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Abstract— The emergence of commercially-available net-
work interface controllers (NICs) with remote direct mem-
ory access (RDMA) capability and the prospect of their
tighter integration with the host memory system moti-
vate the design of distributed systems based on an RDMA
paradigm. A recent example is the Direct Access File Sys-
tem (DAFS). DAFS clients communicate requests to servers
using lightweight Remote Procedure Calls (RPC) based on
low-overhead message passing. Data can be transmitted ei-
ther in-line with the messages, or via server-initiated RDMA
independent of the messages. DAFS clients do not initiate
RDMA, despite the potentially lower latency of this mech-
anism for short transfers. With current NICs, servers that
export their entire file cache would have to resort to ex-
cessive page wiring to guarantee success of client-initiated
RDMA operations.

In this paper we present the design of the Optimistic Di-
rect Access File System, a distributed filesystem that en-
hances DAFS by enabling clients to directly access remote
memory pages of cached files exported by servers. Using
our proposed NIC support, exported pages are not per-
manently wired in physical memory except during RDMA
operations referencing them. Client RDMA attempts for
pages that are no longer memory-resident result in excep-
tions thrown by the RDMA target (server) and caught by
the initiator (client), prompting a switch to an alternative
access method. We present simulation results showing that
optimistic client-initiated RDMA seldom fails when client
working sets fit in server physical memory. Microbench-
marks with a prototype RDMA-capable NIC designed to
support the Optimistic Direct Access File System show that
client-initiated RDMA can achieve lower file access latency
when compared to file access using RPC. The applicability of
optimistic client-initiated RDMA extends to other domains,
such as Distributed Shared Memory systems.

I. Introduction

System-area networks (SANs) offer low-latency, high-
bandwidth data transfer over switched interconnects. Ap-
plications over SAN are often constrained by host overhead
in copying data in kernel and application buffers, as well
as overhead in accessing the network interface controller
(NIC). Excessive copying is caused by insufficient integra-
tion between buffering subsystems [1], [2], [3], e.g., in net-
work, filesystem and applications buffers. High overhead
NIC access results from going through the kernel, as is the
case when using sockets. Remote direct memory access
(RDMA) and user-level networking are two mechanisms
requiring NIC support that can address the above prob-
lems. RDMA can be used to transfer data directly between
source and destination buffers over the network, avoiding
any intermediate copies. User-level networking is used to
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reduce the overhead of NIC access by the application using
memory-mapped access to the device and bypassing the
kernel.

Research on system-area networks with user-level net-
working and RDMA capabilities [4], [5], [6], [7] has moti-
vated the design of distributed systems based on an RDMA
paradigm. Recent commercially-available SAN intercon-
nects such as InfiniBand [8] and protocols such as VI [9]
offer advanced RDMA capabilities for data transfer and
atomic operations. Network interfaces for these intercon-
nects are expected to become increasingly tightly inte-
grated with the host memory system [10] (e.g., as is an-
ticipated in the case of InfiniBand), further lowering the
latency of remote memory access. A recent example of a
network file access protocol for RDMA-capable SAN is the
Direct Access File System (DAFS) [11]. DAFS client re-
quests are communicated to the server using lightweight
RPC. Reads, writes and some metadata operations (e.g.,
getattr, readdir) use server-initiated RDMA when doing
long transfers. Short transfers do not use RDMA – they are
instead inlined in the RPC request or response. An alterna-
tive way (not used by DAFS) to access data and metadata
is using client-initiated RDMA, provided the client has di-
rect remote memory references to data or metadata in the
server file cache.

There are two main reasons why DAFS does not use
client-initiated RDMA, despite the lower latency of this
mechanism for short transfers: First, DAFS is not targeted
for workloads sensitive to I/O latency, such as engineering
and other workloads that are dominated by short trans-
fers [12]. Second, current commercially-available RDMA-
capable NICs lack some of the capabilities necessary to
enable its use.

DAFS is optimized for file access workloads using long
transfers. Most of the benefit using RDMA in these work-
loads comes out of the reduction of the per-byte cost of
data transfer due to avoiding memory copies [13]. DAFS
file servers are expected to be able to use and potentially
export their entire available physical memory space as file
cache. With clients allowed to directly access any part of
that cache at any time using RDMA and given that current
NICs are unable to wire/unwire memory pages on-demand
(for the duration of an RDMA), the server would have to
resort to excessive page wiring. Even with the NIC’s abil-
ity to wire/unwire on-demand, client RDMA attempts for
pages that had been previously exported but are no longer
memory-resident at the server require a remote access ex-
ception notification mechanism. There is presently no inte-
gration between NICs and mainstream operating systems
necessary to deal with virtual memory page locking. There
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is also no support for exception handling on behalf of the
NIC. Finally, most current NICs provide only weak safety
when incoming RDMA requests use stale or stray memory
references. As a result, servers would rather initiate the
RDMA themselves to make sure only their intended ex-
ported buffers are accessed. This paper argues that NIC
support for solving these problems will enable protocols
and applications with better performance, particularly in
file access workloads dominated by short transfers. It will
also offer a higher degree of safety than possible under cur-
rent RDMA-capable SANs.

