
Exploiting Direct-Access Networking in

Network Attached Storage Systems

A thesis presented

by

Konstantinos Magoutis

to

the Division of Engineering and Applied Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University
Cambridge, Massachusetts

May, 2003

Copyright 2003 Konstantinos Magoutis
All rights reserved

To my parents.

In recent years network storage has emerged as an important systems research field,

driven by the demand for scalable storage structures to satisfy the growing needs of

Internet services. With the advent of high-speed networks, the efficiency of network stor-

age systems is directly related to the host CPU overhead of communication protocols for

a large class of applications. This thesis addresses the question of what system support is

necessary to reduce the communication overhead of network file systems in common

use, while interoperating with existing, widely deployed network infrastructure. It dem-

onstrates that significant host CPU overhead reduction is possible with appropriate net-

work interface support, and shows that two novel network mechanisms are equally

effective in reducing overhead for large I/Os; one of them, however, has the additional

advantage of reducing server overhead for small I/Os.

In addition to aiming for overhead reduction, an appropriately designed API is

necessary to provide applications with control over I/O policy. This thesis addresses the

question of whether a kernel implementation of such an API can enable high perfor-

mance implementations of user-level services while retaining the benefit of protection

and fault isolation provided by the user-kernel boundary. It shows that a kernel imple-

mentation of an I/O API has comparable overhead to a user-level implementation of the

same API and that both enable high-performance network attached storage services.

Thesis Advisor: Margo Seltzer

Thesis Author: Konstantinos Magoutis

Title: Exploiting Direct-Access Networking in Network Attached Storage Systems

Abstract

During my time at Harvard, I have been fortunate to enjoy the advice, support, and

friendship of a number of extraordinary people. I want to thank each and every one of

them.

I consider myself privileged to have been advised by Margo Seltzer. Margo has

been a constant source of energy, inspiration, and encouragement throughout my gradu-

ate student career. I will never forget Margo’s lively lectures in CS261 Advanced Operating

Systems, where I learned the fundamental principles of systems research. Her guidance,

advice, and support through my qualifying exam project, my exploration for a thesis

topic, and finally, through the years of thesis research, has been invaluable. The high stan-

dards she instilled in me will always guide me in my work and in setting my future

goals.

I am grateful to Eran Gabber and Michael Smith for serving in my thesis commit-

tee. Eran has been an amazing mentor and friend. His commitment, sense of responsibil-

ity, and many lessons on how to build robust systems, have been instrumental in my

successfully completing the Ph.D. program. I am indebted to Mike for agreeing to join

my thesis committee at an advanced stage and for his critical help in bringing my disser-

tation to completion.

I also want to acknowledge the influence of Jeff Chase’s strong spirit and inspiring

motivation in my work. My collaboration with Jeff in the 2002 Usenix paper and in later

work has been instrumental in my becoming a better researcher.

Acknowledgments

There are many people that I have bonded with during the years I spent in the

Ph.D. program.

Soundouss Bouhia and Dionisis Margetis spent innumerable hours with me, in

and out of the DEAS and Harvard Square periphery. I wouldn’t have made it through

without Soundouss’ inspiring company and without the late night movies and hanging

out with Dionysis. I have also been lucky to enjoy the close friendship of Nikos Hardavel-

las and Konstantina Kakavouli. Besides our friendship, in Nikos I found the ideal room-

mate who never sleeps and enjoys talking about research (or anything else) until dawn.

In Konstantina, I found the strongly argumentative spirit that I learned to appreciate and

to look for in a friend. I wouldn’t have made it through without their long friendship.

I want to thank my past and present officemates, Rocco Servedio, Catherine

Zhang, Salimah Addetia, and Sasha Fedorova, as well as Shlomo Gortler and Omri

Traub. I will always remember the indoors volleyball games with Rocco and Shlomo in

the ESL office; the Thursday nights out with Shlomo to listen to latin jazz at Wally’s; the

long discussions with Catherine at Zoe; and the superb team we formed with Salimah

and Sasha, who taught me the value and joy of working together in a group. I fondly

remember the days of Summer 2001 that I spent debugging systems with Salimah, and

the San Francisco weekend with Salimah and Omri. I consider myself fortunate to have

worked with Sasha, particularly during the last year of my Ph.D. I couldn’t have asked

for a more supportive officemate and friend during that period.

During my stay at Bell Labs in June 1999-February 2000 and the summer of 2000, I

was fortunate to meet many inspiring people, among them Payal Prabhu, Fabian Mon-

trose, Josep Blanquer, and Liddy Shriver. I will never forget spending my 30th birthday

with Payal and Fabian at a bistrot on 7th Avenue; the basketball games with Fabian and

Josep; Josep’s summer dinner parties with Catalan cooking; and the bike treks with

Liddy.

I want to thank Maya Alexandresco for encouraging me to start the Ph.D. pro-

gram and for periodically reminding me that I should finish it too. Agnès Fiamma for the

swimming, the incredible cooking, and for sharing her car with me. Delphine Girard for

being a unique and extraordinary friend, and Elita Kazlas for her spirit and inexhaustible

supply of friendship.

I also want to thank Rodrigo Rodrigues, Tiago Ribeiro and all our common

friends, particularly Sara, Xana, and Francisca, for making my last year in the Ph.D. pro-

gram unforgettable.

Finally, I would like to thank Network Appliance Inc. for their funding and sup-

port of this research.

Cambridge, Massachusetts

May 2003

Table of Contents

Introduction ...1
1.1 Network Storage ...1
1.2 Questions and Answers ...4

1.2.1 Comparison of RDMA Alternatives...5
1.2.2 Reducing the Per-I/O Server CPU Overhead...6
1.2.3 The Application Programmer’s Interface ..7

1.3 Dissertation Overview..10
1.4 Contributions... 11

Background ..13
2.1 A Historical Perspective of Network Storage Systems Research.............................13
2.2 High-Performance Networks ..16
2.3 Network Protocol Support for Reducing CPU Overhead...18

2.3.1 User-level Networking...18
2.3.2 Remote Direct Memory Access ...19
2.3.3 Network Transport Protocol Offload to the NIC19
2.3.4 The Host-NIC Interface ..20
2.3.5 Storage-area Networks...21
2.3.6 RPC-based Approaches..21

2.3.6.1 Remote Direct Data Placement (RDDP)22
2.3.6.2 Implications of RDDP Tag Advertisement24
2.3.6.3 Reducing Per-I/O Server CPU Overhead25
2.3.6.4 Messaging and Transport Layers ...26

2.4 High-Performance Network Storage Systems ..27
2.4.1 Overhead Reduction Techniques..27

2.4.1.1 Semantics of Data Movement ...28
2.4.2 Systems Based on VM Re-mapping ...29

2.4.2.1 Sharing VM Mappings ...29
2.4.2.2 Trading VM Mappings...29

2.4.3 Systems Based on RDDP..30
2.5 I/O Throughput and Response Time...31
2.6 Effect of the OS Structure ...33

2.6.1 Flexibility and the Role of the API..33
2.6.2 Support for Efficient Servers ...34

2.7 Summary of Systems Evaluated in this Dissertation...37

Application Performance ...39
3.1 Effect of Communication Overhead on Application Performance39
3.2 Low Overhead File I/O ..42

3.2.1 Direct Transfer File I/O Using RDDP ..43
3.2.1.1 Direct Transfer File I/O Using RDMA...44
3.2.1.2 Direct Transfer File I/O Using RDDP-RPC.................................44

3.2.2 Direct Transfer File I/O using VM Re-mapping ..45
3.3 Experimental Results ..46

3.3.1 Client Overhead...47
3.3.1.1 Client Read Throughput ..47
3.3.1.2 Berkeley DB Performing Asynchronous I/O..............................50

3.4 Summary...51

Server Performance ...53
4.1 RDMA Security..54

4.1.1 Access Control ...55
4.1.2 Authentication ...55
4.1.3 Encryption ..56

4.2 Optimistic RDMA..56
4.3 Optimistic DAFS..57

4.3.1 Benefits and Limitations...59
4.4 Effect of Caching at Various System Levels...61
4.5 Experimental Results ..63

4.5.1 Server I/O Throughput and Response time..63
4.5.1.1 Microbenchmarks..64
4.5.1.2 Effect of Client Caching..65
4.5.1.3 Server Throughput..66

4.6 Summary...68

Effect of Operating System Structure..69
5.1 Fallacies ...70
5.2 Introduction..71
5.3 User-level vs. Kernel Interface to a NIC...74
5.4 A Hybrid OS Structure ...76

5.4.1 Kernel Support for User-level File Caching ..78
5.5 Designing an I/O API for Flexibility ..79
5.6 Implementing the I/O API...81

