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Abstract 
Peer-to-peer systems are large-scale computer networks through which computers share 
resources and exchange data. A common way to describe such data is the XML language. 
Summarizing data lowers the time required to search for specific data items. One 
summarization option is the use of Bloom Histograms. Those Bloom Histograms can also be 
merged and exchanged among the participating computers and used to route queries among 
them. 
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1. Introduction 
Peer-to-peer (P2P) systems are computer networks formed by large numbers of 
computers, called nodes. Each node is connected with a small fraction of other nodes 
which we call its neighbors. Through these neighbors it can reach many other nodes 
in the network. P2P systems utilize the computer power of all those nodes to complete 
various tasks. The participating nodes are usually simple personal computers which 
do not have significant computational power on their own. However, through the 
sharing of resources among the nodes of the P2P system, they are able to speed up the 
time required to complete their tasks. P2P systems are also widely used for data 
exchange and this is one of the main reasons for their growth. Since the participating 
nodes can vary significantly in terms of the operating system they use and the way 
they interact with other computers, it is essential to find a universal way to describe 
the data they exchange. A widely spread solution for this problem is the use of the 
XML language (eXtensible Mark-up Language) [XML]. 

The problem we focus in this work is how to efficiently search for specific XML data 
in a P2P system. The volume of the data contained in all the nodes of such a system 
can be very large and therefore searching all of it is not practical. We instead turn our 
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attention to data summarization techniques since searches in summarized collections 
of data can be performed much faster. 

To summarize the XML data that each node makes available to the network we use 
Bloom Histograms. A Bloom Histogram [Wang et al. (2004)] is a data structure that 
can summarize data and also give an estimation of the frequency of each data item (by 
the term frequency we mean the number of times that each data item is found in the 
initial data collection). XML data form tree structures. Bloom Histograms group paths 
of such trees together according to their frequency. More specifically, each path is 
placed in one group (or bucket) in such a way so that paths that are placed in the same 
bucket have similar frequencies. The paths of each group are combined and stored as 
a single bloom filter [Bloom, B. H. (1970)]. Thus, we end up with a 2-dimentional 
matrix H(p, v) where p is a bloom filter and v is an estimation of the frequencies of 
the paths stored in p. Algorithms for the estimation of the frequency of a specific path 
and for the construction of minimal-error Bloom Histograms have been proposed in 
the past. 

The estimation error of the frequency returned from a Bloom Histogram for a specific 
path depends on two factors: the number of buckets of the histogram and the size of 
its bloom filters. We experiment with these two factors and find out that the 
estimation error can be decreased by increasing the size of the bloom filters and/or by 
increasing the number of buckets. However, since the available size for the 
histograms is typically limited we cannot increase both of those sizes simultaneously. 
According to our experiments, there is a best combination of those two parameters for 
each specific data collection which depends on the number of XML paths it contains 
and the number of their distinct frequencies. Bloom Histograms however are 
generally small in size. 

We also consider merging Bloom Histograms together. In this way we can combine 
pre-existing Bloom Histograms which reside in different nodes of a P2P system in a 
new, single Bloom Histogram. Merged Bloom Histograms can be used to combine 
information about distinctive data collections. We propose two merging algorithms: 
Frequency-merge and Filter-merge. The frequency-merge algorithm combines pairs 
of buckets of the pre-existing histograms based on the frequencies of those buckets 
while the filter-merge algorithm uses the similarity of the corresponding bloom filters 
instead. We experiment with merged histograms and observe that while the 
estimation error is larger than that of a regular (minimal-error) Bloom Histogram (as 
expected) it is comparable to it. Frequency-merge performs better when the size of 
the bloom filters increases. When that size is small, filter-merge out-performs 
frequency-merge. 

The main advantage of merged Bloom Histograms is that all that is required for their 
construction are the two pre-existing histograms and not the whole data collections 
from which those two emerged. For this reason they can be used in unstructured P2P 
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systems as routing indices since their small size and ease of construction leads to 
efficient communication between the nodes of the network. 