As an example of an RDMA-based distributed system
that takes advantage of our proposed support, we intro-
duce a file access protocol that enhances DAFS by allow-
ing direct access to data stored in a distributed file cache.
This enhanced filesystem aims to lower the access latency
in short transfers by using client-initiated RDMA as often
as possible. To enable client-initiated RDMA, servers ex-
port to clients direct memory references to server buffers
and clients store those references in a local directory. These
references can become stale when the server no longer keeps
the corresponding data in the buffers. This is likely to hap-
pen when the page daemon invalidates page mappings and
writes pages to disk. In our design, servers do not need to
send explicit invalidations when page mappings are invali-
dated. Clients optimistically use remote memory references
hoping that accesses will succeed, but expecting to catch
an exception if they fail.

The outline of this paper is as follows: Section II exam-
ines design decisions involved in address translation and
access of memory pages with an RDMA mechanism. Sec-
tion III describes Optimistic DAFS, the distributed filesys-
tem that aggresively uses client-initiated RDMA and op-
timistic remote memory reference consistency without ex-
plicit invalidations. We present a cost-benefit analysis that
can be used in an adaptive client policy to decide when the
use of client-initiated RDMA pays off (intuitively, when few
client accesses result in exceptions due to stale memory ref-
erences), or when switching to standard RPC-based com-
munication is preferable. Section IV describes our proposed
NIC support for Optimistic DAFS. This support aims to a)
integrate programmable RDMA-capable NICs in the host
virtual memory system, b) enable a server NIC to report
an RDMA exception back to the client NIC when client-
initiated RDMA fails, and c) strengthen safety against in-

valid remote memory references. Section V discusses short-
comings of I/O buses (such as the widely used PCI) when
used for direct memory access by RDMA-capable NIC bus
masters. Section VI presents our preliminary performance
results.

II. RDMA Design Issues

RDMA is a generalization of Direct Memory Access
(DMA), a data transfer mechanism used in I/O and system
buses to achieve data transfer between devices and main
memory, reducing host involvement to the setup phase of
the DMA operation. RDMA extends the data transfer path
over the SAN, between memory buffers in remote hosts.
The main characteristic of RDMA is that host CPUs are
not involved in actual data transfer. User-level network-
ing and the need to avoid all memory copies requires that
RDMA use virtually-addressed buffers. NICs with such ca-
pabilities use a Translation and Protection Table (TPT) to
translate virtual addresses carried on RDMA requests to
physical (bus) addresses.

Distributed systems using RDMA have to make sure that
the NIC can always find address translations (virtual to
physical) of exported pages referenced in RDMA requests
and that memory pages used for RDMA are kept resident
(e.g., by wiring them) in physical memory while the trans-
fer takes place. The issues of address translation and page
wiring are decoupled in the case of a host CPU initiating
DMA to and from devices. Success in translation either
through the TLB or the page table means that the page
is in physical memory. However, explicit page wiring is
necessary to ensure a page stays resident for the duration
of the DMA. Except for the case of NICs that are inte-
grated with the host CPU sharing a TLB [14], NICs on the
I/O bus usually choose to couple address translation and
page wiring to avoid having to wire/unwire pages on each
RDMA operation accessing them.

In summary, in this paper we are interested in the fol-
lowing design issues (shown in Figure 1):

1. How does the NIC find page translations? One possibil-
ity is to restrict the NIC to storing all accessible transla-
tions in its TPT. This approach treats a TPT miss as a
failure of the RDMA operation. Although this a simple
solution, it is not going to work in the case of servers ex-
porting large amounts of physical memory due to the finite



capacity of the TPT. Another possibility is to use the TPT
as a cache of translations and allow dynamic handling of
NIC translation miss exceptions [15], [16].

2. How are pages kept memory-resident for RDMA? The
simplest solution, but one that leads to underutilization
of memory, is wiring pages for long periods of time. The
alternative of wiring on-demand (i.e., on each RDMA op-
eration) by the host, only works if the host is the ini-
tiator of RDMA or is aware of the RDMA and its dura-
tion (e.g., by exchanging messages with the remote host).
This particular kind of wiring on-demand is the method
used by DAFS servers (RDMA initiators) and clients (us-
ing request/response RPC messages). Another possibil-
ity (which is used by Optimistic DAFS, described in Sec-
tion III) is to allow exported VM pages on RDMA targets
to be candidates for pageout and require the NIC to do the
wiring on each RDMA operation. This scheme requires
that NICs that succeed in finding a translation for a page
to explicitly wire the page (to avoid subsequent pageout)
before the translation can be used for DMA.

3. What if a page is found not to be resident? If a page
referenced in RDMA is found to have been paged out by the
host, the NIC can either trigger page-in or simply abort the
RDMA and report an exception to the remote host. The
former method introduces disk latencies in remote memory
operations that the client may not be prepared to tolerate.
The latter is the method used in Optimistic DAFS, as de-
scribed in Section III.

Previous research [15] has explored the design space
for NIC TPT translation miss handling. U-Net/MM [16]
provides for dynamic miss handling by the host but de-
mands that pages with TPT translations be wired in phys-
ical memory. Although this approach avoids having to
wire/unwire pages on each RDMA operation referencing
them, it has the drawback of excessive memory wiring in
cases of large (multi-GB) TPT sizes.