5.6.1 Zero-copy I/O..81
5.6.1.1 Tagged Pre-posting of Application Buffers.................................82
5.6.1.2 Remote Direct Memory Access ...83

5.6.2 Efficient Event Notification and Handling ..84
5.6.2.1 Polling vs. Interrupts ..84

5.6.2.2 Threads vs. User-level Upcalls..85
5.6.2.3 Kernel Support for Event-Driven Servers85

5.7 Benefits of the Kernel..86
5.7.1 Global Policy..86
5.7.2 Efficient Data Sharing...87

5.8 Benefits of User-level Implementations ...87
5.8.1 Portability...87
5.8.2 Specialization...88

5.9 Analytical Performance Modeling..89
5.9.1 Throughput..90
5.9.2 Response Time...93

5.10 Experimental Results ..94
5.10.1 System Call Cost..94
5.10.2 Cost of Memory Registration ..94
5.10.3 File Access Performance...95

5.11 Summary ..97

System Design and Implementation...99
6.1 NFS Re-mapping ...100
6.2 NFS Pre-posting...102
6.3 Systems using RDMA...103

6.3.1 NIC Requirements and Support for RDMA ...103
6.3.2 NFS Hybrid..104
6.3.3 DAFS ...104

6.3.3.1 Client...104
6.3.3.2 Original Server Design and Implementation............................105
6.3.3.3 Evolution of the Server Design ...108

6.4 Optimistic RDMA and Optimistic DAFS ..109
6.4.1 Implementing ORDMA..109

6.4.1.1 NIC–host CPU synchronization ...109
6.4.1.2 NIC–to–NIC exceptions ...110

6.4.2 Implementing ODAFS..110
6.5 Summary .. 111

Related Work ...113
7.1 Direct-access Networking .. 113

7.1.1 Remote Direct Memory Access ...114
7.1.1.1 Address Translation Mechanisms ..115
7.1.1.2 Cost of Registration and De-registration...................................117

7.1.2 Other Approaches to Direct-access Networking......................................117
7.1.3 User-level Networking...118

7.2 Direct-access Network Storage ... 119
7.3 Reducing Overhead in Network File Systems using VM Techniques...................121

Conclusions and Future Work ..123
8.1 Conclusions and Wider Implications..123

8.1.1 Network-I/O Convergence..126
8.1.2 NAS-SAN Convergence ...127

8.2 Future Work..128

References ...129

1

Chapter 1

Introduction

Today, magnetic disks are so inexpensive that users are finding new, previously unafford-

able uses of on-line storage [42,119]. For example, banks, hospitals and other institutions

are increasingly using digital images to store information such as business documents,

check images, X-rays, magnetic resonance images, etc., on magnetic disks, replacing

paper or film as the dominant information storage media. Fueled by the rapid decline of

on-line storage cost, total installed storage capacity increases at a rate of about 80% each

year [5]. In addition, the rapid growth of Internet e-commerce, with its bursty, unpredict-

able storage needs, and the shortage (and therefore, high cost) of storage management

personnel, create the need for data-center outsourcing of on-line storage pools [42]. With

this exploding demand for storage capacity, the traditional model of direct-attached stor-

age, where magnetic disks are attached to the I/O backplane of application servers,

becomes infeasible due to the scalability limits of traditional I/O buses. Instead, a network

storage model, where the storage devices are separated from the application servers by a

scalable networking infrastructure, as shown in Figure 1, emerges as the prominent alter-

native.

1.1 Network Storage

The network storage model offers many advantages over direct-attached storage [42].

First, it offers better scalability by avoiding the physical limitations of traditional I/O

2

buses, such as SCSI. Second, network storage reduces wasted disk capacity by consoli-

dating unused capacity previously spread over many directly attached storage servers.

Third, it reduces the time to deploy new storage by hiding variations in disk configura-

tion behind virtual storage pool abstractions. Fourth, it facilitates data maintenance oper-

ations, such as data backup, by performing the transfer from the on-line storage to tape

without involving the application server. Finally, data sharing among clients is improved

because all clients can access the same networked storage.

The network storage model, however, has several disadvantages compared to

direct-attached storage. First, it has higher complexity due to the distributed nature of the

network storage system. Second, transferring data over the network requires stronger

security and safety guarantees than when transferring them on the system I/O bus.

Finally, network protocol processing is more expensive than local hardware device

access.

Network storage performance becomes increasingly limited by the end-system

CPU and memory system overhead of data transfer, rather than by the traditional bottle-

neck of disk I/O. There are a number of reasons behind this trend: First, it is the fact that

Network

Direct−attached storage

Desktop PCs
Application server

Application server

Networked storage

FIGURE 1. Network-attached versus direct-attached storage.

3

network technology is improving at a rapid pace. Network link speed has scaled from

10Mb/s in 1994 to 2.5Gb/s today and soon to 10Gb/s [90], an improvement by a factor of

100-1000. Resource-intensive applications performing data streaming and on-line trans-

action processing can utilize this potential by performing I/O using aggressive read-

ahead and write-behind policies and by distributing I/Os over a large number of disk

spindles. In addition, the traditional disk I/O bottleneck is eased by the emergence of

storage servers with large memory caches and new stable storage technologies, such as

microelectromechanical systems [98]. Processor frequencies and system bus bandwidths,

however, have only improved by a factor of about 20 since 1994 [90]. These technological

trends point to the fact that sources of communication overhead such as memory copying

and network protocol processing end up being the factors limiting I/O performance.

Therefore, it becomes important to structure network storage systems aiming for reduc-

ing these sources of communication overhead.

Networked storage systems fall into two broad categories [42]: Storage-area net-

works (SAN), which typically offer a simple, untyped fixed-size (block), memory-like

interface (such as get block, set block), and network attached storage (NAS) systems, which

offer file system functionality to their clients and a richer, typed, variable-size (file) hier-

archical interface to networked storage. NAS systems are typically accessed using a file-

access protocol, such as the Network File System (NFS), by means of Remote Procedure

Calls (RPC) over commodity Ethernet networks. SAN systems are typically accessed

using the SCSI protocol over FibreChannel networks1. SAN systems provide network

interface controller (NIC) support specifically for the block access protocol (e.g., SCSI),

approaching the performance of direct-attached storage device access. NAS systems, on

the other hand, currently rely on general-purpose RPC communication, which results to

higher communication overhead than in SAN systems.

1. More recently, access to block storage over Ethernet networks has been proposed with the iSCSI protocol
specification [72]. This approach, however, has not yet proven that it is a practical, viable alternative to Fibre-
Channel-based SCSI block storage access.

4

1.2 Questions and Answers

The central problem addressed in this dissertation is that of reducing the host communi-

cation overhead of NAS systems. Today, most such systems use RPCs to transfer data.

With conventional RPCs, the data payload is transferred in-line with the control informa-

tion in the RPC message. In the absence of appropriate NIC support, this network I/O

model induces memory copies in end-systems (client and server hosts). This is because

the NIC cannot distinguish the data payload from the rest of the RPC message and has no

information on the eventual destination of the data in host memory. It therefore places

incoming RPCs in intermediate host memory buffers. Subsequently, the host copies the

data payload one or more times until it reaches its final destination, as shown in Figure 2

(a). One way to avoid these memory copies is by using NIC support for a new I/O

model, Direct-Access Networking, which is characterized by direct data transfers between

the network and application space buffers. A more recent term for this I/O model, which

will primarily be used in this dissertation instead of direct-access networking, is Remote

Direct Data Placement (RDDP) [48]. With RDDP, the data payload is recognized and

directly placed by the NIC to its final destination without any intermediate copies, as

shown in Figure 2 (b). The Remote part in RDDP stands for the fact that the data destina-

tion buffer is targeted by the remote host. RDDP is an abstract protocol specification and

does not imply a particular implementation. In this dissertation, I consider two different

RDDP protocol implementations.

An existing RDDP technology, Remote Direct Memory Access (RDMA), enables a

user-level process or the kernel to specifically target remote memory buffers in user-level

or kernel space on a remote host. The semantics of RDMA are similar to the UNIX mem-

cpy mechanism, only generalized for inter-process data transfer over the network.

RDMA obviates the need for intermediate data staging by carrying the description of the

destination memory buffer (e.g., host-id, process-id, virtual memory address, offset,

length) with the rest of the control information accompanying the data transfer. The NIC

can use the buffer description to DMA the trailing data payload directly to that buffer.

With RDMA, the host CPUs are not involved in the actual data transfer, which is per-

5

formed entirely by the communicating NICs. RDMA is described in more detail in

Section 2.3.2 on page 19.

This dissertation addresses three sets of questions, which are described in Sections

1.2.1, 1.2.2, and 1.2.3 below.

