
DoS: An Efficient Scheme for the Diversification of Multiple
Search Results

Hina A. Khan
School of ITEE

The University of Queensland
Queensland, Australia

h.khan3@uq.edu.au

Marina Drosou
∗

Computer Science Dept.
University of Ioannina

Ioannina, Greece
mdrosou@cs.uoi.gr

Mohamed A. Sharaf
School of ITEE

The University of Queensland
Queensland, Australia

m.sharaf@uq.edu.au

ABSTRACT
Data diversification provides users with a concise and mean-
ingful view of the results returned by search queries. In addi-
tion to taming the information overload, data diversification
also provides the benefits of reducing data communication
costs as well as enabling data exploration. The explosion of
big data emphasizes the need for data diversification in mod-
ern data management platforms, especially for applications
based on web, scientific, and business databases. Achiev-
ing effective diversification, however, is rather a challenging
task due to the inherent high processing costs of current data
diversification techniques. This challenge is further accentu-
ated in a multi-user environment, in which multiple search
queries are to be executed and diversified concurrently. In
this paper, we propose the DoS scheme, which addresses the
problem of scalable diversification of multiple search results.
Our experimental evaluation shows the scalability exhibited
by DoS under various workload settings, and the significant
benefits it provides compared to sequential methods.

1. INTRODUCTION
Users interact with a number of applications by submitting
queries to satisfy their information needs. Today, the ex-
plosion of the available data in many web, scientific and
business domains dictates the need for the development of
effective methods to assist users in quickly locating results
of high interest. Towards this, search result diversification
is one such method that has been widely employed to assist
users in that direction [3]. In particular, search result diver-
sification is to select an interesting representative subset of
the available results.

Realizing an effective diversification system, however, is a
rather challenging task. This is primarily due to the in-
herent high processing costs of current data diversification

∗Work done while author was visiting the School of ITEE
at the University of Queensland.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SSDBM ’13, July 29 - 31 2013, Baltimore, MD, USA
Copyright 2013 ACM 978-1-4503-1921-8/13/07 $15.00

algorithms. This challenge is further complicated in a multi-
user environment, in which multiple search queries are to
be executed and diversified concurrently. For instance, in
the Sloan Digital Sky Survey (SDSS) science database1, the
SDSS Catalog Archive Server (CAS) employs a multi-server,
multi-queue batch job submission and tracking system [7].
From a system perspective, this leads to the simultaneous
execution of a large number of queries that are essentially
of exploratory nature [2]. Such an environment highlights
the need for a scalable diversification system that is able to
effectively facilitate data exploration tasks.

In this paper, we propose the DoS (Diversification of Mul-
tiple Search Results) scheme that addresses the problem of
efficiently diversifying the results of multiple queries. To-
wards this goal, DoS leverages the natural overlap in search
results in conjunction with the concurrent diversification of
those overlapping results. This enables DoS to provide the
same quality of diversification as that of the sequential meth-
ods, while significantly reducing the processing costs.

Our experimental evaluation on both real and synthetic data
sets shows the scalability exhibited by DoS under various
workload settings, and the significant benefits it provides
compared to sequential methods.

Roadmap: We define search result diversification in Sec-
tion 2. We introduce multiple search result diversification
and our DoS scheme in section 3. The evaluation results are
reported in Section 4, and we conclude in Section 5.

2. BACKGROUND AND RELATED WORK
In this work, we consider queries that retrieve a number
of results, or items, from the database. Database results
can be generally viewed as a set of attribute values repre-
sented as data points in a multi-dimensional data space. In
such systems, a query is first processed against the stored
database, and the generated results are then further pro-
cessed in-memory through a diversification system.

Let X = {x1, . . . , xm} be a set of results for some user query.
In general, the goal of result diversification is to select a
subset S∗ of X with |S∗| = k, k ≤ m, such that the diversity
of the results in S∗ is maximized.

In this work, we primarily focus on the widely used content-
based definition of diversity. Content diversity is an instance

1http://www.sdss.org

1

Algorithm 1 Greedy.