III. Optimistic DAFS

As mentioned earlier, DAFS uses lightweight RPC for all
file requests, followed by server-initiated RDMA for data
transfer in direct read and write operations. This reliance
on lightweight RPC for all file requests comes at a cost. For
small data or metadata requests from server memory, the
overall latency of the RPC-based file access is composed of
(a) the cost of communicating the file access RPC to the
server, and (b) the cost of going through the server vnode
interface to map and lock file pages in the buffer cache [17].
RPC processing imposes an overhead in terms of interrupt
handling and thread scheduling. A large part of the latency
in having to interrupt the server, schedule and process the
RPC and go through the vnode interface can be avoided
if a direct memory access is used instead, i.e., if the client
can maintain and use valid (with high probability) direct
memory references to server file data.

Optimistic DAFS aims to lower the latency of small
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Fig. 2. Optimistic Client-Initiated RDMA.

accesses to server memory. The idea behind Optimistic
DAFS is that directory information about cached data is
distributed (either eagerly or lazily/on-demand) among all
nodes in the system but is not eagerly updated when cached
data is invalidated or otherwise becomes stale (as a result of
the actions of the pageout daemon). As a result, a memory
access can fail if it uses stale directory information. In case
of memory access failure, the client can use a file access
RPC to take the slower path to the file data.

A client node is expected to use part of its memory for
caching data and another part for keeping directory infor-
mation about the data. The directory can be thought of
as a cache of remote references that is managed by some
replacement policy. As data are replaced in the client file
cache, directory information about the data is expected to
live longer and be used when that data is requested again.
In a sense, the cache directory is an extension of the node’s
cache where data occupy less space but take longer to ac-
cess.

Figure 2 depicts a client with a cache that fits three file
blocks but with a directory that can hold many more re-
mote references. Initially the client cache is filled with
blocks A, B, C. As the client references the next three
blocks (D, E, F), the three initial blocks are replaced but
their remote memory references retained. On the event of
a server pageout (block A is written to disk with A’s frame
replaced by block G), the client’s reference to A is no longer
valid (depicted by the dashed arrow line). The client will
only find out when it tries to use the reference to A and
fails.



TABLE I

Design Issues

How are cache directories built?
Cache directories can be built either lazily (i.e., add an entry to a block
only after an access to that block), or eagerly (i.e., add entries proactively
in anticipation of future access).

How is file access done?
Optimistic DAFS supports the standard file access DAFS RPC interface
(the slow path). File access can also be done with client-initiated RDMA
operations alone (the fast path), when possible.

How are cache directories maintained?
When an RDMA using a directory reference fails, the reference is in-
validated. The client then issues an RPC. When an RPC response is
received, a new directory entry is added.

A. Design

The main issues in the Optimistic DAFS architecture
are summarized in Table I. Cache directories can index the
entire cache space or just part of it. For each file access, the
client looks up the file blocks needed in the local directory
and initiates a remote operation accordingly.

Next we describe two schemes that can simultaneously
be used to build cache directories in order to index pages
in the distributed file cache.

Lazy scheme. The server piggybacks the memory loca-
tions of the buffers containing the data the client asked for,
along with the data on each file request RPC (e.g., server
responds “here’s the data you asked for, and by the way,
these are their memory locations that you can directly use
in the future”).

Eager scheme. The client explicitly asks for remote mem-
ory references of files that it expects to use in the near fu-
ture. These requests take the form of queries for an entire
file or a list of files (e.g., client asks “give me the locations
of all your resident pages associated with file foo”).

The eager scheme enables prefetching of remote mem-
ory references and poses an interesting space/time trade-
off. Since buffer descriptions occupy only a small amount
of space as opposed to the actual buffer contents, we can
afford to prefetch more aggressively without fear that too
much prefetching will evict useful cache data. The penalty
one pays in prefetching remote memory references rather
than actual data is that access latency is that of remote
rather than local memory.

The design of Optimistic DAFS raises a number of re-
search questions:

1. What is the best replacement policy for the client di-
rectory? Clearly, a good policy is one that replaces stale
references first.

2. Both the file cache and the directory are dynamically
sized and expected to compete for physical memory. What
is the right balance between the two?

3. How can the directory index file metadata (e.g., direc-
tories, in-core inodes, etc.) in server memory, in addition
to data blocks?

4. Servers could explicitly invalidate stale references in ad-
dition to throwing exceptions. What is the effect of explicit
server invalidations?

5. What is the benefit of agressive prefetching of remote
memory references? What is the right amount of such
prefetching?

A good directory replacement policy requires knowledge
of stale references. This information could be obtained if
the server sends invalidation messages to clients. Without
explicit invalidations, a good approximation is to use a di-
rectory replacement policy that coincides with the policy
the server uses for VM page replacement, assuming that (a)
client access is reflected on server VM state, and (b) there
is only a single file client. With many non-cooperating
file clients, server feedback will be necessary to come up
with an effective directory replacement policy. A prob-
lem with direct client access to in-core copies of file meta-
data on the server is that updates of such structures often
need to be followed by disk operations to reflect the up-
dates on stable storage, except when metadata is backed
by non-volatile RAM. Given that engineering workloads
are metadata-intensive [18], enabling direct access to in-
core metadata structures in server memory is expected to
be beneficial.

Besides the NIC support described in Section IV, Op-
timistic DAFS requires VM system support at the server
operating system. For example, the host VM system needs
to enter and remove NIC mappings when exported VM re-
gions are paged in or out. Such support in the context
of the FreeBSD operating system has been presented else-
where [17] and is beyond the scope of this paper.