1.2.1 Comparison of RDMA Alternatives

This dissertation considers two prominent alternatives to RDMA:

• The first is a novel RDDP mechanism called RDDP-RPC. RDDP-RPC achieves

direct data placement by enabling the NIC to separate the RPC data payload from

the RPC control information (e.g., protocol headers), to identify the target host

memory buffer, and to perform the DMA of the payload directly to that buffer.

RDDP-RPC is described in more detail in Section 2.3.6.1 on page 22.

• The second is an alternative I/O model based on virtual memory (VM) re-map-

ping, described in Section 2.4.2 on page 29. In this model, the NIC is able to sepa-

rate the RPC data payload from RPC control information and subsequently

perform a DMA placing the data payload to an intermediate kernel buffer. The VM

pages of the intermediate buffer are then re-mapped into the final destination

buffer.

Server

mem
copies

Server

(a) (b)

Client

file cache file cache

Client

mem
copies

user space

kernel

user space

kernel

FIGURE 2. Comparison of Network I/O Models. Existing RPC implementations place the data
payload in unaligned, intermediate memory buffers, requiring memory copying to move the data
to their final destination (a). New RPC models using remote direct data placement (RDDP) or VM
re-mapping can avoid memory copying (b).

6

This dissertation addresses the following two questions:

• How does RDMA compare to the alternative RDDP-RPC technique?

Answer: Their performance is equivalent in the case of streaming workloads. The

difference lies in their complexity of implementation and generality.

• How does RDMA compare to VM re-mapping?

Answer: RDMA has lower overhead than VM re-mapping. In my implementation,

this is due to:

(a) The transport protocol offload available in the case of the RDMA implementa-

tion. The VM re-mapping implementation uses host-based UDP/IP.

(b) The cost of VM re-mapping, which is not incurred in the RDMA implementa-

tion.

RDDP requires that the transport protocol be offloaded to the NIC [73]. This offload

should by itself achieve some overhead reduction, in addition to that of copy avoidance

achievable with RDDP. The following is a related research question:

• What is the relative benefit of protocol offload vs. that of copy avoidance?

Answer: It is widely believed [73,96] that most of the benefit is due to copy avoid-

ance. This dissertation supports this assessment, without, however, offering an

experimental proof.

1.2.2 Reducing the Per-I/O Server CPU Overhead

Among the two RDDP alternatives considered in this dissertation, RDMA and RDDP-

RPC, RDDP-RPC requires that both hosts be involved in setting up a data transfer.

RDMA, however, does not necessarily require involvement of both sides in setting up the

transfer. This can be avoided, for example, when the target NIC of an RDMA operation

has all the information necessary to carry out the RDMA and does not need to interact

7

with the target host CPU. This property of RDMA can be used to reduce the per-I/O

server CPU overhead by enabling client-initiated RDMAs, without wrapping them

around RPCs, as shown in the last row of Table 1. The Optimistic RDMA (ORDMA) pro-

posal introduced in this dissertation and described in Section 4.2 on page 56, is such a

one-way RDMA primitive that addresses the challenges raised by such a design.

This dissertation addresses the following question:

• What are the benefits of Optimistic RDMA and under what conditions are they

realized?

Answer: The benefits of Optimistic RDMA stem from the reduced server per-I/O

CPU overhead. They are, (a) lower I/O response time, and (b) higher server

throughput. These benefits are realized in multi-client workloads dominated by

small I/Os, which stress the server CPU. The Optimistic RDMA model exhibits

this fundamental advantage of RDMA over the alternative RDDP-RPC method.

The applicability of ORDMA in widely-deployed commodity PC platforms, how-

ever, is currently restricted to read-only workloads.

Network I/O
mechanism

Steps in a read file I/O

Client Server

RDDP-RPC
RPC Request

-

-

RPC Reply (in-line data)

RDMA

(with per-I/O RPC)

RPC Request

-

-

-

RDMA Write to Client

RPC Reply

Optimistic RDMA

(without per-I/O RPC)

RDMA Read

from Server

-

-

No involvement

TABLE 1. Server CPU involvement in read I/O. No server involvement with RDMA (last row)
means that the server-side of the data transfer is performed by the server NIC alone.

8

1.2.3 The Application Programmer’s Interface

The RDDP I/O model enables direct data transfers between the network and application

buffers. To achieve this, the application buffers used for I/O should be known to the NIC

in advance, awaiting each and every incoming data payload. This requires an application

programmer’s interface (API) that enables pre-posting of receive buffers with the NIC,

prior to the I/O taking place.

Pre-posting can be used for RDDP when data input takes place in response to

explicit requests. This is the case, for example, when the communicating end-systems

have a client-server relationship, as with the UNIX file API. When data input may take

place at any time and without an explicit request, direct data placement in anonymous

application buffers is possible by pre-posting a sufficient number of buffers to receive

each and every incoming data payload. This works in the case of a peer-to-peer relationship

between the communicating parties, such as in the case of interprocess communication

using the UNIX sockets API. This method, however, cannot be used for direct targeting

and usually requires data movement from the intermediate pre-posted buffers to the final

data destination.

Besides the requirement to support pre-posting over an RDDP NIC, there are sev-

eral questions on the nature of a good network and file API:

• What should the properties of such an API be?

Answer: A powerful and flexible API should have the following properties

(Section 5.5 on page 79):

(a) Support for event-driven design

(b) Full control over I/O policy

(c) Simple I/O cost model

(d) Standard data passing semantics (copy or share)

9

One API with these properties consists of a simple non-caching, non-blocking set

of I/O operations: read/write/select (Section 5.5 on page 79)

The simplicity of this API facilitates efficient implementations with low complex-

ity. By being a relatively low-level API, it enables implementations of any higher-

level abstraction on top of it. This dissertation supports the argument that extensi-

bility is primarily the result of a powerful and flexible API, obviating the need for

new, radical extensible operating system structures.

• Is there a performance benefit in a user-level vs. a kernel implementation of this

API?

Answer: The difference between these two choices lies only on the user-kernel pro-

tection boundary crossing. The cost of this boundary crossing is not high (500ns on

the 1GHz Pentium III used in this dissertation and lower on more modern CPUs,

such as current SPARCs). The choice also depends on how often the kernel bound-

ary is crossed and how much work is performed on each crossing. This disserta-

tion argues that the performance of network-attached storage applications (i.e.,

coarse-grain I/Os) depends primarily on an appropriate API, regardless of

whether the API is implemented in user or in kernel address space.

ServerServer

(a) (b)

Client

file cache

Client

user space

kernel

user space
Application

File Client

Application

file cache&
File Client

FIGURE 3. Kernel (a) versus user-level (b) implementation of a file API. The user-level structure
assumes that device access is through a user-level host-device interface.

10

One benefit of a kernel API is that it does not require a user-level host-NIC inter-

face [113], reducing the complexity of the NIC implementation. Another benefit is

the protection and isolation afforded by the user-kernel boundary. User-level APIs,

however, are more portable as they do not depend on particular OS support

besides a device driver.

• What type of kernel support is required for user-level implementations?

Answer: User-level APIs require kernel support for upcalls (e.g., signals) for I/O

event notification. Upcalls provide an execution context to process events

promptly. User-level I/O libraries, therefore, do not depend on the scheduling of

user-level threads, a necessary requirement to guarantee I/O progress.

1.3 Dissertation Overview

In Chapter 2, I provide background to the main sources of communication overhead in

operating systems and outline known approaches to overhead reduction. I make the dis-

tinction between per-byte and per-I/O sources of overhead and differentiate between

application workloads performing large I/Os, which primarily depend on per-byte over-

head reduction, and workloads performing small I/Os, which primarily depend on per-

I/O overhead reduction. I argue that a remote direct data placement (RDDP) mechanism

is necessary to reduce per-byte overhead. Existing RDDP mechanisms, however, require

the use of RPC to set up the data transfer, which involves both communicating sides on a

per-I/O basis. An RDDP mechanism that involves the host CPU only on the side that ini-

tiates the data transfer is required to further reduce the CPU overhead at the target of the

I/O operation.

In Chapter 3, I focus on per-byte overhead reduction and compare two

approaches to achieve RDDP. One way is by using RDMA. Another way is by using

RDDP-RPC, which is possible with tagged pre-posting of application buffers (or pre-posting

for short). I demonstrate that both mechanisms are equally effective in achieving high

11

performance for streaming workloads using large I/Os. The trade-off between these two

mechanisms is in their ease of implementation and their generality.

In Chapter 4, I focus on per-I/O overhead reduction and introduce a new network

I/O mechanism, Optimistic RDMA (ORDMA), which enables client-initiated RDMA and

helps servers achieve lower per-I/O CPU overhead. I outline the design of the Optimistic

Direct Access File System (ODAFS), an extension to DAFS that uses ORDMA for small

I/Os. I demonstrate that ORDMA and ODAFS are effective in reducing I/O response

time and improve server throughput in workloads dominated by small I/Os.

