
Ranked Publish/Subscribe Delivery

Extended abstract for DEBS PhD Workshop

Marina Drosou
Supervisor: Evaggelia Pitoura

Department of Computer Science
University of Ioannina, Greece

mdrosou@cs.uoi.gr

ABSTRACT
Publish/subscribe systems offer an attractive alternative to
classic search methods by allowing users to specify their in-
terests once and be notified whenever new interesting in-
formation becomes available. All relevant information for
a user is considered equally important. This can result in
large amounts of notifications being delivered to users. In
this PhD thesis, we consider the problem of ranking the no-
tifications reaching the users based on a number of criteria,
such as relevance and diversity, to control the number of
delivered events and increase user satisfaction.

1. INTRODUCTION
In today’s world, there is a great amount of information

available for every user. However, locating the most valu-
able or important information can prove out to be an over-
whelming task, due to the great volume of accessible data.
Publish/subscribe systems aim at tackling this problem by
disburdening the users of the need to repeatedly search for
new information. A proactive model is used instead, where
users specify their interests via subscriptions and the system
automatically forwards all new interesting published infor-
mation to them.

This PhD thesis aims at increasing user satisfaction by
the received results by proposing methods that will control
the number of results delivered to the users, mainly through
ranking them according to their importance.

We consider that the importance of results can be de-
scribed by three factors: (i) their relevance to user interests,
(ii) their diversity and (iii) their freshness. Relevance is
important so that users are only notified about the most
interesting events, while diversity ensures that the received
notifications are not referring to the same or similar events.
Finally, freshness is also important in the scope of pub-
lish/subscribe systems, where the flow of information is con-
tinuous. These three factors can be studied independently
from each other, since their application is orthogonal. How-
ever, this thesis aims at designing and implementing tech-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS PhD Workshop 2009
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

niques that will allow the combined, efficient application of
all three factors for the final ranking of notifications and
their forwarding to the users.

Ranked delivery in publish/subscribe systems is a new,
interesting research area. The problem had not been ad-
dressed until recently. In [14], ranking in publish/subscribe
environments is also considered. However, it is viewed in a
different way. In a sense, the reverse problem is considered.
Instead of locating the most relevant events to each subscrip-
tion, the authors aim at recovering the most relevant match-
ing subscriptions to a published event. To quickly recover
the top subscriptions related to an event, scored indices are
built over the subscriptions. Another work that also deals
with the problem of ranked publish/subscribe is [17]. In the
proposed model, a subscriber receives the k most relevant
events per subscription within a window w which can be ei-
ther time-based or event-based. For each user subscription,
a queue is maintained. This queue buffers those events that
are relevant to the subscription and have a high probability
to enter the top-k results at some point in the future. The
focus is on efficiently maintaining this buffer queue, while
in our work so far, we aim at specifying and computing
the importance of each new event. Our initial results on
combining relevance and diversity along with freshness have
been presented in [8, 9]. In [8], we introduced preferential
subscriptions, presented ways to compute the importance of
events and discussed forwarding issues. In [9], we formal-
ized our model, including diversity, and presented a number
of delivery modes for forwarding events to users. Here, we
summarize our current work and elaborate on our further
ideas.

Ranked delivery can be used with a wide variety of ap-
plications. Due to the tremendous volume of information
propagated through them, we believe that social systems,
such as Twitter [4] or Facebook [1], can benefit from it. In
such systems, users receive a great amount of real-time noti-
fications about various topics of interest for which they have
subscribed. Such topics may include, for example, actions of
other specific users, or “friends”. Today, all notifications of
interest are considered equally important and are presented
to the user arbitrarily. However, users are probably more
interested in some of their friends or some specific kinds of
events. Ranked delivery will enable users to receive ordered
information so that they do not have to scan all of the avail-
able notifications to locate the ones that are more interesting
to them. Also, diversity will ensure that users do not receive
the same information from many different sources over and
over again, something that is quite common in such systems

(a) (b)

Figure 1: (a) A notification and (b) a matching sub-
scription.

today.
In the rest of this paper, we present research challenges

in the area of ranked publish/subscribe delivery. We both
describe our results so far and also emphasize other alter-
native solutions to highlight the broadness of the problem.
The remaining of this paper is structured as follows. In Sec-
tion 2, we summarize our model. In Sections 3, 4 and 5,
we discuss how diversity, preferences and freshness, respec-
tively, influence the importance of events, while in Section 6,
we elaborate on how we can combine those criteria to rank
events. In Section 7, we present our current system design
and discuss improvements. Finally, Section 8 summarizes
our work and future plans.

