84.30 546.68 89.10 435.33 0.00

Table 10: Neighborhood heuristics:
Average achieved diversity and execution time for k = 40 and n = 400.

Uniform dataset

D
FiN ClN FuN RA

div time div time div time div time

2 545.75 1.60 490.33 45.20 633.44 51.60 534.64 0.00

4 847.09 3.10 769.25 37.60 1004.71 43.60 790.45 0.00

6 1029.79 0.00 835.23 50.00 1286.69 67.20 970.41 0.00

Normal dataset

D
FiN ClN FuN RA

div time div time div time div time

2 325.74 1.50 248.78 48.40 427.57 82.80 260.94 0.00

4 488.45 1.60 402.48 29.70 627.07 70.20 399.05 0.00

6 582.02 1.50 430.21 46.80 757.04 84.30 497.90 0.00

Clustered dataset

D
FiN ClN FuN RA

div time div time div time div time

2 333.73 9.40 222.24 85.90 393.08 79.60 306.18 0.00

4 426.45 11.00 386.67 56.20 514.60 51.60 433.01 0.00

6 528.17 9.40 396.05 64.10 630.53 64.00 513.24 0.00

12

Table 11: k-medoids:
Average achieved diversity and execution time for n = 400 and D = 4.

Uniform dataset

k
KM RA

div time div time

20 727.87 9.40 784.18 0.00

30 761.53 12.60 790.03 0.00

40 780.54 15.50 790.45 0.00

50 769.03 21.80 787.94 0.00

60 780.24 37.50 768.02 0.00

Normal dataset

k
KM RA

div time div time

20 368.54 14.10 399.97 0.00

30 390.34 11.00 388.15 0.00

40 386.73 15.60 399.05 0.00

50 387.74 23.50 397.38 1.50

60 387.48 37.40 376.52 1.60

Clustered dataset

k
KM RA

div time div time

20 422.95 10.90 444.38 0.00

30 431.26 17.20 436.45 0.00

40 430.75 18.70 433.01 0.00

50 432.96 26.60 437.58 1.60

60 430.98 40.60 432.73 0.00

Table 12: k-medoids:
Average achieved diversity and execution time for k = 40 and D = 4.

Uniform dataset

n
KM RA

div time div time

200 748.81 17.30 770.87 0.00

400 780.54 15.50 790.45 0.00

600 768.18 23.40 789.28 0.00

Normal dataset

n
KM RA

div time div time

200 391.54 17.20 385.09 0.00

400 386.73 15.60 399.05 0.00

600 386.44 23.20 391.80 1.50

Clustered dataset

n
KM RA

div time div time

200 428.91 14.00 436.35 0.00

400 430.75 18.70 433.01 0.00

600 433.63 26.50 435.33 0.00

13

Technical Report TR-2009-05

Table 13: k-medoids:
Average achieved diversity and execution time for k = 40 and n = 400.

Uniform dataset

D
KM RA

div time div time

2 532.64 20.30 534.64 0.00

4 780.54 15.50 790.45 0.00

6 930.42 17.20 970.41 0.00

Normal dataset

D
KM RA

div time div time

2 264.77 21.90 260.94 0.00

4 386.73 15.60 399.05 0.00

6 483.88 20.40 497.90 0.00

Clustered dataset

D
KM RA

div time div time

2 310.32 17.20 306.18 0.00

4 430.75 18.70 433.01 0.00

6 511.99 17.20 513.24 0.00

Concerning greedy heuristics, Greedy Construction (GC) clearly outperforms the Greedy Deletion
alternatives (GD and SGD), not only in execution time, as expected due to its lower complexity, but also
in terms of the achieved diversity. It also scales much better as n increases.

As far as interchange heuristics are concerned, Simulated Annealing (SA) locates the best solutions.
This, however, is achieved at the cost of a very high execution time. The First Interchange (FI) and
Best Interchange (BI) heuristics also locate good solutions at much smaller cost. This, along with the
fact that the performance of SA depends on a large number of input parameters that need to be tuned,
leads us to the conclusion that FI and BI are better choices. Between the two, FI locates more diverse
solutions but BI scales better, especially as n increases. Compared to GC from the previous category,
GC locates solutions with comparable diversity to SA at less time than all three interchange heuristics.

Out of the three neighborhood heuristics, Furthest Item Outside the Neighborhood (FuN) locates
the best solutions. Its performance lies somewhere between that of GC and FI/BI, while its execution
time is quite low. Closest Item Outside the Neighborhood (ClN) does not locate good solutions to the
problem. The reason for this is that its performance heavily depends on the choice of r. In fact, the
solutions located by ClN are expected to have a diversity close to the value of r. First Item Outside the
Neighborhood (FiN) performs much better than ClN but worse than FuN. However, its execution time
is very low, something that gives to this heuristic some practical value.