B. Cost-Benefit Analysis

Optimistic DAFS reduces interaction with the server
processor when a direct path to server memory is known
and can be established. It is expected to be beneficial in en-
vironments with large server memory caches experiencing
high hit rates. The relative benefit from Optimistic DAFS



compared to standard DAFS is expected to come out of
lower latency in fine-grain file access and will be propor-
tional to:

1. The fraction of client accesses that miss in the client
cache and need to go to the server,

2. The fraction of directory lookups for remote references
that hit in the client directory, and

3. The fraction of direct accesses to server memory that
are successful (i.e., using valid references).

The benefit of Optimistic DAFS is realized for all file
access operations that hit in the client directory and the
subsequent RDMA succeeds. The cost of Optimistic DAFS
is realized for all file operations that hit in the directory
but the subsequent RDMA operation fails. That cost is
the time spent from the issue of the RDMA to the time
the RDMA exception is caught and handled.

The cost-benefit ratio for a file access workload using
Optimistic DAFS compared to standard DAFS is

benefit

cost
=

NDirHit ∗ (T1,direct|inline − T2)

NDirHitStale ∗ TStaleRDMA

where T1,direct|inline is the latency of DAFS file access
using inline or direct (defined in Section VI-B) requests, T2

is the latency of file access using client-initiated RDMA,
NDirHit is the client directory hit rate, NDirHitStale is the
client directory stale hit rate, and TStaleRDMA is the cost of
handling an unsuccessfull RDMA operation. TStaleRDMA

includes the roundtrip time to the remote NIC adaptor and
the time to receive and handle the RDMA exception.

The above formula can be the basis of an adaptive client
policy to decide when use of client-initiated RDMA pays off
or when switching to standard RPC-based communication
is preferable. Intuitively, client-initiated RDMA is benefi-
cial when relatively few client accesses result in exceptions
due to stale memory references. After switching to stan-
dard RPC-based communication this formula is no longer
applicable and some other way is needed to decide when
to switch back to client-initiated RDMA. One possibility
is to spontaneously switch back to client-initiated RDMA
after a certain time interval and restart monitoring perfor-
mance using the cost-benefit formula. Another possibility
is to switch back to client-initiated RDMA based on server
feedback of its cache efficiency.

IV. Network Interface Support

As explained in Section II, NICs designed to support op-
timistic client-initiated RDMA need to be able to

1. Synchronize with other system agents (such as the host
CPU) over access to VM state of memory pages,

2. Dynamically handle TPT misses, and

3. Report RDMA exceptions to remote initiators.

In addition, NICs need to be able to update VM page
counters and flags to reflect network memory access, so
that the host can take it into account when making paging
decisions.

An RDMA capability requires reliable transfer semantics
that can be implemented using either hardware-supported
mechanisms at the link layer (e.g., as in the case of Fibre
Channel), or end-to-end software protocols such as TCP
(e.g., as in the case of Ethernet). Both host and NIC im-
plementations of RDMA are possible. However, NIC im-
plementations are preferable as they can offload the server
CPU and permit protocol optimizations [19], [20] that are
either not possible or not easily deployed on host operating
system network stacks. NICs with programmable proces-
sors require a lightweight kernel to support a network stack
and an RDMA protocol.

Enabling RDMA-capable NICs to interoperate with any
host operating system can be done by defining a NIC mod-
ule that can be customized for this task. Separating a
software module that enables interoperation with the host
OS from the rest of the NIC firmware opens the possibil-
ity of decomposing the NIC architecture between a hard-
ware state machine (e.g., an ASIC) and a programmable
processor executing this module. Inserting a customized
software module into a NIC can be done by either flash-
ing (i.e., overlaying) the NIC with a new control program
that contains the module, or by being able to dynamically
download a software module into existing (possibly run-
ning) NIC firmware. The solution to flash the NIC with
host OS-specific firmware is impractical as it affects the
entire firmware and not just the part that concerns the in-
teraction with the host VM system. When the entire NIC
firmware is implemented in software, dynamically down-
loading a module is a better solution as it leaves the core
of the firmware unaffected.

There are two main issues with designing such a module:
First, what is the interface between this and the rest of the
NIC firmware? Second, how does this module access host
VM state? To address the first issue, we define an interface
that encapsulates all VM actions that need to be triggered
by the NIC. Access to host VM state can happen either by
a) direct memory access to shared VM state, using mem-
ory read/write instructions and possibly bus support for
mutual exclusion, or b) exceptions thrown by the NIC and
handled by the CPU. In either case, NIC action is targeted
at VM page metadata (i.e., VM structures in main mem-
ory keeping information about VM pages). To facilitate
interaction, the NIC stores references (and translations) to
such metadata in its TPT. When the NIC can find such in-
formation in its TPT, either direct access or indirect access
through the host CPU is expected to be fast since it avoids
page lookup in an address space or a backing object.

An exception notification mechanism is necessary for
RDMA operations using stale memory references (e.g.,
due to changes in the target memory maps, as happens
with pageouts), and RDMA operations using unauthorized
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or stray remote memory references (e.g., due to program
bugs). Such a notification mechanism can be built as part
of an RDMA protocol as described in Section IV-B. A
capability-based safety mechanism that guards against in-
valid or unauthorized RDMA access is described in Sec-
tion IV-C.

A. NIC Firmware Structure

Figure 3 shows the NIC firmware structure proposed in
this paper. It includes a network stack, an RDMA module
that implements the remote direct memory access protocol,
a VM module that interacts with the host VM system, and
a Translation and Protection Table. One way to realize this
structure and enable dynamic downloading of modules on
a programmable NIC is by using a lightweight extensible
kernel such as eVINO, an adaptation of the VINO [21] op-
erating system for NIC platforms. The module implement-
ing the RDMA protocol can be layered on top of TCP in
case of an unreliable transport such as Ethernet, or over a
reliable link-layer protocol such as Fibre Channel.