Input: A set of results X, an integer k.
Output: A set S with the k most diverse results in X.

1: xi ← random result ∈ X
2: S ← {xi}
3: while |S| < k do

4: xi ← argmaxxi∈X
1

|S|

∑
xj∈S

d(xi, xj))

5: S ← S ∪ {xi}
6: end while

7: return S

of the p-dispersion problem [4], whose objective is to maxi-
mize the overall dissimilarity within a set of selected objects.
In particular, given a metric d that measures the distance
between two results, e.g., the Euclidean distance among two
data points, the diversity of a set S is measured by a diver-
sity function f(S, d) that captures the dissimilarity between
the results in S. To that end, a number of different diversity
functions have been employed in the literature, among which
previous research has mostly focused on measuring diversity
based on either the average or the minimum of the pairwise
distances between results [3, 9]. We focus on the first of
those variants (i.e., average), as it adopts a more balanced
view that considers all the results in S, defined as:

f(S, d) =
1

k(k − 1)

k∑

i=1

k∑

j>i

d(xi, xj)

Definition 1. Let X be the set of results that satisfy a
user query and k be a positive integer such that k ≤ |X|.
Let also d be a distance metric and f a diversity function.
Then, Search Result Diversification is defined as selecting a
subset S∗ of X, such that:

S∗ = argmax
S⊆X
|S|=k

f(S, d)

In general, search result diversification has been shown to
be NP-hard (e.g., [4]), which essentially renders the loca-
tion of an optimally diverse set S∗ impractical, especially
for online search engines. Meanwhile, the need for low-cost
(i.e., efficient) and high-accuracy (i.e., effective) solutions to
the diversification problem has motivated a large body of
research and led to the development of different practical
heuristics (e.g., [9, 1]) for locating a near-optimal solution
S to approximate S∗. Among those heuristics, a commonly
used simple Greedy approach has been proven to provide a
1/2-approximation of the optimal solution ([8]).

The Greedy heuristic initializes the diversified set S by first
selecting a random result in X. Then, it proceeds with a
number of iterations, until k results have been selected. At
each iteration, the result with the maximum sum of pairwise
distance from the already selected results is added to the di-
verse set S. Clearly, the complexity of this Greedy heuristic
in terms of computed pairwise distances is O(k2|X|), which
makes it a very reasonable choice in interactive online search
environments. (see Algorithm 1.)

3. DIVERSIFICATION OF MULTIPLE

SEARCH RESULTS (DoS)
In environments where multiple queries are submitted by
a number of different users, we define the diversification of
multiple search results as follows:

Definition 2. Let Q = {Q1, Q2, . . . , Qn} be a set of n
user queries. Let Xi be the set of results that satisfy Qi

and ki be a positive integer with ki ≤ |Xi|, 1 ≤ i ≤ n. Let
also d be a distance metric and f a diversity function. Then,
Multiple Search Result Diversification is defined as selecting
a set S∗ of n subsets {S∗

1 , S
∗
2 , . . . , S

∗
n}, such that:

S∗
i = argmax

Si⊆Xi
|Si|=ki

f(Si, d)

According to Definition 2, a diversification system should
ideally locate an optimal set of diverse subsets S∗ for the in-
put queries. However, due to the inherit NP-hardness of the
diversification problem, this is not feasible. The success of
any diversification system can be easily measured in terms
of two parameters: total value of diversity across the set of
diversified subsets and total data processing cost incurred to
create the set of diversified subsets. In particular, our goal
in this work is to develop diversification scheme that is able
to diversify results efficiently with the quality of diversifica-
tion as good as that provided by greedy heuristic. Next, we
present two methods for the diversification of multiple search
results namely, DoS-Näıve (Section 3.1), and DoS-Overlap
(Section 3.2).

3.1 DoS-Naïve
A näıve solution to simultaneously diversifying multiple search
results would be to retrieve the search results Xi for each
query Qi ∈ Q and then apply the Greedy heuristic (i.e.,
Algorithm 1) on each Xi separately to detect its respective
diverse subset Si. We call this method “DoS-Näıve”.