Finally, k-medoids (KM) does not manage to locate good solutions for the problem. It also behaves
in a different way than the other heuristics when k increases.

4.2 Real Data

We also evaluate the heuristics of Section 3 using a real automobile dataset from the UCI Machine
Learning Repository [1]. The dataset contains information about various cars. Each car is associated
with a number of categorical attributes (e.g. brand, body style, fuel system) as well as a number of

continuous attributes (e.g. length, horsepower, price). We use p
(j)
i to denote the value of jth attribute

for the ith item. Let Dcon be the set of contimuous attributes of the dataset and Dcat be the set of
categorical ones. We define the distance d between two items of this dataset P as:

d(pi, pj) =
1

|Dcon| + |Dcat|

∑

x∈Dcon

|p
(x)
i − p

(x)
j |

maxpa,pb∈P |p
(x)
a − p

(x)
b |

+
∑

y∈Dcat

δy
i,j

 ,

where δy
i,j =

{

0, if p
(y)
i = p

(y)
j

1, otherwise
(4)

14

Technical Report TR-2009-05

In Table 14 we show results for all the examined heuristics for different values of k when choosing
diverse items from the whole dataset (n = 160, Dcon = 16, Dcat = 10). We observe similar behavior
as in the case of synthetic data. Out of the three greedy heuristics, GC performs better, both in terms
of achieved diversity and time. The achieved diversity of GC is 10% higher than in the random case on
average. For the interchange and neighborhood families, the best diversity is achieved by SA and FuN
respectively. FuN, especially, exhibits low execution time as well, even lower than GC for smaller values
of k. For small values of k, FI and BI also exhibit good behavour but GC scales better with time. As far
as KM is concerned, once again, it does not locate better solutions than the random case (RA).

5 Related Work

Although diversity has attracted considerable attention recently, it is not a new concept. [3] proposed a
linear combination of diversity along with relevance for the enhancement of user satisfaction by informa-
tion retriecal systems back in 1998, similar to the approaches more recently followed in [18, 6]. In [18],
a method for topic diversification is proposed for recommendations based on the intra-list similarity, a
permutation-insensitive metric introduced to assess the topical diversity of a given recommendation list.
The proposed algorithm also considers the relevance of the candidate items when creating recommen-
dation lists. [6] applies the concept of ranking based on both relevance and diversity in the context of
publish/subscribe systems. The notion of diversity is also explored in database systems. Motivated by
the fact that some database relation attributes are more important to the user, [14] proposes a method
where recommendation lists consisting of database tuples are diversified by first varying the values of
higher priority attributes before varying the values of lower priority ones. When the tuples are associated
with scores, a scored variation of the method picks more relevant to the query tuples first. [12] tackles
the problem of automatically extracting a set of features from the items of interest that is capable of
differentiating the items from each other. [16] formulates the k-diversity problem as an optimization
problem. Given the n × n distance matrix of the candidate items, the goal is to find a binary vector of
size n that represents which items belong to the most diverse subset of size k. This is a binary problem
which has to be relaxed to a real-valued problem to be solved. Recently, [9] defined a set of natural,
intuitive axioms that a diversification system is expected to satisfy. The authors prove that all axioms
cannot hold simultaneously and show which of them are satisfied by three main diversification methods.

Besides using content diversity, there is also related work based on different definitions of diversity.
[15] proposes computing diversity based on the notion of explanations. The explanation of a given item
for a user is the set of similar items the user has rated in the past. Distances between two items are
measured based on their corresponding explanations. [11] proposes algorithms to capture diverse concepts
in text documents, aiming at retrieving diverse sentences that can be used as snippets from search engines.
These algorithms are based on coverage, i.e. how many terms of the document appear in the selected
sentences, and orthogonality, i.e. how much the terms appearing in such a sentence differ from those
appearing in the rest. Coverage is also considered in [2], which aims at locating diverse documents to
answer a user query. Given a taxonomy of topics and a probability distribution for topics relevant to
the query, the k-diversity problem is formulated as the location of a set of documents with cardinality
k that maximizes the probability of as many topics as possible being represented by that set. In [5],
a distinction is made between novelty, i.e. avoiding redundancy, and diversity, i.e. resolving ambiguity.
Both user queries and documents are broken down into small pieces of information, called nuggets. Then,
diverse documents are retrieved based on a probabilistic model of nuggets being contained in the various
queries and documents.

6 Conclusions

In this paper, we employed various heuristics used in the literature for tackling the k-diversity problem and
applied them on both synthetic and real datasets in order to compare them and provide a comprehensive
experimental evaluation for their performance. We saw that, while the k-diversity problem is NP-hard,
a number of heuristics exist that can locate good solutions at reasonable time.