The TPT (shown in Figure 3) includes both page address
translations and page metadata address translations. In
what follows we refer to metadata info about a VM page as
its vm page structure. The host OS triggers TPT updates
(passing translations for both pages and their vm pages)
via a simple interface exported by the NIC. For interaction
with the host VM system, the RDMA module invokes the
VM module. The TPT entry format is modeled after stan-
dard RDMA protocols such as VI and contains valid (V),
access control (ACC), and physical address (phys) fields.
We extend this standard TPT entry format to store trans-
lations of page metadata in vm page virtual and vm page
physical address fields. We note here that the TPT has no
information as to how to interpret page metadata. This
is the task of the downloadable OS-specific VM module.
Additional TPT fields are required for use by safety mech-
anisms such as the one described Section IV-C.

A.1 VM Module

The VM module is responsible for interacting with the
host VM system. The interface between the VM module
and the other NIC subsystems (such as the RDMA mod-
ule) includes the following functions:

1. lock() sets the busy flag for a page or region of memory.
This is not equivalent to wiring memory in that the page(s)
marked busy are still in the paging queues, just temporar-
ily protected from pageout by the paging daemon.

2. unlock() resets the busy flag for a page or region of mem-
ory. It may also need to wake up anyone who is waiting for
it.

3. reference() marks a page or region of memory as refer-
enced. Such an action may require moving page(s) between
paging queues, e.g., making a transition from an inactive
to an active state.

4. dirty() marks a page or region of memory as having been
modified.

5. nic vm fault() triggers dynamic translation miss han-
dling. Due to the complexity of this operation it is best
handled entirely by the CPU.

This interface can be implemented simply with the NIC
triggering interrupts and letting the host CPU take the
appropriate action in each case. Such an implementa-
tion requires minimal host operating system kernel changes
apart from the NIC device driver. A potentially more ef-
ficient way would be to implement this interface (except
nic vm fault()) entirely at the NIC using only atomic mem-
ory (single word) read and write operations. The only im-
pediment to such an implementation is that activity such
as waking up waiting processes and moving pages between
paging queues requires host CPU assistance. A solution
could be to delay such bookkeeping so that work can be
batched and processed by the CPU with fewer interrupts.



A.2 RDMA Module

The RDMA module implements a protocol that pro-
vides for message passing, remote direct memory access,
and remote atomic operations. The NIC communicates
with the host over shared command descriptor and door-
bell queues using special messaging hardware support [22].
The RDMA module is layered over a network protocol of-
fering a reliable transfer mode.

For locally-initiated operations, the RDMA module in-
teracts with the local host via the shared queues and
reports exceptions by triggering interrupts. Incoming
remotely-initiated RDMA requests carry virtual address
references to host main memory. The NIC is expected to
lookup these virtual addresses into its TPT and take one
of the following actions:

1. In case of a TPT hit, lock the relevant memory pages
before the data transfer, unlock them after the transfer is
over and update the pages’ reference and dirty bits as ap-
propriate.

2. In case of a TPT miss, try to find a translation via a
slower path by asking the VM module (Section IV-A.1) to
trigger lookup into VM system structures in main memory.

3. If the VM module cannot find a translation, the RDMA
module reports an exception (Section IV-B) to the remote
initiator.

The RDMA module exports the following interface to
the host to be used in order to register and deregister page
mappings with the NIC.

1. tpt enter() is used to add a page virtual-to-physical ad-
dress translation as well as a translation for the page’s
vm page structure. Mappings can be added in the TPT
by the host when it expects network I/O to take place in a
memory region, or implicitly by the NIC when it succeeds
in finding a translation after a previous TPT miss fault.

2. tpt remove() is used to invalidate a page translation.
Mappings are usually removed from the TPT by the pa-
geout daemon when pages are swapped out to disk, or im-
plicitly by the NIC when it needs to replace an entry.

3. tpt protect() is used to change the protection of a page
entry.

B. RDMA Exceptions and Remote Memory Reference
Consistency

It is possible that client-initiated RDMA accesses miss
on both the TPT lookup and the subsequent VM lookup
(via nic vm fault()) at the server NIC, either because a re-
quested memory page is swapped out to disk, or because
an invalid memory reference is used (i.e., causing a “seg-
mentation fault”). Such a miss should be reported to the
RDMA initiator (client) in order to prompt a switch to
an alternative access method. In this paper, we propose

the constructive use of remote memory access exceptions
caused by missing or invalid NIC mappings as the main
tool of a remote memory reference consistency scheme. To
support such a scheme, we require that translation errors in
RDMA operations initiated by a local NIC and detected by
a remote NIC be reported back to the initiator NIC. Exist-
ing RDMA-capable SAN implementations often choose to
treat such exceptions as catastrophic (i.e., they tear down
the connection) and for simplicity opt not to report them
to the initiator of the RDMA operation. However, spec-
ifications that allow non-catastrophic reporting of remote
exceptions to local initiators do exist (e.g., as part of the
Reliable Reception mode in the VI [23] protocol) and can
be implemented using message exchanges. Besides miss-
ing or invalid mappings, other reasons to report RDMA
exceptions include failure of the NIC to lock a page and
protection violations.