In Chapter 5, I revisit a number of commonly held assumptions about operating

system overhead and argue that performance of kernel implementations can be as good

as performance of user-level implementations, given a properly designed API. This evi-

dence supports earlier results of the extensible operating systems research in the 1990’s,

namely that performance is primarily a result of the flexibility and expressive power of

the API rather than due to flexibility offered by user-level implementations. I show that a

kernel implementation of a file access API can be as efficient as a user-level implementa-

tion of the same API for streaming file access workloads, even for relatively small (4KB

and 8KB) I/O sizes.

In Chapter 6, I outline my implementation of systems based on the new technolo-

gies proposed in this dissertation, as well as implementations of systems based on emerg-

ing technologies that originally motivated this research work.

In Chapter 7, I present related work, and finally, in Chapter 8, I discuss my conclu-

sions and describe possible future research directions.

1.4 Contributions

This dissertation makes the following contributions:

• I demonstrate that end-system overhead reduction for NAS applications is possi-

ble with simple RDDP support on NICs offering transport protocol offload.

12

• I differentiate between throughput-intensive workloads performing large I/Os, which

primarily depend on RDDP for copy avoidance, and workloads performing small

I/Os, for which client-initiated RDMA is necessary to reduce server per-I/O over-

head.

• I propose Optimistic RDMA, a new network I/O mechanism that enables client-ini-

tiated RDMA and benefits workloads performing small I/Os.

• I evaluate Optimistic DAFS, an extension to DAFS that uses ORDMA to improve

server throughput and response time in workloads dominated by small I/Os.

• I show that the benefits of application-specific extensibility are primarily the result

of a powerful and flexible API, regardless of whether the API is implemented in

user or in kernel address space.

13

Chapter 2

Background

In this chapter, I provide background information about the architecture and implemen-

tation of protocols and systems that I use throughout this dissertation. First, I give a his-

torical perspective of network storage systems research and discuss the sources of host

CPU and memory system overhead in high-performance networking protocols and sys-

tems. Next, I present established and emerging techniques for reducing host overhead in

network and file systems and discuss the effect of CPU overhead on standard perfor-

mance metrics such as I/O throughput and response time. Another key to application

performance, besides low overhead I/O protocols, is the flexibility to customize I/O pol-

icies to the needs of the application. In the last part of this chapter, I provide background

information about systems designed to offer this flexibility as well as the role of the

Application Programmer’s Interface.

2.1 A Historical Perspective of Network Storage Systems Research

Until the mid-1990’s, scalable storage systems were mainly distributed or network file

systems, such as NFS [95], Sprite [83], AFS [46], Echo [14]. These systems have a clearly

decomposed functionality between clients and servers and a communication interface

between them that resembles a file I/O system call interface. The primary focus in these

systems is scalability and availability, which they achieve by caching data and metadata

in file system clients and by striping and replicating data in file system clients and serv-

14

ers. The main performance bottleneck at the time was synchronous disk I/O on file serv-

ers, a state reflected in benchmarks such as SPECsfs [92].

By the mid-1990’s, a number of research projects started to contemplate different

scalable storage system architectures. The distributed virtual disk [30,59] approach pro-

posed servers exporting a block rather than a file interface as an alternative scalable stor-

age paradigm, enabling multiple instances of a single-system file system to directly

access file data as disk blocks. These research projects advocated that by separating the

system cleanly into a block-level storage system and a file system, and by handling many

of the distributed systems problems in the block-level storage system, the overall system

is easier to model, design, implement, and tune [59].

Another alternative storage system paradigm was motivated by the fact that net-

work file systems interpose a file server in the data path between the file system clients

and the storage devices, introducing a bottleneck when streaming data through the I/O

bus (e.g., PCI) on the file server [41]. The Network Attached Secure Disks [41,79] or NASD

model enables a direct I/O data path between file clients and the storage devices but

maintains the benefits of the network file system sharing model by using file servers for

small I/O and metadata traffic. The NASD model is adopted by several emerging clus-

tered storage systems, such as Slice [7], MPFS–HighRoad [34], GPFS [99] and Storage

Tank [87].

At about the same time that these new scalable storage structures were proposed

and evaluated, Ethernet or ATM networks were used to transport network I/O traffic at

speeds up to 100-155 Mbps. CPU processing rates and main memory bandwidth, how-

ever, were substantially higher than network link or disk I/O transfer rates, making the

network link or disk I/O the main performance bottleneck. As a result, the CPU and

memory system overhead of a general-purpose communication abstraction, such as the

RPC protocol, was still relatively low. Therefore, RPC was sufficient to implement either

block-level or file-level network I/O in any scalable storage system.

By the late-1990’s, two emerging trends posed new challenges to the scalable stor-

age research community. First, the introduction of high-speed networks (622Mbps ATM

15

and 1Gbps switched Ethernet) and the projections of even faster networks, with network

speed growing significantly faster than the CPU and memory bus bandwidth, introduced

host CPU networking overhead as a serious performance bottleneck in network file sys-

tems. Second, the emergence of Storage-area Networks (SAN), exemplified by the Fibre-

Channel [52] networking technology, opened the possibility of extending the SCSI

protocol over high-speed switched networks, giving the distributed virtual disks

approach a performance advantage over the network file system approach.

Strong interest in scalable storage by technology consumers in the early 2000’s [42]

prompted a re-categorization of the design space, into SAN-based systems, which use a

block access protocol, such as FibreChannel or iSCSI [72], and which typically take

advantage of special network hardware support to reduce networking host CPU over-

head, and Network Attached Storage or NAS-based systems, which use a file access pro-

tocol, such as NFS, and which were still implemented over standard RPC. Besides the

block-level vs. file-level interface difference between SAN and NAS systems, there has

been a commonly-held belief that SAN is associated with storage-specific functionality at

the network, from which NAS installations cannot benefit. This dissertation shows, how-

ever, that this is not a fundamental disadvantage of the NAS model; in other words, it is

possible for NAS systems to achieve high performance given sufficient network interface

support.

NAS-based systems have a number of advantages over SAN-based systems. In

the NAS model, file servers handle sharing and synchronization. In addition, NAS stor-

age volumes are under file system management and control. In SAN systems, however,

single-system clients concurrently accessing a shared storage volume require synchroni-

zation mechanisms that are not present in current local file systems. Additionally, storage

volumes accessed by user-level applications over a SAN are not under file system control

and cannot be accessed using file system tools, which complicates data management.

16

2.2 High-Performance Networks

Performance of systems communicating over high-performance networks can be studied

using the LogGP [4,28,66,67] model. LogGP consists of the following parameters, also

shown in Figure 4:

Latency (L) of the communication link. This is the delay to transmit a small message on

the wires and switches between two communicating network interfaces. Applications are

usually insensitive to L for two reasons: First, modern switched network hardware

achieves low link latencies, on the order of a microsecond, dwarfing communication

latencies of other system components, such as the network interface or the host protocol

stack. Second, applications are usually able to hide latency by pipelining the communica-

tion link, for example, by performing asynchronous network I/O operations.

Host CPU overhead (o) of the communication protocol, defined as the length of time that

the host CPU is engaged in the transmission and reception of messages. Sources of host

CPU overhead are mainly network protocol processing and data movement between the

network and application buffers. The benefit from reducing host CPU overhead is prima-

FIGURE 4. Model of a network storage system. NICs are characterized by the per-message
(g) and per-byte gap (G). The network is characterized by the latency (L) and bandwidth (BW),

where BW = G-1. Part of the host CPU is consumed by the overhead of communication.

Main memory Main memory

Server

0% 100% 0% 100%

NIC NIC

Client

Host CPUHost CPU

DMA DMA DMA DMA

OverheadOverhead

g, G g, G
L, BW

17

rily for I/O-intensive applications whose processing saturates the CPU, as analytically

shown in Section 3.1.

Gap (g) between consecutive small message transmissions or receptions. This parameter

models the limit in throughput imposed by the NIC for transmission and reception of

small messages. For message sizes above a certain threshold, this parameter is super-

seded by the gap-per-byte parameter, G.

Gap (G) between consecutive bytes for large message transmissions. This parameter

reflects the fact that modern NICs have high-performance DMA engines transferring

data between the network link and NIC memory buffers, and between NIC buffers and

host buffers, matching the speed of the network link. The inverse of G is equal to the net-

work link bandwidth.

P, the number of communicating nodes.

Modern high-performance network hardware, such as switches and network interfaces,

feature low L and G parameters. High CPU overhead, however, can hide high-perfor-

mance network characteristics from applications, due to the following reasons:

• Protocol processing on the outgoing data path, which consists of invoking the net-

work service (e.g., via a system call), prepending protocol headers, ensuring data

integrity (e.g., calculating checksums), and interacting with the network interface

to initiate the data transfer.