2. MODEL OVERVIEW
In the rest of this paper, we assume a content-based pub-

lish/subscribe system, since such systems offer greater ex-
pressiveness to the subscribers than the topic-based alter-
native. Our techniques, however, can be adapted to topic-
based systems as well. Generally, in content-based systems,
matching depends on the actual content of notifications,
while in topic-based ones, it depends on some classification
of notifications into predefined topics. For a detailed catego-
rization of publish/subscribe systems, the reader is referred
to [12].

We consider event notifications as sets of typed attributes,
capturing the content of each event, similar to [7, 13]. Each
notification consists of an arbitrary number of attributes
that take values according to their type. Subscriptions on
the other hand consist of a set of constraints on the values of
specific attributes. Such constraints are enforced via the use
of binary operators, such as =, 6=, <, >, ≤, ≥, substring,
prefix and suffix. A notification matches a subscription
(or a subscription is covered by a notification), if and only
if, the notification satisfies all of the subscription’s attribute
constraints (Figure 1).

Since the flow of information is continuous, it is impor-
tant to define which events should be compared with each
other in order to yield the most important of them, where
“important” may mean diverse, highly relevant, fresh or a
combination thereof. In general, each event e of a pub-
lish/subscribe system (and the corresponding notification)
is associated with a number of time instants:

1. The time e is published (tpube)
2. The time e reaches the event-notification service (tserve)
3. The time e is matched against subscriptions (tmatche)
4. The time e is forwarded to the user (tforwe) and
5. The time e is actually received by the user (trecve)

Due to the asynchronous mode of communication offered
by publish/subscribe systems, arbitrary delays may be in-
serted between those time instants. Those delays are also
generally different for each event. This can affect all ranking
methods.

Event notification service

Matching and Ranking
module

publications
ranked, relevant

publications

Figure 2: Basic ranked publish/subscribe system.

Also, in contrast to traditional publish/subscribe systems
which are stateless, events cannot be disregarded after their
matching and delivery to the users, since new events have to
be compared against them in order to be ranked. However,
keeping all past events in the system is neither practical nor
particularly useful, since in practice, we are not interested
in locating the top-ranked events ever but rather the more
recent (fresh) top-ranked events, since old top-ranked events
(should) have already been delivered to the user in the past.

Therefore, in this thesis, we investigate time-partitioning
methods. Such methods can be either (i) periodic or (ii)
window-based. In periodic methods, time is divided into pe-
riods and matching events are buffered until the end of the
period. When the period ends, top-ranked events are for-
warded to the users. Though this is simple to be done on a
per-user basis, various practical issues arise in a distributed,
multi-user environment, where the matching events are dif-
ferent for each user and also different users may wish periods
of different lengths. A possible solution is to cluster users ac-
cording to the similarity of their preferences or subscriptions
and buffer matching events per cluster. This would greatly
decrease the maintenance cost of the system but would re-
sult in approximate solutions of the problem.

Besides periodic techniques, window-based ones can also
be used. Actually, computing top-ranked events over sliding
windows seems more intuitive to the problem due to the
continuous flow of new information. Such windows can be
either time-based or event-based. Clustering can also be
applied in this case as well.

In both cases, published events and notifications must be
buffered for some time prior to their final dismissal from the
system. Generally, a ranked published subscribe system will
include an enhanced matching mechanism that, besides lo-
cating all matching subscriptions, will also be able to com-
pute the importance of each event and rank the incoming
notifications according to the selected criteria (Figure 2).