Our NIC support strives to minimize the amount of TPT
and VM misses taken by RDMA accesses. First, an ap-
propriate TPT entry replacement policy ensures that fre-
quently accessed pages mostly hit in the TPT. Similarly,
frequently accessed pages are expected with high probabil-
ity to be found resident in physical memory as the NIC
reflects network access to VM state using the reference()
(Section IV-A.1) interface.

C. RDMA Safety

Two important concerns with using RDMA on a SAN are
to avoid accidental or malicious buffer corruption, as well
as unauthorized remote memory access. We have devised
a capability [24] mechanism based on cryptographically-
strong hashing that guards against invalid or unauthorized
accesses to remote memory. In this scheme, a server ex-
porting a memory segment associates a random k-bit value
(AccessKey, a long integer) with the registered memory
segment and stores this value at its NIC translation and
protection table. The server exports a memory reference
(which is a triple <Address, Handle, AccessKey>) only to
a client with which it has a trust relationship. A trust rela-
tionship means that the client and the server share a secret
key K. The value AccessKey has to accompany each client
RDMA request and has to match the value stored at the
server NIC. Each client RDMA operation carries a tuple
of the form <Address, Handle, AccessKey, Timestamp, K-
MAC> where

1. Address is the virtual address of the remote segment.

2. Handle is an index into the translation table of the NIC
memory management unit.

3. AccessKey is the capability that the server has assigned
to the memory.

4. Timestamp is a monotonically increasing value at the
client, guarding against replays from clients that snoop
RDMA requests.



5. K-MAC (message authentication code) is a keyed hash
function computed on all the above quantities, verifying
their integrity and authenticity.

The server makes sure the AccessKey value of an in-
coming request matches that in its local table and that
the Timestamp is greater than the last received timestamp
from that client. Finally, it makes sure that K-MAC is cor-
rect by recomputing it. Note that only the client and the
server can compute K-MAC since they are the only ones
who know K. A secret key exchange protocol (e.g., based
on a public key protocol such as RSA, at connection setup
time) is required.

Important properties of this capability mechanism are:

1. The server can revoke a capability at any time by simply
invalidating an entry at its NIC translation and protection
table. The server does not need to keep track of all clients
who have a copy of that capability and does not need to
send explicit invalidation messages.

2. The access rights granted with capabilities are stored at
the NIC tables and are not given out to clients. Therefore
clients cannot forge these rights.

V. Mutual Exclusion Between CPU and NIC

Mutual exclusion between NICs and main processors is
necessary when they simultaneously access shared mem-
ory structures such as VM page state. Mutual exclusion
between multiple processors in a symmetric multiproces-
sor (SMP) with a shared bus is often implemented with
bus support for locking primitives and atomic operations.
However, current RDMA-capable NICs (including Infini-
Band prototype host-bus adapters) use the PCI bus to in-
terface with host processors and memory which provides
limited support for mutual exclusion.

One way to support atomic memory access on system
buses is by applying bus interlocks using a LOCK# signal.
For example the Intel Architecture [25] provides a lock in-
struction prefix that is used to assert the LOCK# bus sig-
nal during critical memory operations. This is sufficient to
implement locking primitives in the face of simultaneous
memory accesses from multiple processors. However, this
mechanism does not easily extend to NIC on the PCI bus
even though PCI provides a LOCK# signal. This is be-
cause there are limitations as to whether NIC processors
can drive this PCI signal, and whether multiple NIC can
use this mechanism in a scalable, deadlock-free manner to
synchronize access to host memory.

In the absence of bus locking support, the NIC and main
CPU can synchronize using special mutual exclusion algo-
rithms [26] that rely solely on atomic (single word) read
and write operations.

VI. Performance

This section describes a simulation method that aims
to collect statistics that characterize system behavior with

Optimistic DAFS. To compare file access latency using
RPC and client-initiated RDMA we analyze the part of
the file access latency that involves NIC interaction with
the host and present microbenchmark measurements for
both cases.

A. Simulation Method

We simulate an Optimistic DAFS system by modifying
our existing DAFS server [17] and client implementations
as follows: The DAFS server is modified to piggyback on
RPC responses the memory references of accessed data, as
described in Section III. New RPC procedures have been
added to enable clients to access the data pointed to by
these memory references. When references are found to be
invalid, the server reports an exception in the status field
of the RPC response.

User-level client caching with DAFS is possible but sub-
ject to limits on the amount of memory a process can al-
locate for the cache. To make sure the client file cache
can extend up to the amount of available physical memory
we decided to use a kernel file client and the kernel buffer
cache. Client applications use a modified MFS [27] ker-
nel file system. Instead of using pageable memory, MFS
is modified to use the DAFS file client (built inside the
kernel) for block access to a logical disk implemented as a
single large file exported by the DAFS server. Application
file I/O requests enter the kernel via standard system calls
and are first looked up in the kernel VFS cache. Cache
misses are then looked up into a client directory to find
out whether remote references to this data have been pre-
viously cached. A directory hit is the result of a reference
found and succesfully used by the DAFS file client to di-
rectly access the requested blocks in server memory using
the new RPC interface. A stale directory hit is the result
of a reference found but whose use triggers an exception
at the server. After being notified of a stale reference, the
client removes it from the directory and issues a standard
file-access RPC. This simulation method allows us to col-
lect the following statistics:

1. Client cache hit rate (NCacheHit)

2. Client directory hit rate (NDirHit)

3. Client directory stale hit rate (NDirHitStale)

For our simulations we use two Pentium III PC at 800MHz
connected via an Emulex cLAN [28] VI network. The client
has 256MB and the server 1GB of DRAM. All systems run
patched versions of FreeBSD 4.3.