Under this baseline approach, each search result is diversified
independently and, thus, the complexity of DoS-Näıve is
simply computed as: O(k2|X1|) + . . . + O(k2|Xn|). Hence,
the total processing cost of DoS-Näıve is:

CDoS-Näıve(S) = O(nk2 max
i
|Xi|)

DoS-Näıve treats each user query independently, hence its
complexity essentially increases linearly with the increase in
the number of result sets to be diversified (i.e., n). In many
real-life applications, however, it is often the case for many
queries to have overlapping result sets.

Example 1. Consider two queries submitted simultane-
ously to the SDSS database. The first query, Q1, retrieves
all galaxies that are brighter than magnitude 22, given that
local extinction is larger than 0.75. The second query, Q2,
retrieves all galaxies that are brighter than magnitude 18,
given that local extinction is larger than 0.85. Both queries
will retrieve all available results concerning galaxies brighter
than magnitude 22 where the local extinction is greater than
0.85. Depending on the available data, there may be signif-
icant data overlap between the two result sets X1 and X2.
This data overlap might potentially translate into further
overlap between the two diverse subsets S1, S2.

2

X2

X1

���∩���

Figure 1: Result and diverse sets for two queries. Diverse
items are shown in bold.

Our DoS scheme, described next, attempts to leverage this
overlap among the result sets of the various queries for the
efficient evaluation of their respective diverse subsets.

3.2 DoS-Overlap
In comparison to the Näıve approach, instead of process-
ing the common (or shared) portions of the results multiple
times, DoS-Overlap processes those portions only once lead-
ing to an overall amortized processing cost. In principle,
DoS-Overlap can be perceived as an instance of the partial
aggregation technique typically used in multiple query opti-
mization (e.g., [6, 5]). Result diversification, however, intro-
duces further complexities due to the dependency between
each result set (i.e., Xi) and its respective diverse set (i.e.,
Si) during the computation of distance functions. In partic-
ular, result diversification is an iterative process, in which
a raw result set Xi is continuously processed in conjunction
with its respective partial diverse set Si until the final di-
versity goal is achieved. Handling such a dependency, while
at the same time exploiting the opportunities of shared data
processing, is the principle feature underlying DoS-Overlap.

DoS-Overlap (as shown in Algorithm 2) is based on the DoS-
Näıve algorithm presented in Section 3.1. In DoS-Overlap,
however, all the search results are processed concurrently
and in each iteration, one item of Xi is selected for inclusion
in Si, 1 ≤ i ≤ n. Towards leveraging the overlap in search
results, we make the following two observations:

1. the distance function d between any item xj ∈ Xi and
the items in Si is computed independently of any other
items in Xi, and

2. the distance function d between any item xj ∈ Xi and
the items in Si can be evaluated in parts.

To illustrate the second observation above, consider the fol-
lowing example:

Example 2. Assume two queries Q1 and Q2 and their
respective result sets X1 and X2. Further, assume that in
any arbitrary iteration of DoS-Overlap, S1 and S2 are the
current diverse sets of X1 and X2, respectively. In such
iteration, S1 and S2 might have shared results (as shown in
Figure 1). In that case, S1 can be clearly expressed as the
difference between S1 and S2 union their intersection. That
is, S1 = ((S1\S2)∪(S1∩S2)). S2 can be expressed similarly.

In the example above, for a single item xj ∈ X1, the distance
function d(xj , S1) can be computed as:

d(xj , S1) = d(xj , S1\S2) + d(xj , S1 ∩ S2)

Algorithm 2 DoS-Overlap for N Queries.

Input: Result sets (X1, X2...Xn), an integer k.
Output: S1, S2...Sn with the k most diverse items of (X1,

X2...Xn) respectively.