• Network protocol processing in the incoming data path, which consists of schedul-

ing a CPU context for protocol processing (e.g., an interrupt handler or a thread),

parsing protocol headers, checking the integrity of data (e.g., calculating check-

sums), and delivering notification of the data arrival.

18

• Data movement between the network and application buffers, which typically

requires memory copying to intermediate buffering systems.

Host CPU overhead consists of a per-byte component oper-byte, which is the length of time

that the CPU is engaged in data-touching operations such as memory copying or integ-

rity checking, and a per-I/O component oper-I/O, which is the length of time that the CPU

is engaged in processing the I/O request incurred in network and file system protocol

stacks. The per-packet component, due to message fragmentation and reassembly, disap-

pears if the transport protocol is offloaded to the NIC. The following formula expresses

the CPU overhead of file access in an I/O transferring m bytes:

(EQ 1)

2.3 Network Protocol Support for Reducing CPU Overhead

A number of approaches have been proposed to reduce host CPU network protocol over-

head. The four most prominent ones are (a) to offer a user-level instead of a kernel-based

interface to the NIC (discussed in Section 2.3.1), (b) to enable a remote direct memory

access (RDMA) mechanism (Section 2.3.2), (c) to offload the network transport protocol

to the NIC, partly or fully (Section 2.3.3), and (d) to support a host-NIC interface

designed for low overhead (Section 2.3.4).

Network storage systems can perform network data transfers using either stor-

age-specific network support (discussed in Section 2.3.5) or Remote Procedure Calls

(RPCs, Section 2.3.6). RPC-based network storage systems can be optimized as described

in Sections 2.4.2 and 2.4.3.

2.3.1 User-level Networking

User-level networking [17,21,78,82,111,113,114] advocates offering applications direct,

protected access to the network interface. This approach reduces the latency of small net-

work I/Os by bypassing heavyweight host-based networking stacks and by avoiding the

user-kernel interface. It also increases throughput for large I/Os by transferring data

o m() m oper-byte oper-I/O+×=

19

directly in and out of a buffer pool in the application address space. User-level network-

ing systems offer communication primitives to send and receive messages. Receives, in

particular, are performed in anonymous buffers that are pre-posted by the application.

This introduces the possibility of overflow if the application does not explicitly regulate

data flow to ensure that receivers post buffers at least as fast as senders consume them. It

also introduces the need for an additional memory copy in the receiving path if the com-

munication buffer pool is not the final destination of the data. An overview of the history

and present state of user-level networking as an interface to a direct-access NIC is

described in Section 7.1.3.

2.3.2 Remote Direct Memory Access

Remote direct memory access (RDMA) systems [17,21,100,111,117] enable senders to tar-

get specific remote memory buffers, avoiding the need for data staging in intermediate

buffers. This reduces memory copying, which is often necessary for data movement. In

addition, sender-based control with RDMA avoids the possibility of buffer overflow at

the receiver, since it does not require pre-posting of a memory buffer at the remote end.

RDMA can be used either with a user-level or with a kernel interface to a NIC.

The term Direct-access Networking was introduced by the Direct-Access File System

Collaborative (see Section 7.2) to characterize a class of transports offering RDMA capa-

bilities. This term is used in a generalized sense in the title of this thesis to encompass any

network mechanism that supports remote targeting of application buffers, independent

of whether the targeting takes place by memory address, as in RDMA, or by another type

of tag. Another, more descriptive term for the same I/O model, however, has recently

become popular with the research community: Remote Direct Data Placement (RDDP) [48].

To be consistent with current practice, the term RDDP will be used for the remainder of

ths thesis instead of direct-access networking.

2.3.3 Network Transport Protocol Offload to the NIC

Host CPU overhead can be reduced in traditional networking stacks by using standard

techniques such as coalescing packet interrupts, using large maximal transfer units

20

(MTUs), and offloading data checksums to the NIC. These techniques are offered by com-

mercially available high-speed network interfaces and supported by mainstream operat-

ing systems [23]. In addition to these simple approaches, offloading the entire transport

protocol to the NIC has been considered and implemented either in firmware [20] or in

silicon [3] on the NIC. Counterintuitively, the main benefit of offloading the network

transport protocol to the NIC is not believed to be coming from the reduction of the net-

work packet processing cost, which is not high even in complex protocols such as TCP

[16,27]. Instead, the benefit is believed to be coming mostly out of the support for an

RDDP mechanism [73]. Offloading the network transport to the NIC may even be coun-

terproductive in some cases [96,101].

2.3.4 The Host-NIC Interface

There is currently a debate as to what is the right interface to an offloaded network trans-

port protocol. Two alternatives, shown in Figure 5, are, the familiar UNIX sockets inter-

face [112] and the Queue-Pair over IP (QP-IP) [20,111,113] interface, both compatible with

the TCP/IP protocol suite. An advantage of the QP-IP interface over sockets is the ability

to pre-post application buffers with the NIC, enabling direct data transfers between the

FIGURE 5. Host interface to network protocol offload to the NIC. The host interface can be
UNIX sockets or QP-IP, as in (a), both compatible with the TCP/IP transport. Another
possibility is VI, which introduces a new networking protocol above the transport, as in (b).

Network Storage

RPC

Transport

NIC

Host Interface: Sockets, QP−IP

Protocol

(a)

NIC

(b)

Network Storage

RPC

Messaging
(Send, Receive)

Transport

RDMA

Host interface: VI

Protocol

21

network and the pre-posted memory buffers. This helps avoid intermediate buffering

and the data movement cost that this implies. QP-IP, however, does not allow senders to

target specific pre-posted buffers at the receiver. In this dissertation, I introduce a new

technique (referred to as RDDP-RPC, described in Section 2.3.6.1) that enables tagged

pre-posting of application receive buffers. This technique augments the QP-IP interface

by enabling sender-based management of receiver buffers. The Virtual Interface (VI) [111]

protocol defines another possible interface to an offloaded transport protocol, supporting

both buffer pre-posting and sender targeting of remote receive buffers via RDMA. VI,

however, introduces an additional network protocol over TCP/IP.

2.3.5 Storage-area Networks

Storage-area networks preserve two important properties of direct-attached block I/O

device interfaces, namely the ability to transfer data reliably without host involvement

and the ability to place data directly in a user or kernel memory buffer without interme-

diate memory copies. SANs achieve these properties by offering NIC support for:

• Reliable data transfer, using an appropriate link- or transport-layer protocol.

• Directly supporting the block-level storage protocol, and therefore being able to

identify the data payload, match it with its target host user or kernel memory

buffer, and to place the payload directly to that buffer.

These capabilities come at the expense of requiring either appropriate network infra-

structure that is not widely deployed, as in the case of FibreChannel [52], or NICs offer-

ing support for a block-level storage protocol, for example, is the case of FibreChannel

and iSCSI [72] NICs.

2.3.6 RPC-based Approaches

Remote procedure call [15] is a general-purpose communication abstraction that can be

supported over networks and NICs that provide simple unreliable, out-of-order link-

layer data transfer semantics. Traditional NAS systems typically use RPCs for data trans-

22

fer. This is because such systems are often deployed over ubiquitous network infrastruc-

ture, such as Ethernet, which does not specifically support the NAS protocol. A drawback

of using RPCs for file I/O data transfer is that, without special NIC and protocol support,

this method requires staging of the data payload in intermediate host memory buffers

and copying, to move the data to its final destination.

One way to solve the high overhead of RPC-based file I/O is by enabling direct

data transfers between clients and storage nodes over a SAN for large I/Os, as proposed

in the NASD model [41]. Alternatively, remote direct data placement mechanisms can be

applied to RPC-based data transfers over IP networks without requiring a SAN. For

example, DAFS [29,64] and NFS-RDMA [22] are two recently proposed NAS systems

based on NFS, which use RDMA to avoid memory copying and to offload the transport

protocol. These approaches promise to reduce communication overhead to levels compa-

rable to that of block-level protocols.

2.3.6.1 Remote Direct Data Placement (RDDP)

Network storage systems can be implemented based on the interfaces and semantics of

the network protocols shown in Figure 6. In particular, RPC can be implemented over a

messaging layer, which can be offloaded to the NIC along with the transport protocol, as

shown in Figure 5. The messaging layer can be accessed by the host via an interface that

exports send and receive operations [20,111]. In addition, direct placement of upper-level

protocol data payloads into their target host memory buffers can be achieved with RDDP

[48], as shown in Figure 6(a,b) and described below.

A communication layer implementing RDDP must perform the following opera-

tions:

• Separate the protocol header from the data payload,

• Match the latter with its target buffer on the receiver, and

• Deposit it directly into its target buffer.