We generate a workload using a simple application that
randomly reads 8KB blocks from a large file, the only file in
the logical disk. With this setup, the file accessed by the
application via MFS essentially coincides with the server
file simulating the logical disk exported by DAFS. We var-
ied the file size in order to put progressively more strain on
the server virtual memory system. Our results show that:
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Fig. 4. Distribution of cache hits, directory hits and stale
directory hits, over a long stream of uniformly random re-
quests. The client cache grows up to 200MB of physical
memory.

1. Optimistic client-initiated RDMA operations seldom fail
when the file fits in server physical memory, and

2. The rate of stale RDMA increases slowly as the working
set exceeds server physical memory, suggesting a graceful
performance degradation.

Figure 4 shows the distribution of client cache hits, di-
rectory hits, and stale directory hits for a long stream of
random file accesses and for file size ranging from 256MB to
1.15GB. Before each run, the client directory is pre-loaded
with references to the accessed file. Due to the compact
directory entry encoding used in this simulation, the client
directory can index the entire server physical memory space
using less than 2MB of client physical memory. For realistic
directory entry sizes (e.g., 64 bytes), memory requirements
of the directory are expected to interfere with data caching.
Limiting the size of the directory will reduce its efficiency
but leave more memory available for data caching. Deter-
mining the right balance is a goal of our on-going research.

B. File Access Latency

In this section we compare the latency of the following
two methods of file access:

1. Access using file request RPC (e.g., using file handle,
offset, length). This is the method used by DAFS clients.
Based on whether the client request is for inline or direct
transfer, the data transfer happens either inline in the RPC
request or response message, or using server-issued RDMA
operations separately from the RPC request/response.

2. Access using client-initiated RDMA to server memory.
This method assumes that the client maintains a directory
of references to server memory. The host CPU can assist
the NIC at the server by doing exception-level processing
in response to actions triggered by the NIC VM module
(Section IV-A.1).

Section VI-B.1 analyzes latency in the case of file access
using RPC. Section VI-B.2 does a similar analysis for the

case of client-initiated RDMA. Both access methods have
similar internal NIC latency given that we assume the same
NIC architecture. Under this assumption, we compare the
access methods based on microbenchmarks of NIC interac-
tion with the host CPU and main memory. We note here
that although our experiments involve a NIC with a pro-
grammable processor running a light embedded kernel, the
NIC support proposed in Section IV (except for the cus-
tomizable VM module) can be implemented in hardware.

For our experiments we use a Pentium III host at
800MHz running FreeBSD 4.3. Our prototype RDMA-
capable NIC implementation has an on-board Intel i960
RD microprocessor [22] at 66 MHz running the eVINO ex-
tensible kernel. The NIC has a 32-bit, 33MHz internal
bus and interfaces with the host over 33MHz, 32-bit PCI.
Communication between the host and the NIC is imple-
mented by message exchanges over a shared circular queue.
The NIC interrupts the host by enqueuing a message de-
scribing a request. The host dequeues the request, carries
out the requested action and responds by enqueueing a re-
sponse message. The NIC is continously polling for host
messages. Both sides can access each other’s memory via
DMA or via memory instructions using appropriate bus
space addresses.

B.1 RPC Latency

The latency experienced by a client in doing a file access
RPC depends on whether the client request is for inline or
direct transfer. Without loss of generality, we consider the
steps in the case of a read request.

1. In an incoming RPC request, the NIC writes the mes-
sage contents into a pre-posted buffer in main memory and
signals completion. The server is notified of the incoming
RPC request by either polling a descriptor, or by receiv-
ing an interrupt. Polling is expected to work well on busy
servers.

2. The server parses the file or memory request, looks up
the requested pages in the file or VM cache, and locks them
in order to avoid modification or pageout. We assume that
the request hits in the server cache.

3. The server prepares to respond in a way that depends
on the type of access which the client requested:

(a) In a direct read request, the server issues an RDMA
Write out of its file cache and into the client buffers. The
server needs to wait until this operation is done before
sending the RPC response, either polling for completion
or sleeping until woken up by an event handler.

(b) In an inline read request, the server copies the data
out of its file cache into the response message, unlocks its
buffers and prepares the RPC response message. After
posting a send on the RPC response, the server does not
have to wait for completion.
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The following formula describes the latency of the inter-
action between the NIC and the host CPU in an inline file
request RPC:

T1,inline = TNullRPC + TFS

TNullRPC (see Figure 5) is the sum of: (1) the time it
takes for the NIC to transfer the request message to main
memory and notify the host of a message arrival, up to
when the host CPU starts executing the RPC handler rou-
tine in the context of a kernel thread, and (2) the time
it takes from the host CPU posting a send command for
the RPC response message, to just before the NIC starts
to DMA the message into its buffers. TFS is the sum of:
(1) the time it takes to parse the file request, and (2) the
time it takes to lookup, lock and unlock cached file pages
using the vnode interface, and (3) the time to prepare the
response descriptor.