The rest of this paper is organized as follows. In Section 2 we present some 
background information on Bloom Histograms, their properties and Routing Indices. 
In Section 3 we discuss the applications of Bloom Histograms in P2P systems and 
present our merging algorithms. In Section 4 we present our experimental evaluation 
of regular and merged Bloom Histograms and discuss our findings. Finally, Section 5 
concludes this paper. 

2. Background Material 

2.1 Bloom Histograms 
A Bloom Filter [Bloom, B. H. (1970)] is a data structure that can represent a set of 
items S = {s1, s2, …, sn} via the use of a bit vector of length m and k hash functions h1, 
h2, …, hk. The bits of the bit vector can be set either to 0 or 1 and all the hash 
functions hash their input uniformly in [1, m]. Initially, all the bits of the filter are set 
to 0. To add an item s in the filter we apply every one of the hash functions on it and 
then set the bit at position hi(s) to 1, 1 ≤ i ≤ k. We also say that an item r matches a 
specific bloom filter if after applying every one of the hash functions on it, all the bits 
at positions hi(r), 1 ≤ i ≤ k, have a value equal to 1. It is possible for an item r to 
match a bloom filter even if it does not belong in the original set S from which the 
bloom filter has been created. However, if an item r does not match the bloom filter, 
it is not possible for it to belong in S. It has been proven [Bloom, B. H. (1970)] that 
the probability of such false positives is equal to: 

( )( ) ( )1     1     1           1    kn
m

k kkn
m eε −= − − ≈ −

  (1) 

where n is the number of items in S. 

Bloom Histograms were introduced by Wang et al in [Wang et al. (2004)]. They are 
data structures that can be used for data summarization and selectivity estimation. We 
define as frequency of an XML path the number of times it can be found in a data 
collection. For a given data collection D, a Bloom Histogram is a 2-dimentional 
matrix H(p, v) where p is a bloom filter representing a group of XML paths which can 
be found in D and v is a representative value of the frequencies of the paths in p. 
Thus, given a path q∈D, we can find a row i in H such that q∈Hi.p. We can then say 
that q’s frequency is equal to Hi.v. 

For example, assuming we would like to insert the data shown in Figure 1(a) into a 
Bloom Histogram, we’d end up with a histogram like the one shown in Figure 1(b) 
(where we denote as BF(S) the bloom filter created from S). 
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As discussed in [Wang et al. (2004)], the estimation error of a Bloom Histogram for a 
specific XML path depends on two factors: First, the fact that the value Hi.v returned 
is just a representative value for the whole group of paths and not just the path in 
question and second, the fact that the use of bloom filters adds an additional error. It 
can be proved though that the estimation error is bounded. 

Wang et al also proposed a construction algorithm that, given a specific number of 
buckets, can produce a minimal-error Bloom Histogram. 

Path Frequency

/a 10 

/a/b 10 

/a/f/c 99 

/a/e 101 

/a/z 995 

/a/s 1000 

/a/o 1005 

Figure 1(a). Data collection 

Bloom Filter Frequency 

BF(/a, /a/b) 10 

BF(/a/f/c, /a/e) 100 

BF(/a/z, /a/s, /a/o) 1000 

Figure 1(b). Bloom Histogram 

2.2 Routing Indices 
Routing Indices were introduced by Crespo and Garcia-Molina in [Crespo, A., 
Garcia-Molina, H. (2002)]. They provide the necessary means for a P2P node to 
choose the set of neighbors to which it should forward a specific query. For example, 
in Figure 2, if a query about a data item stored in C reaches A, then A only needs to 
forward the query to B and not E or G. There are many data structures that can be 
used as Routing Indices. What they all have in common is that they can summarize 
the data that is accessible through every outgoing link of a node. To achieve this, 
every node maintains two indices: A local index to summarize the data that is stored 
in the node itself and a routing index to summarize the data that is stored in parts of 
the network it can reach through its neighbors.  

3. Bloom Histograms in P2P 

3.1 Merged Bloom Histograms 
Let BH1(p1, v1) and BH2(p2, v2) be two Bloom Histograms that represent two data 
collections D1 and D2 respectively. Let s1 and s2 be the size of BH1 and BH2 
respectively. We would like to construct a new Bloom Histogram, say BH, which will 
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represent the data collection D = D1 ∪ D2 and will occupy no more space than smax = 
max{s1, s2}. 