23

To be able to match the data payload with its target buffer on the receiver, the target

buffer must be tagged and advertised prior to the I/O. Tag advertisement can be either

implicit or explicit, as shown in Figure 6, depending on whether it is performed by the

RPC protocol or explicitly by the NAS protocol. In either case, however, advertisement is

performed by an RPC. The data payload can be in-lined in the RPC message or trans-

ferred separately, using remote direct memory access.

RDDP using RPC. One way to enhance RPC with RDDP is to associate the target buffer

with an RPC-specific tag and advertise this tag to the remote host. The remote host must

include the advertised tag in the RPC that carries the data payload. The receiving NIC

must match the tag with the target buffer, separate the data payload from the protocol

headers (header splitting), and deposit the data directly into its target buffer. I will refer to

this method as RDDP-RPC.

RDDP using RDMA. Another way to implement RDDP is using RDMA, which is a net-

work data transfer protocol [21,117]. The RDMA layer exports a remote memory read and

FIGURE 6. Protocol stack with the messaging and transport protocols offloaded to the NIC.
RDDP is possible either by separating the data payload when in-lined in the RPC (a) or by
transferring data separately with RDMA (b).

implicit
advertisement

NIC NIC

RDDP−RPC

(b)

Messaging

explicit

advertisement

Network Storage

RPC

Messaging
(Send, Receive)

Transport

(Read, Write)

implicit
advertisement

(a)

Network Storage
ProtocolProtocol

RPC

Header splitting

Transport

(Send, Receive)
RDMA

24

write interface. RDMA uses host virtual memory addresses as RDDP buffer tags. An RPC

advertises the remote buffer and an RDMA moves the data to the target buffer. RDMA

requires interaction with the upper-level protocol only to initiate the RDMA operation. It

does not require interaction with the upper-level protocol at the target of the remote read

or write operation. Only the RDMA initiator receives notification of completed events. I

will refer to this method as RDMA.

User-level networking requires that RDMA use virtually addressed buffers. NICs

with RDMA capabilities use a Translation and Protection Table (TPT), which is a device-

specific page table, to translate virtual addresses carried on RDMA requests to physical

addresses. To avoid limiting the size of the TPT, NICs can be designed to store the entire

TPT in host memory, maintaining only a TLB on-board the NIC [78,117]. Systems using

RDMA need to ensure that the NIC can find virtual to physical address translations of

exported pages referenced in RDMA requests and that memory pages used for RDMA

are kept resident in physical memory while the transfer takes place. Page registration

through the OS is necessary in conventional NICs on the I/O bus, to ensure that address

translations are available and that pages remain resident for the duration of the DMA.

Both RDDP-RPC and RDMA rely on the transport protocol offloaded to the NIC.

They differ, however, in the complexity of implementation and in their generality. RDMA

is a general-purpose data transfer mechanism: it is independent of any NAS protocol and

exports a user-level API. NICs supporting RDDP-RPC are simpler to design and imple-

ment. They are customized, however, for particular NAS protocols and export a kernel

API.

2.3.6.2 Implications of RDDP Tag Advertisement

Protocols using RDDP for direct data placement typically advertise buffer tags by an RPC

on a per-I/O basis, as shown in Figure 7 (a). Advertisement of buffer tags on a per-I/O

basis, however, means that both sides are involved in setting up each data transfer. In

particular, a control transfer to the server is performed every time data transfer is needed,

increasing the per-I/O cost of the data transfer. An alternative that avoids the need for

per-I/O buffer advertisement is to cache advertisements in clients and carry file access

25

operations by RDMA only, as shown in Figure 7 (b). This enables the use of client-initi-

ated RDMA without requiring buffer advertisement, thereby avoiding RPCs on each

I/O.

2.3.6.3 Reducing Per-I/O Server CPU Overhead

The primary source of per-I/O CPU overhead is RPC processing. The main components

of RPC are event notification, either by interrupt or polling, process scheduling, interac-

tion with the NIC to start network operations or to register memory, and execution of the

file protocol processing handlers. Part of the overhead of RPC is expected to improve

with advances in core CPU technology. Other parts of the per-I/O overhead, however,

such as interrupts and device control, are due to the interaction between the NIC and the

host over the I/O bus and therefore not expected to improve as quickly as core CPU per-

formance.

1

Tagged
buffer

Tagged
buffer

and DMA−write target buffer
Tag is used by client NIC to locate

Client−initiated RDMA−read with Tag
cached from previous I/O

3

Tag is used by server NIC
to locate and
DMA−read target buffer

Server−initiated RPC−reply (RDDP−RPC)
or RDMA−write

2

(a)

Server

file cache

(b)

Server

file cache

Send RPC−request (Advertise Tag)Client

Client

If used RDMA−write, send RPC−response

FIGURE 7. RDDP methods rely on buffer tags to enable NICs to identify target buffers.
RDDP-RPC requires that tag advertisement take place on each I/O (a). Tag caching can
be used with RDMA to avoid a per-I/O RPC (b). Figure shows steps in read I/O.

26

RDMA has fundamentally lower per-I/O overhead than RPC for remote memory

transfers since it does not involve the target CPU. Reducing per-I/O overhead in file cli-

ents using RDMA is possible with techniques such as batch I/O in DAFS [29,64]. Using

batch I/O, a single RPC is used to request a set of server-issued RDMA operations, amor-

tizing the per-I/O cost of the RPC on the client. Reduction of per-I/O overhead is espe-

cially important on file servers, since servers receive I/O load from multiple clients.

Previous research examined the benefits of avoiding the control transfer inherent

in the RPC mechanism when all that is needed is to perform an I/O operation. Thekkath

and his colleagues [109] advocated the separation of data and control transfer in distrib-

uted systems. They proposed using RPC only when control transfer is necessary, other-

wise use a pure network I/O mechanism, such as RDMA. To evaluate the benefits of this

approach, Thekkath and his colleagues proposed a network file system structure based

on client-initiated RDMA. Their RDMA model, however, makes the following simplify-

ing assumptions:

• Virtual memory buffers are pinned in physical memory, at the client and the

server.

• Remote memory address mapping is based on a hash-based scheme, enabling cli-

ents to compute the remote memory location of data and metadata, avoiding the

need for buffer advertisement by RPC.

Pinned virtual memory buffers is not a realistic assumption, particularly in the case of a

file server buffer cache. In addition, hash-based remote memory mapping methods

require significant network file system re-design. In this dissertation, I propose exten-

sions to the RDMA mechanism and to the DAFS protocol, both described in Chapter 4,

that do not require these simplifying assumptions. These extensions can be easily incor-

porated into existing RDMA and network file system implementations.

27

2.3.6.4 Messaging and Transport Layers

The main purpose of the RDDP-RPC and RDMA protocols described in Section 2.3.6.1

and shown in Figure 6, is to support tagged remote direct data placement. RDMA pro-

vides for data transfer and requires the use of a separate RPC for control transfer. RDDP-

RPC, however, combines data transfer with control transfer. Control transfer requires

sending and receiving messages through a messaging protocol layer. Besides message

transmission and delivery, a messaging layer provides event notification but leaves event

handling to upper-level protocols such as RPC. An example of a protocol providing user-

level messaging and RDMA is the Virtual Interface (VI) architecture [111].

Underlying all the protocols mentioned above is a need for a transport protocol

layer that exports a reliable, in-order stream abstraction, similar to the TCP sockets inter-

face. In addition, transport protocol support for framing, such as in SCTP [105], is

required by RDDP in order to preserve upper-level protocol header and data payload

boundaries.

2.4 High-Performance Network Storage Systems

Reduction of communication overhead is one of the primary goals in high-performance

network storage system design today. In this section, I will discuss the applicability of

several overhead reduction mechanisms in network storage systems.

2.4.1 Overhead Reduction Techniques

The primary source of per-byte overhead in NAS systems is memory copying, which is

sometimes required due to duplicate buffering/caching in different software layers and

in different address spaces. Ideally, the I/O payload should be transferred directly from

its source to the destination buffer without unnecessary copying in between. In addition,

sharing data between applications and file caches should be possible without memory

copying. Extensive research on the subject of avoiding memory copies in operating sys-

tems, primarily to optimize inter-process communication, has resulted in copy avoidance

mechanisms, with Mach’s Copy-on-Write (COW) [1] as a prime example. With COW, two

28

communicating address spaces (either two user-level processes or a user-level process

and the kernel) can share mappings of the same physical memory region until the mem-

ory region is modified, at which time a physical memory copying takes place. An exam-

ple of such sharing is the BSD fork interface [70]. Data sharing in a similar way but

without a lazy copy is also possible, as is for example the case in the BSD mmap interface

[70]. Data movement by sharing VM mappings is usually necessary when both commu-

nicating address spaces wish to keep accessing the same data, for example between a

consumer of data and a cache. However, when the originator of the data does not wish to

maintain a handle to the data buffer, such as for data movement between buffering sys-

tems, another way to achieve data movement is by trading VM mappings to physical

memory regions. These possibilities based on VM re-mapping are summarized in Table 2.