T1,direct describes the case of a direct file RPC request:

T1,direct = TNullRPC + TFS + TRDMA

TRDMA is the latency between the time the thread posts
the RDMA operation to the time the RDMA operation is
completed and the RPC response message is ready to be
posted. We note that TRDMA differs for read and write re-
quests. A server-issued RDMA Read operation is expected
to be more expensive than an RDMA Write operation as
it includes additional processing at the client NIC and at
least one additional message. For small requests, clients
are more likely to ask for inline rather than direct transfer
in order to avoid the overhead of issuing an RDMA at the
server.

We set up a microbenchmark to measure T1,inline for a
read request for 64 bytes using a DAFS server. We assume
that both the request and response message are 64 byte
long. Results reported in Table II are averages over ten
measurements with small standard deviation.

T1,inline is 70µs when a worker thread can be immedi-
ately scheduled to handle the client request. TNullRPC is

45µs (measured on the NIC) and TFS is 25µs (measured on
the host). We note here that 12µs of TNullRPC are spent
in the DMA transfer of the 64 byte request from the NIC
to main memory. About 10µs of TNullRPC are spent con-
text switching to the server thread after notification from
the NIC. All measurements were taken with a warm buffer
cache.

B.2 RDMA Latency

We now focus on access method (2). The cost of incom-
ing RDMA read and write operations can be broken down
into the following components, assuming successful TPT
lookups.

1. Lock pages about to be used in DMA.

2. Set up and carry out the data transfer between NIC
buffers and host memory.

3. Mark pages just used in DMA as referenced.

4. Mark pages dirty if access was a write.

5. Unlock pages.

When locking pages during exception handling, no
lookup is necessary when the NIC can provide the host
with references to vm pages. Since exceptions are non-
schedulable entities and not allowed to block, use of non-
blocking primitives is required. Failure to lock after a lim-
ited number of retries (e.g., due to contention for that page
lock) may result to failure of the entire RDMA operation.

The aim is to process as much of the above operations as
possible directly at the NIC, asking for host CPU assistance
only when it is necessary to access VM structures in main
memory. The following formula describes the latency of the
interaction between NIC and the host CPU when handling
an RDMA operation with host CPU assistance.



TABLE II

Microbenchmark Results

Operation Cost (µs)
TNullRPC 45
TFS 25
Texc 15

T2 = k × (Texc + TV M )

where k is the number of interactions with the host, Texc

is the exception handling overhead when the CPU is in-
volved, and TV M is the time to access VM state. Interac-
tion between the host and the NIC is over a set of circular
queues as described earlier.

We estimate T2 for a read request for 64 bytes. We as-
sume that interaction is needed twice, once to lock pages
and once more to unlock and update VM state. Since it
takes only a few machines cycles to carry out bit or counter
operations in fields of the vm page structure, TV M is small
and can be ignored. Results are reported in Table II. Based
on the Texc measurement of 15µs, T2 is estimated at about
30µs.

B.3 Discussion

Based on published data [5] for an ATM adapter (Fore
SBA-200) with i960 firmware, we estimate file access la-
tency (excluding the NIC/host interaction on the target
side and assuming the client is polling) of between 50µs
and 100µs. Based on these estimates, we find that over-
all file access latency using client-initiated RDMA is 20%
to 40% lower than with using RPC. We note that this is a
rough estimate based on measurements of a prototype with
few optimizations. We plan for a more thorough evaluation
in the future.

NICs that are tightly coupled with the host [29], [30],
[31], [14], [32] aim at lowering the NIC overhead as well as
the overhead of the NIC interaction with the host for con-
trol and data transfer. Previous research [31] has pointed
to the importance of NIC design for low-latency RPC com-
munication.

Scheduling delays included in TNullRPC can be reduced
using special RPC implementations, such as Optimistic
RPC (ORPC) [33]. With ORPC, procedures are executed
as interrupt handlers under the optimistic assumption that
they will neither block nor run for too long. When handlers
violate these assumptions, ORPC reverts to the slower
method of creating and associating a thread with the pro-
cedure. ORPC is another point of comparison with opti-
mistic client-initiated RDMA that we plan to explore in
future work.

VII. Conclusions

We have presented the design of Optimistic DAFS, a sys-
tem that enables clients to optimistically use RDMAs to di-

rectly access exported server cache pages without excessive
page wiring at the server in the face of paging activity.

Our simulation results show that optimistic client-
initiated RDMA exhibit low failure rates when working sets
fit in server physical memory. We have taken microbench-
mark measurements of optimistic RDMA and RPC for
short messages. We estimate that optimistic RDMA can
reduce the access latency by about 20% to 40% over file re-
quest RPC used by standard DAFS clients. Given that file
servers with enormous physical memory configurations are
becoming prevalent due to falling memory prices, we ex-
pect that performance benefits seen in microbenchmarks
will carry on to end-to-end application performance for
workloads dominated by short transfers.

New technologies such as InfiniBand set the trend of
bringing the RDMA-capable NIC closer to the memory
controller. This trend is expected to drastically lower the
latency of RDMA and offer a strong motivation for designs
based on optimistic client-initiated RDMA. To avoid any
interaction with the host CPU, new VM algorithms will be
needed to enable CPU/NIC interoperation based solely on
shared memory access.

We are currently working on an implementation of an
RDMA-capable NIC along the lines of the design presented
in this paper. This implementation will allow us to measure
the benefit of Optimistic DAFS (and of optimistic use of
RDMA in general) in real workloads. We plan to report
our results in a forthcoming paper.
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