3. DIVERSITY
A natural consequence of all traditional ranking methods

is that, often, the top-results are very similar to each other.
This happens because, according to the ranking criterion
used each time, data items, or notifications in our case, con-
taining the same, highly important piece of information are
all ranked in the top positions, even if they are redundant.
For example, when in Greece, Google’s top-10 results for the
keyword query“uoi”are all about the University of Ioannina,
while most of Google Video’s top-10 results are about the
University of Illinois.

However, besides pure accuracy achieved by the ranking
criterion, there are also other factors that can increase user
satisfaction, such as retrieving results on a broader variety

of topics, i.e. increasing the diversity of results.
There are two different perspectives on achieving diver-

sity:
1. Avoiding overlap among results, i.e. choosing data items

that are dissimilar to each other.
2. Increasing coverage, i.e. choosing data items that cover

as many different topics as possible.
Most research work so far in the literature views the prob-

lem using the first perspective mentioned above and various
measuring alternatives have been proposed, all based on the
notion of similarity (or distance) among the selected data
items. For example, [11] aims at maximizing the minimum
distance among the selected data items, while [19] attempts
to minimize their average similarity. Independently of how
one wishes to view diversity, we define the diversification
problem as follows:

Definition 1. The Diversify(k) problem is to select the
k out of all results that exhibit the maximum diversity.

Generally, the problem of choosing diverse results has
been proved to be NP-hard [10]. This follows from the Max-
Coverage and Set-Cover problems. Intuitively, to find the
most diverse subset S∗ of all results M , all possible combi-
nations of k out of |M | items have to be computed in order
to select the one with the maximum diversity. Note that,
the term “set” is used loosely here, as the order that the
results of S∗ will be presented to the user is also important.

Due to the complexity of the problem, which makes im-
practical the computation of optimal solutions, heuristics
are used to locate approximate ones [11]. The most com-
mon approaches are (i) the greedy heuristics, where items
are selected or disqualified one by one until k of them remain
and (ii) the interchange heuristics, where a random solution
is first selected and then, we proceed by interchanging se-
lected and disqualified items so that the resulting solution
is improved.

In our work so far [9], we have used a greedy heuristic and
showed that the approximate solutions located by it were
very close to the optimal ones. In the future, we also plan
to experiment with the use of interchange heuristics, since it
seems that they also suit continuous flows of information. In
such environments, we could check if a new data item can
be interchanged with an older one to improve the overall
diversity of selected items.

Generally, a research challenge in the context of pub-
lish/subscribe systems is that the computation of diversity
is continuous. In addition to this, we have seen that a major
difficulty for efficiently computing good solutions is that the
k−1 most diverse items of M are not necessarily a subset of
its k most diverse items. For example, consider as data items
the points on the circumstance of a circle and their euclidean
distances. The two furthest apart points are (any) two an-
tidiametric ones. However, no antidiametric points can be
found among the three most diverse points (Figure 3).

We are also interested in the second perspective for view-
ing diversity, i.e. covering. In particular, we would like to
cover as many subscriptions as possible. Our main motiva-
tion is that, since users take the time to specify a number of
subscriptions, they are most probably interested in receiving
notifications matching all of them. There are two research
directions for this issue. First, we could control the amount
of events that are delivered to each user due to each sub-
scription. This means that all user subscriptions should be

(a) (b)

Figure 3: Diverse points on a circle.

responsible for a number of events forwarded to the user, so
that users are not overwhelmed by (similar) events match-
ing just a few of their subscriptions. This can be achieved
by associating a delivery rate with each subscription. This
rate should depend on how diverse the subscription is from
the others. For example, in a group of similar subscriptions,
each one of them should contribute less events to the user’s
results than a single subscription that is very different from
all the others. The similarity between two subscriptions
could be measured based on the number of their common
attributes or even on the expected diversity of the events
that will match them. Second, we could select for deliv-
ery these notifications that match as many subscriptions as
possible. This would ensure that all user subscriptions are
covered by the delivered events, while at the same time, the
amount of delivered notifications would be greatly reduced.