 
Figure 2. Unstructured P2P system 

What we are most interested in is to keep the estimation error of the new histogram at 
a low level. To achieve this, our intuition tells us to try and combine similar pairs of 
buckets, one from each pre-existing histogram. The way we measure similarity can 
vary and will be further explained later. Bearing this in mind, we will now propose 
two merging algorithms: the frequency-merge and the filter-merge algorithms. 

3.2 Merging Algorithms 
The main concept behind the frequency-merge algorithm is to find pairs of buckets 
whose frequency values v1 and v2 are as close as possible, that is the value of | v1 - v2 | 
is small. 

When combining two buckets, the new bucket has a bloom filter BF = (BF1) BOR 
(BF2), where BOR is the binary-OR operator, and a frequency value v = (v1 + v2) / 2. 
Pseudo-code for this algorithm is shown below (b1 and b2 are the number of buckets 
in BH1 and BH2 respectively). 

Algorithm 1: Frequency-merge(BH1, BH2) 
1: int min, target 
2:  for i = 1 to b2 do 
3:   min = +∞;, target = 0; 
4:   for j = 1 to b1 do 
5:    if abs(BH2.value[i] – BH1.value[j]) < min then 
6:     min = BH2.value[i] – BH1.value[j]; 
7:     target = j; 
8:    end if 
9:   end for 
10:   MergeBuckets(i, target); 
11:  end for 
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The MergeBuckets function combines the BH1’s bucket at position i and BH2’s bucket 
at position target in a single bucket and adds it to the new histogram. 

Instead of relying on the similarity of the frequency values in order to combine 
buckets, we can use the similarity of their bloom filters instead. Let B1 and B2 be two 
bloom filters of length m. We use B[i] to symbolize the i-th bit of a bloom filter B. 
We define the distance dist(B1, B2) between the filters B1 and B2 to be equal to the 
number of bits in which they differ. So, 

1 2 1 2 1 2 1 2( , ) [1] [1] [2] [2] ... [ ] [ ]dist B B B B B B B m B m= − + − + + −  (2) 

We then define the similarity between B1 and B2 as the quantity 

1 2 1 2( , ) ( , )similarity B B m dist B B= −    (3) 

The higher this quantity is, the more similar the two bloom filters are. 

When merging histograms using the filter-merge algorithm we try to combine pairs of 
buckets with similar bloom filters. We do this in order to produce new filters with few 
1s in them, something which will lower the probability of the new buckets falsely 
reporting that various paths match with them and thus keeping the estimation error at 
a low level. The filter-merge algorithm is shown below. 

Algorithm 2: Filter-merge(BH1, BH2) 
1: int max, target 
2:  for i = 1 to b2 do 
3:   max = -∞;, target = 0;  
4:   for j = 1 to b1 do  
5:    if similarity(BH2.BF[i], BH1.BF[j]) > max then 
6:     max = similarity(BH2.BF[i], BH1.BF[j]);   
7:     target = j;   
8:    end if 
9:   end for 
10:   MergeBuckets(i, target); 
11:  end for 
Since Merged Bloom Histograms can be constructed without the whole data 
collection being available, they can be used as Routing Indices in unstructured P2P 
systems. 

3.3 Optimizations 
There are a number of optimizations that can be used to increase the efficiency of the 
frequency-merge and filter-merge algorithms. 
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Firstly, using the average of the frequencies v1 and v2 of the two pre-existing buckets 
as the frequency v of the new bucket may work but is not an optimal solution. If for 
example v2 is much larger than v1, then v is shifted towards v2 even if the number of 
paths in the second bucket is much lower than the number of paths that have been 
inserted into the first bucket. In this case, a value for v closer to v1 would be desirable 
instead. One way to deal with such cases is to use a weighted average of v1 and v2 
when calculating the value of v. To do this we need to maintain some extra 
information along with our Bloom Histograms, namely the number of paths that have 
been inserted into each bucket. Let k1, k2 be the number of paths inserted into the first 
and second bucket respectively. The frequency value v of the new bucket will then be: 

1 1 2 2

1 2

k v k vv
k k
⋅ + ⋅

=
+

     (3) 

The number of paths inserted into the new bucket will now be equal to k = k1 + k2. 