Copy avoidance in network I/O is relatively easy because data caching is usually

not necessary in the network I/O path. Avoiding memory copies can be done using VM

page re-mapping and NIC support for gather/scatter sends, and by depositing incoming

data either in a page-aligned location or directly at the final destination. In the latter case,

two ways to achieve direct data placement in host memory are either within the context

of RPC (RDDP-RPC) or in combination with RDMA. Caching in the I/O data path, which

is a standard requirement in file systems, complicates things as data needs to be shared

between the data cache and the application. An NFS client using VM page-remapping

[64] is evaluated in Chapter 3.

Overhead Reduction Techniques Sharing Use

VM re-mapping

Sharing

Mappings

Explicitly UNIX mmap

Implicitly COW (UNIX fork)

Trading

Mappings
No

Move data between

buffering systems

RDDP No Direct device-application I/O

TABLE 2. Summary of overhead reduction techniques.

29

2.4.1.1 Semantics of Data Movement

The choice of copy avoidance method is influenced by the semantics of the network or

file I/O API. The API semantics determines whether the data originator retains access to

its I/O buffers after issuing the I/O operation (as in copy and share semantics) and

whether modifying the I/O buffer may result in corruption of the buffer data.

• Copy. Originator may keep accessing a data buffer after initiating I/O, without

fear of corrupting the transfer. An example of an interface with copy semantics is

the UNIX read/write API.

• Share. Originator may keep accessing a data buffer after initiating I/O, but will

corrupt the transfer if the buffer is modified prior to I/O completion. An example

of an interface with share semantics is the UNIX mmap API.

• Move. Originator loses handle to data buffer. Corruption is not possible.

Copy semantics are the most restrictive but can be emulated using an interface with share

semantics by write protecting the originating buffer for the duration of the I/O [18,33].

For the remainder of this chapter, I will focus on overhead reduction techniques in con-

junction with an API with copy or share semantics.

2.4.2 Systems Based on VM Re-mapping

Data movement using VM mechanisms can be achieved by sharing VM mappings either

for the duration of the IPC or for longer, or by trading VM mappings.

2.4.2.1 Sharing VM Mappings

Copy avoidance by sharing VM page mappings has been proposed in networking sys-

tems. One way is by using the fbufs abstraction [33,84]: with fbufs, two communicating

entities share a buffer by mapping the same physical memory in both address spaces.

Sharing with fbufs is safe and secure by raising the protection of the VM pages in the

originating address space. An alternative, similar way to use sharing of VM mappings is

30

using Brustoloni’s Transient Copy-on-Write [18] mechanism to avoid copying in the outgo-

ing data path. Copy avoidance techniques based on temporal sharing of VM mappings

do not naturally extend to file I/O [19]. The reason is that the buffer cache needs to main-

tain a valid a copy of the data, which requires a physical copy if the application modifies

the data buffer. However, this is not a problem if file I/O is performed using the UNIX

mmap interface.

2.4.2.2 Trading VM Mappings

Copy avoidance by trading VM mappings is a practical method for data movement when

sharing between the communicating buffering systems is not required, as for example is

the case between network buffers and the buffer cache in the kernel. Copy avoidance

mechanisms based on trading of VM mappings do not interoperate with the UNIX read/

write file I/O interface. Trading VM mappings between the buffer cache and the applica-

tion is still possible but should be followed by invalidation of the transferred buffer cache

blocks.

2.4.3 Systems Based on RDDP

Another way to avoid memory copies is to use NIC support for RDDP. This method,

however, does not facilitate data sharing, which is possible with VM re-mapping tech-

niques. The emergence of commercially available NICs offering user-level networking

and RDMA capabilities by means of the VI networking protocol, motivated a number of

new system designs taking advantage of these capabilities.

Block Storage. The benefits of using the VI protocol to perform block-level storage server

access has been examined by Zhou and her colleagues [122]. They found that user-level

storage access, avoidance of interrupts by use of polling, and reduction of the locking/

synchronization cost contribute to high TPC-C transaction rates with a VI-based storage

server. However, they do not compare their system to other alternatives such as iSCSI,

FibreChannel, or optimized RPC-based block-level or file-level implementations.

31

File Storage. The benefits of using VI for file-level storage have been targeted by systems

such as DAFS [29,64] and NFS-RDMA [22]. The DAFS specification is based on NFS ver-

sion 4, but departs from it in that network I/O data transfer is done by RDMA instead of

being in-lined in the RPC for transfer sizes above a certain threshold. DAFS requires that

clients decide whether RDMA is used for data transfer on a per-I/O basis. Clients also

provide the remote memory pointers to the client application I/O buffers. Other advan-

tages of the DAFS file API is the support for asynchronous I/O and for RDDP. DAFS is

targeted towards user-level client implementations as shown in Figure 8. This is possible

by taking advantage of the kernel bypass enabled by the user-level networking technol-

ogy described in Section 2.3.1. The primary benefit of this approach is increased portabil-

ity for client implementations and thus reduced dependence on particular OS vendors

offering more powerful kernel APIs than others. My implementation of a DAFS server is

described in detail in Section 6.3.3.

Just like DAFS, NFS-RDMA uses RDMA for long data transfers, but it performs

the RDMA transfer within the RPC protocol, transparently to the NFS implementation.

The advantage of this approach is that this RDMA-optimized RPC layer can be transpar-

ently usable by any RPC service besides NFS.

NIC

DAFS Client NFS Client

I/O Library

User Applications

DAFS Client Library

Network Adapter

Network Driver

VM/VFS Buf Cache

NFS

TCP/IP Stack

Network Driver

Network Adapter

User Applications

I/O Library
User Space

OS Kernel

FIGURE 8. User-level vs. kernel-based client file system structure. DAFS takes advantage of
user-level networking technology to enable a user-level file client. This differs from typical NFS
implementations, which are kernel-based.

32

RDDP-RPC has never before been used in a network storage system. It has, how-

ever, been implemented in an in-kernel global shared memory system [23]. This disserta-

tion offers the first evaluation of a network attached storage system using RDDP-RPC, in

Chapter 3.

2.5 I/O Throughput and Response Time

Throughput and response time are standard I/O metrics used to assess performance in

NAS systems. In this section I describe how CPU overhead affects these metrics.

Throughput is important for applications that can sustain several simultaneously

outstanding transfers, either by having some knowledge of future accesses, or by involv-

ing a number of simultaneous synchronous activities, such as concurrent transactions in

OLTP.

From Equation 1 on page 18 and with the per-byte component of overhead associ-

ated with memory copying eliminated using RDDP, overhead is dominated by its

per-I/O component. In addition to host CPU overhead, the performance of network stor-

age applications may also depend on the network link latency (L) and bandwidth (BWnet-

work), and the NIC transfer rate (G-1). Modern NIC architectures using DMA engines for

transfers between the network link and host memory ensure that the NIC is not the band-

width bottleneck for messages larger than a certain threshold, i.e., G-1 > BWnetwork.

The I/O throughput achievable with a stream of I/O requests, each of size m, can

be limited either by the network or by the (client or server) CPU:

(EQ 2)

For large I/O blocks, even a low I/O request rate can saturate the network, and

the throughput is determined by BWnetwork. For small I/O blocks, however, the CPU is

more likely to become the resource limiting throughput. This is because the CPU is satu-

rated processing RPCs at lower I/O rates than necessary to keep the NIC data transfer

Throughput m() min BWnetwork
m

oper-I/O
--------------------,

=

33

engine fully utilized. It is therefore important to reduce the per-I/O overhead for small

file accesses. A previous study found that file server throughput in NFS workloads mod-

eled by SPECsfs is most sensitive to host CPU overhead [67].

Besides throughput, response time is also important in transactional-style net-

work storage applications that perform short transfers and cannot hide network latency

using read-ahead prefetching or write-behind policies. Such applications usually have

unpredictable access patterns involving small file blocks or file attributes. Response time

is the time needed to complete a remote file I/O request and comprises the transmission

round-trip time on the network link, the NIC latencies, control and data transfer costs on

the host I/O buses, and interrupt and scheduling costs in the case of remote procedure

call-based I/O [110]. For a heavily loaded server, response time increases by the amount

of queueing delays [67].

2.6 Effect of the OS Structure

Extensive research on system support to enable I/O-intensive applications to achieve

performance close to the limits imposed by the hardware, suggests two key areas: Low

overhead I/O protocols and the flexibility to customize I/O policies to the needs of appli-

cations. One way to achieve both is by supporting user-level access to I/O devices

enabling user-level implementations of I/O protocols. User-level networking is an example

of this approach. In this dissertation, I argue that the real key to high performance in I/O-

intensive applications is user-level file caching and network buffering, both of which can be

achieved without user-level access to NICs.