4. PREFERENCES
We assume that preferences are associated with user sub-

scriptions. Users specify subscriptions to express their in-
terests. Subscriptions are used to filter out irrelevant noti-
fications and select only the notifications about events that
are interesting to the user. So far, in our work, we have as-
sumed preferences among subscriptions. User-defined pref-
erences among those subscriptions are employed to rank the
notifications and deliver to the user only the most preferable
ones. We first review our results in Section 4.1 and then ex-
plore the alternative of defining preferences among specific
attribute values in Section 4.2.

4.1 Subscription-based preferences
User preferences are expressed by associating each sub-

scription with a degree of interest, called preference rank.
These preference ranks can be defined using either a quanti-
tative or a qualitative preference model. In the quantitative
case, preference ranks are defined explicitly by users via the
use of numeric scores, usually normalized in [0, 1] (e.g. “I
prefer drama films with a score of 0.6”). In the qualitative
case, users define binary preference relations among their
subscriptions (e.g. “I prefer drama films more than horror
ones”). In the latter case, the preference ranks of those sub-
scriptions are extracted using the multiple level winnow op-
erator as described in [9]. Generally, assuming that binary
relations follow a strict partial order, subscriptions are orga-
nized in a directed graph according to those relations. Then,
subscriptions are recovered in levels using a topological sort
algorithm, with the most preferable subscriptions recovered
first. Each subscription is given a preference rank according
to its level l. To do this, a monotonically decreasing function
of l is used.

A subscription associated with a preference rank is called
a preferential subscription:

Definition 2. A preferential subscription psX

i of user X

is a pair of the form psX

i = (si, prefrankX

i), where si is a
subscription and prefrankX

i is a real number in [0, 1] that
expresses the degree of interest of X for si.

Each user specifies preferences using one of the above
models. How extracted preference ranks can be compared
with explicit ones in the case both models are used by a
specific user simultaneously is an interesting open issue.

Let P X be the set of preferential subscriptions (or pro-

file) of user X. These subscriptions can be used to rank the
published notifications and deliver to the user only the high-
est ranked ones. To do this, we compute the rank of each
published event for each user. The highest this rank, the
more interesting the event is to the user. An event’s rank
for a user is computed based on the preference ranks of the
subscriptions in P X that cover it:

Definition 3. Given an event e, a user X, the set P X

of the user’s preferential subscriptions and the set P X

e =
{(s1, prefrankX

1), . . . , (sm, prefrankX

m)}, P X

e ⊆ P X , such
that si, 1 ≤ i ≤ m, are the subscriptions that e matches, the
event rank of e for X is equal to rank(e, X) = F(prefrankX

1 ,

. . . , prefrankX

m), where F is a monotonically increasing
function.

Instead of using all matching subscriptions to compute event
ranks we can also use only the most specific of them, since
these subscriptions express better the user’s degree of inter-
est for the events.

4.2 Attribute-based preferences
The method described above for expressing preferences re-

quires users to define preferences among their subscriptions
as a whole. An alternative way for users to express their in-
terests is to specify preferences by defining binary preference
relations among specific attribute values. Then, an aggre-
gate rank can be computed for each subscription based on
those relations. Both a qualitative as well as a quantitative
approach can be followed as before. For example, a user may
state the following attribute-based, qualitative preferences:

• actor = R. De Niro ≻ actor = H. Ford
• actor = R. De Niro ≻ actor = A. Paccino
• genre = comedy ≻ genre = drama

where the symbol “≻” denotes preference of the first item
over the second one. Preferences for each attribute should
again follow a strict partial order. The preferences of user X

for each attribute are organized in a directed graph. Then,
the multiple level winnow operator is employed. Attribute
values appearing in higher winnow levels are more preferable
to the user. For each attribute value a preference rank for
a specific user is computed as a function of its winnow level
for that user. As in the previous model, a monotonically
decreasing function function should be used. If an attribute
value does not appear in any of the graphs then its preference
rank for X can be considered to be equal to 0.

Using this model, event ranks can be computed based on
all of the corresponding notification’s attributes. Each at-
tribute will satisfy the user by a certain degree of interest,
as this is specified by the user’s attribute-based preferences.
Event ranks can be computed as the normalized sum or av-
erage of those degrees of interest. In this way, we can al-
low a finer granularity for expressing user preferences. For

example, based on the above preferences, a comedy with
R. De Niro will be ranked higher than a drama with the
same actor.