1: X ← X1 ∪ X2 . . .∪ Xn

2: for all Queries do
3: qi.S ← random x where x ∈ Xi

4: end for

5: while |q.S| < k do

6: for all xi ∈ X do

7: Q← all queries sharing xi

8: S′ ← q1.S ∩ q2.S . . .∩ q|Q|.S
9: dx ← d(xi,S

′)
10: for all qi ∈ Q do

11: ds ← dx + d(xi, q.S\S
′)

12: if (ds > d(q.candidate, q.S) then
13: q.candidate← xi

14: end if

15: end for

16: end for

17: for all Queries do
18: qi.S ← qi.S ∪ {qi.candidate}
19: end for

20: end while

21: return q1.S, q2.S, . . . , qn.S

Similarly, for a single item xj ∈ X2, the distance function
d(xj , S2) can be computed as:

d(xj , S2) = d(xj , S2\S1) + d(xj , S1 ∩ S2)

Hence we can compute d(xj , S1 ∩ S2) only once for every
item xj ∈ X1 ∩X2 when computing d(xj , S1) and d(xj , S2).

Clearly, the calculation of d(xj , S1) outlined above is an ex-
ample of applying partial aggregation, in which the final
value of the distance is easily assembled from its partial
values. This is applicable over all distributive and alge-
braic distance functions that are typically used in measuring
(dis)similarity, such as all variants of Lp norm including the
Euclidean distance. The combination of the first and second
observation listed above allows DoS-Overlap to exploit the
data overlap exhibited by the queries in Example 2 along
two orthogonal dimensions:

1. Overlap in Result Sets: Process the sets X1\X2,
X2\X1 and X1∩X2 separately at each iteration of the
algorithm, and

2. Overlap in Diverse Sets: Process the set S1 ∩ S2

only once at each iteration of the algorithm.

Hence, the processing cost C(S1, S2) incurred by DoS-Overlap
in processing the two result sets X1 and X2 in Example 2
can be expressed as:

C(S1, S2) = CDoS-Näıve(S1, S2)−O(k|S1 ∩ S2||X1 ∩X2|)

Compared to DoS-Näıve, DoS-Overlap produces exactly the
same set of diverse sets (S). During each iteration, however,
DoS-Overlap clearly requires less operations for the compu-
tation and comparison of distance functions. A fundamental
component in the design of DoS-Overlap is the efficient de-
tection of overlapping results, i.e., |X1∩X2|. To achieve this

3

�

� �� �� �� �� ��� ���

�
�
�
��
�	

�
�
��

�
�
�	
�
�
�
��

��
�
	�
�

���

���

���

���

���

���

���

	
�������

	
����������������
���������

	
��������������� ������������

	
����������������� �������

(a) Impact of varying k.

�

� ��� ��� ��� ��� ���� ����

�
�
�
��
�	

�
�
��

��
�
	
�
�
�
��

��
�
	�
�

���

���

���

���

���

���

���

	
�������

	
����������������
���������

	
��������������� ������������

	
����������������� �������

(b) Impact of varying number
of queries.

�����

� �� �� �� �� ��� ���

�
�
�
	

��
�

�

��	
��

��
��

�	
��

���
��

��	
��

	��
��

	�	
��

��������

������
����

(c) Impact of varying overlap.

Figure 2: DoS-Overlap vs. DoS-Näıve

goal, we leverage hashing schemes. In particular, all results
are hashed into their corresponding buckets using a multi-
dimensional hash function. Hence, instead of comparing all
pairs of results, only the results within the same bucket are
compared to find duplicates. Clearly the number of com-
parisons required depends on many factors including hash
function and bucket size. However, the reductions provided
by DoS-Overlap during locating the diverse sets clearly out-
weighs that overhead as shown in the next section.

4. EXPERIMENTAL EVALUATION
We perform a number of experiments to evaluate the effi-
ciency of our DoS scheme. We compared the performance of
our DoS-Overlap algorithm, presented in Section 3.2, against
the baseline approach of using the DoS-Näıve algorithm for
multiple search result diversification. The performance of
both algorithms is measured based on cost C(S), that is
measured as the sum of operations performed to locate set
S of n subsets {S1, S2, . . . , Sn}, where each operation repre-
sents one distance computation and data comparison task.