Our future plans include combining diversity with other criteria, such as relevance, for the final
ranking of results, especially in the case of the publish/subscribe paradigm, where low execution times
are critical, due to the on-line nature of those systems. We are also interested in finding other ways besides
the heuristics presented here to achieve diversity. For example, employing some spatial tree structure,

15

Table 14: Average achieved diversity and execution time for the Automobile dataset.

Automobile dataset

k

GC GC GC
GD SGD FI BI SA FiN ClN FuN KM RA

(h = n) (h = n/2) (h = 2)

div time div time div time div time div time div time div time div time div time div time div time div time div time

5 0.51 34.30 0.51 9.30 0.48 1.50 0.50 278.30 0.44 268.90 0.51 7.80 0.50 12.60 0.51 220.40 0.38 0.00 0.35 1.60 0.48 1.50 0.29 4.60 0.28 0.00

10 0.46 34.60 0.46 6.20 0.45 3.10 0.44 278.10 0.41 267.20 0.43 26.70 0.40 20.30 0.46 1148.40 0.35 0.00 0.27 3.10 0.45 4.70 0.30 11.00 0.29 0.00

20 0.43 46.70 0.43 21.80 0.42 6.30 0.40 281.10 0.37 270.30 0.38 70.40 0.35 71.90 0.42 3243.90 0.35 1.60 0.26 15.60 0.41 23.20 0.30 14.10 0.29 0.00

30 0.41 59.40 0.41 31.40 0.41 24.90 0.38 281.10 0.36 267.30 0.36 143.80 0.34 272.00 0.41 7281.30 0.34 1.60 0.29 18.80 0.38 28.20 0.30 31.30 0.30 0.00

40 0.40 76.40 0.40 48.40 0.40 35.80 0.36 276.70 0.34 267.20 0.34 226.30 0.33 425.00 0.40 12114.20 0.31 12.50 0.26 45.10 0.37 71.90 0.30 123.40 0.30 0.00

50 0.39 71.90 0.39 71.90 0.39 53.30 0.35 269.00 0.34 259.30 0.33 389.10 0.33 614.00 0.39 17201.60 0.30 15.60 0.27 65.70 0.35 84.20 0.29 265.00 0.29 0.00

60 0.38 86.10 0.38 86.10 0.38 79.80 0.34 268.70 0.33 253.10 0.33 689.00 0.33 843.90 0.38 18322.00 0.31 17.20 0.26 101.30 0.33 93.70 0.29 1750.00 0.30 0.00

16

Technical Report TR-2009-05

such as the R-tree [13], for indexing candidate items and retrieving diverse items by traversing the tree.
Such structures could be used in conjunction with neighborhood heuristics.

References

[1] Automobile Dataset. http://archive.ics.uci.edu/ml/datasets/Automobile.

[2] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In WSDM, pages
5–14, 2009.

[3] J. G. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for reordering documents
and producing summaries. In SIGIR, pages 335–336, 1998.

[4] H. Chen and D. R. Karger. Less is more: probabilistic models for retrieving fewer relevant documents.
In SIGIR, pages 429–436, 2006.

[5] C. L. A. Clarke, M. Kolla, G. V. Cormack, O. Vechtomova, A. Ashkan, S. Büttcher, and I. MacK-
innon. Novelty and diversity in information retrieval evaluation. In SIGIR, pages 659–666, 2008.

[6] M. Drosou, K. Stefanidis, and E. Pitoura. Preference-aware publish/subscribe delivery with diversity.
In DEBS, pages 1–12, 2009.

[7] E. Erkut. The discrete p-dispersion problem. European Journal of Operational Research, 46(1):48 –
60, 1990.

[8] E. Erkut, Y. Ülküsal, and O. Yeniçerioglu. A comparison of p-dispersion heuristics. Computers &
OR, 21(10):1103–1113, 1994.

[9] S. Gollapudi and A. Sharma. An axiomatic approach for result diversification. In WWW, pages
381–390, 2009.

[10] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005.

[11] K. Liu, E. Terzi, and T. Grandison. Highlighting diverse concepts in documents. In SDM, pages
545–556, 2009.

[12] Z. Liu, P. Sun, and Y. Chen. Structured search result differentiation. PVLDB, 2(1), 2009.

[13] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis. R-Trees: Theory and
Applications (Advanced Information and Knowledge Processing). Springer, September 2005.

[14] E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. Amer-Yahia. Efficient computation
of diverse query results. In ICDE, pages 228–236, 2008.

[15] C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia. It takes variety to make a world: diversification
in recommender systems. In EDBT, pages 368–378, 2009.

[16] M. Zhang and N. Hurley. Avoiding monotony: improving the diversity of recommendation lists. In
RecSys, pages 123–130, 2008.

[17] Y. Zhang, J. P. Callan, and T. P. Minka. Novelty and redundancy detection in adaptive filtering. In
SIGIR, 2002.

[18] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through
topic diversification. In WWW, pages 22–32, 2005.

17