4.3 Ranking based on preferences
Given the computed event ranks, event notifications can

be ranked and delivered according to them. In our work so
far, we have used a top-k delivery model for this. Alter-
natively, instead of delivering to users the k highest ranked
events, we could consider a skyline model where an event is
delivered to the user only if it belongs to the user’s skyline,
i.e. there is no past event for which all attribute values are
more preferable to the corresponding attribute values of the
new event.

5. FRESHNESS
Another important criterion in publish/subscribe systems,

is freshness, i.e. how recent, or fresh, the delivered notifica-
tions are, since older notifications are expected to be of less
interest to the users.

A notification should be considered more important closer
to the time of its publication than later in time. During
the elaboration of this thesis, we plan to examine different
methods to achieve this, such as using aging techniques. In
this way, each event will be associated with an age (how
long the event has been in the system). The older an event,
the more its importance will decrease. For this purpose,
a function FA should be used to weight the importance of
each event. This function will monotonically decrease along
with time. Assuming a time limit τ , after which an event
is not considered important anymore, an example of such a
function is:

FA(e, t) =

(

1 −
t − tpube

τ

)

where e is an event and t ∈ [tpube, tpube + τ]. This func-
tion degrades linearly but it would be interesting to compare
the performance of functions with different properties, e.g.
a function that degrades exponentially.

The freshness of a notification depends on the system over-
head, i.e. the latency introduced by the underlaying network
of communication and also the application of the matching
and ranking algorithms. A number of issues arise, such as
the fact that notifications may reach different users at differ-
ent times, not necessarily in the order they were published.
This is a general problem due to the distributed nature of
the system but can cause non-intuitive effects, such as dif-
ferent users with the same preferences receiving different no-
tifications. We could explicitly view notifications that have
spent too much time being propagated in the network as old
and block them from being forwarded to users, since newer
notifications have probably already been forwarded to them.

Finally, an interesting direction for research is that of up-
datable events. We call an event updatable when newer
versions of it can possibly be published in the future. For
example, in the case of a sensor network where sensor units
periodically publish new measurements, published events do
not contain new information per se but rather an update of
the older measurements (and the corresponding events). In
this case, there is no reason for the old notification to con-
tinue spreading through the network or to be considered
more important than the new one due to user preferences.
Other open issues when update semantics are employed con-

cern the ordering of events. For example, should a new
even replace an older version of itself in the various buffers
throughout the system or be appended to the end?

6. COMBINING CRITERIA
Diversity, relevance and freshness are all important fac-

tors for ranking event notifications in a publish/subscribe
system. There are various options for combining them into
a single ranking method.

First, let us assume an event e, a user X and its event rank
rank(e, X) according to X’s preferences. We can combine
the relevance and freshness factors as follows. As explained
in Section 5, we consider that the importance of published
events degrades along with time, so we can say that e’s im-
portance at time t, where t ∈ [tpube, tpube + τ], is equal
to:

frank(e, X, t) = FA(e, t)rank(e, X)

However, the final results must also be diverse with each
other. Assuming than we have computed the franks of all
the available notifications, we must select the k most diverse
of them. A basic way to combine those measures is to follow
a linear approach. This was first proposed in [6] and is
also adopted in our work in [9]. Following this approach, a
diversification factor σ is chosen, σ ∈ [0, 1], and the objective
function we wish to maximize is of the form

σ ·

∑

i
frank(ei, X, t)

|S|
+ (1 − σ) · div(S)

where div(S) is the exhibited diversity of the set of chosen
data items S.

Due to the diversity requirement, this problem is also NP-
hard. Therefore, we have to design heuristics to reduce the
high complexity of the problem. A first, greedy approach,
similar to the one used in [19], is to first choose the two
most preferable and diverse data items and then proceed by
adding to the solution, one by one, data items that maximize
the above function. The main challenge of the problem re-
mains that diversity is a measure that can not be computed
for each data item independently but is rather a quantity
that characterizes a set of data items as a whole.