We use normalized synthetic and real data sets. Our syn-
thetic data sets consist of points in the 2-dimensional Eu-
clidean space. Points are either uniformly distributed (“Uni-
form”) or form clusters around a random number of points
(“Clustered”). Our real data set “Cities” contains points
representing the locations of 5922 towns in a 2-dimensional
space (previously used in [3]). We generate a random set of
range queries. For each experiment, the number of queries
n is in the range [20–1000]. Each query is associated with
the size of diverse set k, which takes values in the range
[10–100]. Further, we introduce a simulation parameter o
to tune the amount of overlap between search results of any
two range queries, where o varies between 0% to 100%.

Impact of Diverse Set Size: Next, we report on the im-
pact of the required number of diverse results k. Figure 2(a)
shows the average number of operations performed by DoS-

Näıve and DoS-Overlap algorithm for different values of k,
over different data sets, where n is equal to 20. The y-axis
is normalized to the corresponding values of DoS-Näıve. We
see that, DoS-Overlap is performing up to 14% less opera-
tions when compared to DoS-Näıve. The cost savings are
larger for larger values of k. The reason for this is that,
for larger values of k, even a small percentage of overlap
between result sets will provide more shared diverse results.

Impact of Number of Queries: Figure 2(b) compares the
performance of DoS-Näıve and DoS-Overlap when varying
the number of concurrent queries n, over different data sets.
Here value of k is 100. The y-axis is again normalized to the
corresponding values of DoS-Näıve. Figure 2(b) shows that
for all the data sets, cost savings of DoS-Overlap increase
with n, since, in the presence of more queries, more overlap-
ping regions can be exploited by our DoS-Overlap. Number
of operations performed by DoS-Overlap are almost 50% less
as n approaches 1000.

Impact of Query Overlap: To study the impact of the
overlap between queries, we first generate one query Q1 for
our “Uniform” dataset. Then, we generate an identical sec-
ond query Q2 and we “slide” Q2 over Q1 to control the
overlapping area between the result sets of the queries. As
we see in Figure 2(c), the number of operations performed
by DoS-Näıve remain almost constant, however, the cost of
DoS-Overlap decreases as the amount of overlap increases.

5. CONCLUSIONS
In this paper, we focused on the NP-hard problem of di-
versifying the results of multiple queries and proposed DoS,
an efficient scheme for the diversification of multiple search
results. DoS exploits the natural overlap among the result
sets of the various queries in conjunction with the concurrent
diversification of those overlapping results. DoS provides so-
lutions of quality equal to that of sequential methods, while
significantly reducing processing costs.

Acknowledgment. We would like to thank the anonymous
reviewers as well as Abdullah Albarrak for their valuable
comments and suggestions. This work is partially supported
by Australian Research Council grant DP110102777.

6. REFERENCES
[1] A. Angel and N. Koudas. Efficient diversity-aware search. In

SIGMOD Conference, 2011.
[2] U. Çetintemel et al. Query steering for interactive data

exploration. In CIDR, 2013.
[3] M. Drosou and E. Pitoura. Search result diversification.

SIGMOD Record, 39(1):41–47, 2010.
[4] E. Erkut et al. A comparison of p-dispersion heuristics.

Computers & OR, 21(10):1103–1113, 1994.
[5] S. Guirguis et al. Optimized processing of multiple aggregate

continuous queries. In CIKM, 2011.
[6] A. Gupta et al. Aggregate-query processing in data

warehousing environments. In VLDB, 1995.
[7] W. O’Mullane et al. Batch is back: Casjobs, serving multi-tb

data on the web. In ICWS, 2005.
[8] S. S. Ravi et al. Facility dispersion problems: Heuristics and

special cases. In WADS, 1991.
[9] M. R. Vieira et al. On query result diversification. In ICDE,

2011.

4