Secondly, there is the case of the two pre-existing buckets having identical bloom 
filters. For example, let us assume that the two Bloom Histograms we would like to 
merge are the ones shown in Figure 3 and that our method of merging is frequency-
merge. 

 Bloom Filter Frequency 

Α1 BF(/a) 1000 

Α2 BF(/b) 4000 

Α3 BF(/c) 7000 

Α4 BF(/d) 9000 

 Bloom Filter Frequency 

Β1 BF(/a) 2000 

Β2 BF(/y) 5000 

Β3 BF(/w) 8000 

Β4 BF(/z) 11000 

Figure 3. Pre-existing histograms 

In this case, buckets A2 and B2 will be combined together and the new bucket will 
have frequency 4500. This is a good estimation since a random path in the new 
bucket can be either /b, which has frequency 4000, or /y, which has frequency 5000. 
In a similar way buckets A1 and B1 will be combined together and the new bucket will 
have frequency 1500. However, all paths in this new bucket are /a paths and 
according to the two pre-existing histograms we know that there are 1000 /a paths in 
the first data collection and another 2000 /a paths in the second data collection. We 
thus know that we have 3000 /a paths in our data and can give this frequency value to 
the new bucket. 
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4. Experiments 

4.1 Experimental Setup 
To see how we can affect the estimation error of Bloom Histograms and evaluate the 
performance of Regular and Merged Bloom Histograms we implemented the 
algorithms proposed in [Wang et al. (2004)] as well as the two merging algorithms of 
Section 3. We used an XML parser [Xerces] to extract all the paths in a given XML 
data collection and then construct the corresponding Regular Bloom Histogram. The 
basic steps of this procedure are shown in Figure 4. 

 
Figure 4. Constructing Bloom Histograms 

We use three quite different data collections for our experiments: 

• The first one is “SIGMOD record” [XML Data Repository], an index of 
articles in the Sigmod Record journal. It has only a handful of distinct paths 
which have high frequencies. 

• The second one is “SwissProt” [XML Data Repository], a data collection 
which contains information about the molecular structure of various proteins. 
It is a large and complex data collection which contains wide-spread 
frequencies. 

• For our third data collection, we used the XML data generator called XMark 
[XMark]. We created a collection which contains a high number of 
distinctive paths. 

The main characteristics of the three data collections are summarized in Table 1. 

Data 
collect

ion

XML 
parser

 

XML 
paths 

Find path 
frequencies 

 

Bloom 
Histogram 
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Table 1. Data collections 

 Size # 
paths 

Max 
frequence 
difference 

# distinct 
frequencies 

Min 
frequency 

Max 
frequency 

SIGMOD 
record 483 KB 31 3670 3 67 3737 

SwissProt 112130 
KB 335 566307 85 1 566308 

XMark 75501 KB 1747 40924 250 1 40925 

To measure the estimation error of a Bloom Histogram, the metric we use is the 
absolute error: Let us assume that we submit n queries to the histogram about various 
XML paths. Let us also assume that that the real frequency of the i-th path is Xi and 
that the estimation returned by the histogram for this path is Vi, 1 ≤ i ≤ n. Then, the 

absolute error is equal to
1

1 n

i i
i

X V
n =

−∑ . 

4.2 Regular Bloom Histograms 
This error is due to two factors. A part of it is due to the error associated with the 
bloom filters and the rest is due to the estimation error of the buckets. The goal of our 
first set of experiments is to quantify the percentage of error attributed to each of 
these factors. 

Our experiments show that the total estimation error of a Bloom Histogram decreases 
as we increase the length of its bloom filter or the number of its buckets. Due to lack 
of space we’ll present some of our most characteristic findings. For a complete 
evaluation refer to [Drosou, M. (2006)]. In Figures 5 and 6 we can see the total 
estimation error for two Bloom Histograms. We use histograms with bloom filters of 
length equal to 128 and 512 bits to summarize the “SwissProt” and “XMark” data 
collections respectively. The y-axis is presented in a logarithmic scale. 