The problem (minus the freshness factor) has also been
viewed as an optimization problem in [18], albeit in a more
mathematical approach, where approximate solutions are lo-
cated via relaxation and optimization methods.

Following the covering view of the diversity problem, an-
other option would be to choose k important, fresh events
that cover as many user subscriptions as possible.

7. DiveR: A PUBLISH/SUBSCRIBE SYSTEM
WITH RANKING FUNCTIONALITY

In this section, we report on our current design and im-
plementation of DiveR, a distributed, diversity-aware pub-
lish/subscribe system with ranking functionality. In our
system design, we have chosen to decouple diversity and
preferential ranking computations by using different system
modules to treat them.

Generally, measuring diversity is a complex issue, since
new events are published through various sources spread
over the network. A first approach would be to collect all
published events in a single site and perform diversification
there. However, this solution would clearly not scale well

due to the very large amount of users and generated events.
Thus, distributed architectures are more suitable for this
problem. We consider that a two-level, super-node based
architecture will be better able to support a distributed so-
lution for diverse notification delivery.

The initial, high-level architecture of DiveR is shown in
Figure 4. Each user is connected to a super-node of the
system. For now, let us assume that users connect to super-
nodes randomly. Generally, new generated events of a user
are forwarded to the user’s super-node. That super-node is
responsible for forwarding the events to other super-nodes
with interested subscribers connected to them.

Each super-node runs a diversification module to improve
the diversity of events propagated through it. There are
two options for achieving diversification at super-node level,
both of which aim at reducing the number of redundant
events, i.e. events that contain similar information. First,
each super-node could collect (buffer) recent events pub-
lished by the nodes connected to it, using some sliding-
window or periodic method. Then, it would propagate to
the rest of the network not all published events by the users
attached to it, but only the most diverse among them.

The second option is to perform diversification not on the
events published by a specific group of users but rather on
groups of events containing similar information. To achieve
this, we assume that user subscriptions are partitioned into
groups via some clustering method [15]. After this, each
group is assigned to a super-node. A published event is
then forwarded to the super-node which is responsible for the
group of subscriptions similar to the event. Each super-node
is responsible for diversifying the events matching each of its
subscription groups. Note that, matching and diversification
are performed at the same time since only matching events
need to be diversified (the others will be dropped).

None of these two methods will provide optimal solutions
to the diversification problem. However, we believe that
the approximate solutions provided will improve diversity,
as our initial experiments with approximate solutions have
shown [9]. We also believe that the second option, i.e. apply-
ing diversification per group of subscriptions, will be better,
because of the collection of similar events to specific super-
nodes of the system. An open topic in this process is the
coordination among super-nodes for propagating events and
exchanging information. For example, when subscription
clustering is applied, super-nodes could summarize the sub-
scriptions assigned to them via structures like bloom-filters
[5] or hash-sketches [16] so that a distributed cluster index
can be built as shown in Figure 4.

As for preferential ranking, each super-node of the sys-
tem will be responsible for the ranked delivery of events
to each of the subscribers connected to it. Note that, an
event’s rank has already been computed during the match-
ing/diversification phase. For this reason, the actual content
of the events is not needed for the ranking process. There-
fore, for top-k delivery the ranking module of each super-
node needs to maintain only a list of previously sent event
ranks per subscriber. This list can be maintained, for ex-
ample, using a sliding-window method. Although this is a
per user approach, the cost is not expected to be very high
because (i) each super-node is responsible for a portion of
the system’s subscribers and (ii) only a list of k numbers
needs to be maintained per subscriber. A possible research
direction is the application of information clustering so that

Sn3

Sn2

Sn1

u2

u3

u1

u4

u5

u7 u8

u6

users
s1

s2

sn

subscription

.

.

.

.

.

.

1, 2

4, 5, 7

2

Matching module

rank-u1 rank-u2

Diversification module

diversification
buffer

rank-u
1 rank-u

2

Ranking module

buffer for u1

buffer for u2

rank-u1

rank-u2

sum2

Cluster index
(used to forward new events)

super-node
sum1

summ

summary

.

.

.

.

.

.

1

3

1

new event

rank-u1 rank-u2

Figure 4: Event forwarding in DiveR.

users who receive similar events are connected to the same
super-node. We performed some initial experiments that
showed this can improve performance [8].

Our intitial steps towards ranked publish/subscribe deliv-
ery have been implemented using the SIENA event notifica-
tion service [3]. Our prototype, termed PrefSIENA, is avail-
able for download [2]. It supports ranked delivery based on
user preferences and diversity. The freshness criterion is em-
ployed to resolve ties. PrefSIENA also offers three delivery
modes: a periodic one and two sliding-window variations.
PrefSIENA can be employed in a distributed environment
using a hierarchical topology of servers. However it is not
optimized for such environments as at the time of its devel-
opment our research focus remained on exploring ranking
methods.

8. SUMMARY
Inspired by the growth of publish/subscribe systems and

the convenient model of communication they offer to users,
we seek to increase user satisfaction. A strong assumption
made by all publish/subscribe systems so far is that all user
subscriptions are equally important. While this may be true
for a number of applications, such as sensor deployment net-
works, other applications, such as social networks and rec-
ommendations, require the ranking of information that is
presented to users. The objective of this PhD thesis is to in-
crease user satisfaction by the received results, thus boosting
the acceptability of publish/subscribe systems in the new,
exciting area of social information exchange.

We allow users to express their interests through pref-
erences and also account for diversity and freshness when
ranking notifications. Our work so far has focused on our
model for information ranking and an initial implementa-
tion. Our future plans are to develop ranking methods for
publish/subscribe systems that can be efficiently applied in
a distributed environment.

9. REFERENCES
[1] Facebook. http://www.facebook.com.
[2] PrefSIENA. http://www.cs.uoi.gr/∼mdrosou/PrefSIENA.

[3] SIENA. http://serl.cs.colorado.edu/∼serl/dot/siena.html.
[4] Twitter. http://www.twitter.com.
[5] B. H. Bloom. Space/time trade-offs in hash coding with

allowable errors. Commun. ACM, 13(7):422–426, 1970.
[6] J. G. Carbonell and J. Goldstein. The use of mmr,

diversity-based reranking for reordering documents and
producing summaries. In SIGIR, pages 335–336, 1998.

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and evaluation of a wide-area event notification service.
ACM Trans. Comput. Syst., 19(3):332–383, 2001.

[8] M. Drosou, E. Pitoura, and K. Stefanidis. Preferential
publish/subscribe. In PersDB, pages 9–16, 2008.

[9] M. Drosou, K. Stefanidis, and E. Pitoura. Preference-aware
publish/subscribe delivery with diversity. In DEBS, 2009.

[10] E. Erkut. The discrete p-dispersion problem. European
Journal of Operational Research, 46(1):48–60, May 1990.

[11] E. Erkut, Y. Ülküsal, and O. Yeniçerioglu. A comparison of
-dispersion heuristics. Computers & OR, 21(10):1103–1113,
1994.

[12] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe. ACM
Comput. Surv., 35(2):114–131, 2003.

[13] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A.
Ross, and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe. In
SIGMOD Conference, pages 115–126, 2001.

[14] A. Machanavajjhala, E. Vee, M. N. Garofalakis, and
J. Shanmugasundaram. Scalable ranked publish/subscribe.
PVLDB, 1(1):451–462, 2008.

[15] T. Milo, T. Zur, and E. Verbin. Boosting topic-based
publish-subscribe systems with dynamic clustering. In
SIGMOD Conference, pages 749–760, 2007.

[16] N. Ntarmos, P. Triantafillou, and G. Weikum. Distributed
hash sketches: Scalable, efficient, and accurate cardinality
estimation for distributed multisets. ACM Trans. Comput.
Syst., 27(1), 2009.

[17] K. Pripuzic, I. P. Zarko, and K. Aberer. Top-k/w
publish/subscribe: finding k most relevant publications in
sliding time window w. In DEBS, pages 127–138, 2008.

[18] M. Zhang and N. Hurley. Avoiding monotony: improving
the diversity of recommendation lists. In RecSys, pages
123–130, 2008.

[19] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. In WWW, pages 22–32, 2005.