We see that the percentage of the total error that is due to the estimation error of the 
buckets decreases as the number of buckets increases. There is a point beyond which 
this percentage is almost zero. We also observe that this happens when the number of 
buckets is larger than the number of distinct frequencies in the data collection (see 
Table 1). 

 



 
 
10 

 1

 10

 100

 1000

 10000

 100000

 180 150 120 90 60 30

E
rr

or

Number of buckets

Total error
Bucket error

Figure 5. SwissProt 
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Figure 6. XMark 

However, since the size available for a bloom histogram is typically limited, we 
cannot increase both the length of the bloom filters and the number of buckets to 
minimize the total estimation error. Therefore, we would like to know which factor is 
more important. To do this, we constructed a set of Bloom Histograms for each of the 
three data collections. The total size allocated for all the histograms is fixed. This 
means that as the number of buckets increases, the length of the bloom filters 
decreases. The space dedicated to the “SwissProt” and the “XMark” data collections 
is 320 bytes and 7.5 KB respectively. In Figures 7 and 8 we can see the percentage of 
the total error that is due to the bloom filters and the number of buckets. 
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Figure 7. SwissProt 
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Figure 8. XMark 

We see that as the number of buckets increases, the error due to them decreases and 
becomes equal to zero. However, as the number of buckets increases, we are forced to 
decrease the length of the bloom filters. Their false-positive probability is thus 
increased, something that increases the part of the error that is due to them. It is not 
clear which parameter we should generally increase further to minimize the total 
estimation error for every data collection. However, for each one of them we can 
initially construct a number of histograms and see what the optimal combination is. 
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For example, in Figure 7 we see that the best parameter combination for a 7.5 KB 
“XMark” Bloom Histogram is to have 180 buckets and devote the rest of the space to 
its bloom filters. 

4.3 Merged Bloom Histograms 
In the next set of experiments we compare the accuracy of Regular and Merged 
Bloom Histograms. More specifically, for each data collection we first construct a 
minimal-error bloom histogram BH. We also cut the collection in two halves and for 
each half we construct a minimal-error bloom histogram, BH1 and BH2. We then 
merge BH1 and BH2 into BHb using frequency-merge. We also merge them into BHf 
using filter-merge. In this way, BH, BHb and BHf all summarize the whole data 
collection but only BH has been constructed directly from it. We also implemented 
the optimizations discussed in Section 3. 

For the rest of this section we use the following abbreviations: MinErr for Regular 
Bloom Histogram, Freq for Frequency-merge without optimizations, FreqOpt for 
Frequency-merge with optimizations, Fil for Filter-merge without optimizations and 
FilOpt for Filter-merge with optimizations. 

In Figures 9 and 10 we see the see the total absolute error for “SwissProt” and 
“XMark”. We observe that our optimizations work and lower the total error by 10%. 
The merged histograms have a larger estimation error that the regular ones, something 
we expected due to the way they are constructed. The estimations they provide 
however are comparable to the ones provided by the regular histograms. Their main 
advantage is that they are constructed without the use of the whole data collection. 
They are also small in size (like all Bloom Histograms). These features make them 
suitable to be used as Routing Indices in P2P systems because they can be easily 
exchanged between nodes and be merged in any of them. Frequency-merge seems to 
out-perform filter-merge, unless the resulting merged histogram has bloom filters of 
high false-positive probability. In those cases, filter-merge is preferable. 
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5. Conclusion 
Bloom Histograms are an interesting data structure that can be used in P2P systems to 
summarize data. We can also merge them together and create histograms containing 
information about many data collections without the need for those data collections to 
be locally available. Such Merged Bloom Histograms can be also used as Routing 
Indices among the nodes of an unstructured P2P system. In the future, it would be 
interesting to search for specific rules to associate the characteristics of a data 
collection with the efficiency of each of the two merging algorithms. 
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