2.6.1 Flexibility and the Role of the API

Since the early 1980’s, it was understood that a fixed set of OS abstractions with a fixed

API as envisioned in the original UNIX system design [91] could not accommodate the

needs of all applications [106]. Instead, applications need the flexibility to customize or

add new OS abstractions and to specify the I/O policies that best suit their resource use.

Microkernels such as Mach [1], component-based systems such as Pebble [39], extensible

operating systems such as SPIN [13] and VINO [97], and more radical architectures such

34

as the Exokernel [53], aim at providing applications with control over policies. Despite

their different approaches to extensibility, a common challenge these systems faced was

the design of appropriate APIs. The primary goal in designing an API was to offer the

necessary degree of flexibility required by I/O-intensive applications. Examples of par-

ticular interest are file system and virtual memory prefetching and replacement policies,

as well as customizations of the network protocol stack. SPIN and VINO enable such

optimizations by inserting extension code in policy points in the kernel. The Exokernel

approach proposed safe multiplexing of hardware resources such as CPU cycles and TLB

entries, disk blocks, and network packets, to user processes, which are expected to imple-

ment all OS abstractions in libraries. In this dissertation, I argue that the cost that all these

systems paid to support flexible APIs is too high in terms of system complexity. A single

API that offers the appropriate degree of flexibility is possible and is a superior solution.

A secondary goal of extensible systems is to enable rapid deployment of new

operating system services or services that are too application-specific to be included in

mainstream operating systems. One example is a transactional memory service, imple-

mented as an extension to Mach [36] and SPIN [94]. Once developed and tested, however,

such services can be included in the kernel in the form of dynamically loadable modules,

a kernel extension mechanism already available and in use in a number of mainstream

kernels [70]. A similar argument against the use of extensible operating systems, except

for kernel debugging and development, was made by Druschel and his colleagues [32],

who proposed focusing on designing appropriate kernel-level APIs. To support this

argument, they designed IO-Lite, a unified buffering and caching system implemented in

the kernel and exporting an API with move semantics [84]. IO-Lite, however, makes no

special provisions for application-specific I/O policies and removes control of the data

layout from applications.

Any API to a kernel abstraction should offer both proactive and reactive control

over I/O policies. For example, in the case of a kernel file cache, a hint-based API such as

madvise can inform the cache in advance (proactively) about prefetching and replace-

ment policies. An additional (reactive) mechanism is required to propagate cache events

35

that require eager handling by the application, such as cache write-back activity. One

such mechanism applicable to mainstream operating systems, is kernel upcalls to user-

level handlers [26]. Small and Seltzer [102], however, found that upcalls may not be a

cost-effective solution in many platforms. User-level caching of file and network data and

a low-level kernel I/O API providing access to file and network socket abstractions is a

solution that avoids these problems.

2.6.2 Support for Efficient Servers

User-level networking removes the kernel from the critical communication path and

enables user-level implementations of low overhead networking protocols, such as

Active Messages [114], as well as application-specific customization of popular protocols,

such as TCP/IP. Integration with the network protocol yields significant performance

benefits in the case of Cheetah [40], a Web server implemented in user space and sup-

ported by the Xok Exokernel. Another benefit of user-level networking is lower overhead

and lower latency in responding to HTTP events. User-level networking is possible with

user-level network interfaces [21,111,113]. Another way to achieve these benefits is by

implementing the server in the kernel, as in the case of AFPA [51]. The disadvantage in

both cases is losing the benefit of protection and fault isolation that is possible when the

server and the network protocol are in separate address spaces.

Good Use of Existing APIs. User-level services such as the Flash Web server [85], which

use existing operating system APIs, rely on the memory-mapped interface to files, non-

blocking interfaces, and user-level caching of several structures to avoid inefficiencies

when involving the OS. They cannot, however, customize the TCP/IP stack, except

through parametrized socket interfaces.

TCP/IP offload. Another approach to networking overhead reduction is to offload the

TCP/IP stack to the NIC. The host interface to a TCP-offload NIC can be the queue pair

(QP) abstraction [20,111], which can be used to implement lightweight communication

primitives, such as Active Messages [114]. A TCP-offload NIC, in addition, enables a net-

36

work I/O model that allows direct transfers between the network and application buff-

ers, referred to as remote direct data placement (RDDP) [48]. A disadvantage of this

approach, however, is that it makes it harder to customize the TCP/IP protocol. For

example, application-specific optimizations such as knowledge-based packet merging [40]

require interaction with the TCP-offload NIC.

Copy Avoidance. One of the major sources of host overhead is memory copying for data

movement between software interfaces. Previous research proposed a combination of

VM re-mapping techniques and NIC support to avoid memory copies. I/O-Lite [84] is a

unified buffering and caching system that requires a new API with move semantics. Genie

[18] tries to avoid copies in the network I/O path without changing the UNIX (POSIX)

interface. Genie is interoperable with the mmap file API [19], but not with the read/

write file API. Copy avoidance is also possible with RDDP support, either through

remote direct memory access (RDMA) protocol, or with the RDDP-RPC mechanism dis-

cussed in Section 2.3.6.1. DAFS [29,64] is a network attached storage system optimized

for user-level networking and RDMA. Another approach to avoid copies in the disk-net-

work path is to use complex APIs such as sendfile. In this dissertation, I argue that a

simple read/write API can be equally effective, despite the additional user-kernel

boundary crossing. It also reduces overall system complexity. This is somewhat similar to

the RISC vs. CISC argument [44].

Control over Caching Policy. The existing POSIX APIs do not provide full support for

controlling all caching policies. Ideally, an I/O API should offer control over read-ahead,

write-back and page replacement. The mmap interface implementations in common use

hide caching policies from applications; some control, however, is possible with OS sup-

port, through prefetch and release system calls [76]. Another way to achieve prefetching

with mmap, is to use mincore and memory touching by helper threads to avoid blocking

the main process on page faults, a method used by the Flash Web server [85]. However,

there is no mmap interface to control write-back. This is a serious limitation for applica-

37

tions such as Berkeley DB [81], which require control over write-back to implement write-

ahead logging (WAL). To implement WAL, Berkeley DB has to resort to user-level cach-

ing and to use the read/write I/O interface. A problem with this approach is duplicate

caching in the user and kernel file caches, as well as the lack of control over the kernel

I/O policies. An alternative way to achieve user-level caching is with DAFS [64], a new

network attached storage system that uses RDDP to bypass the OS. The benefits of using

DAFS with Berkeley DB are exhibited in Chapter 3 and in a recent study [64]. DAFS is

intended to run over user-level NICs. In this dissertation, however, I demonstrate that

user-level caching is possible and equally effective without user-level NICs.

2.7 Summary of Systems Evaluated in this Dissertation

Table 3 summarizes the system prototypes evaluated and compared in this dissertation.

In Chapter 3, I compare five network file systems. These are NFS, NFS pre-posting, NFS

hybrid, DAFS, and NFS re-mapping. All NFS variants derive from the same implementa-

tion of NFS Version 3 [86]. In Chapter 4, I evaluate Optimistic DAFS and compare it to

DAFS.

Network I/O
Mechanism NAS System Uses RDMA Per-I/O Tag

Advertisement

Header Splitting NFS re-mapping No No

RDDP-RPC NFS pre-posting No Yes

RDMA NFS hybrid, DAFS Yes Yes

Optimistic RDMA Optimistic DAFS Yes No

TABLE 3. Network I/O mechanisms and NAS systems evaluated in this dissertation. RDDP
mechanisms target per-byte overhead. Optimistic RDMA combines RDDP and per-I/O
overhead reduction.

38

39

Chapter 3

Application Performance

This chapter focuses on the performance of applications that perform network file access

using large I/Os. This is an important class of applications that includes streaming multi-

media and certain database workloads, for example, those involving complex query pro-

cessing (e.g., join operations). The performance of such applications depends on the

balance between their computational and communication requirements, as analytically

shown in Section 3.1. Improving the performance of applications that perform large I/Os

depends critically on the per-byte overhead reduction achievable through copy avoid-

ance with the methods described in Section 3.2. The potential for overhead reduction

with each method is illustrated in the experimental evaluation of Section 3.3.

3.1 Effect of Communication Overhead on Application Performance

For the purpose of this study, I model an application as a filter that processes an incoming

stream of records. In this model, the application is reading records from a file server over

the network using large I/Os. The I/O block size is independent of the record size. I

assume that either the application or the file system performs sufficient prefetching of

I/O blocks to ensure that either the network link or the client CPU (or both) are saturated

at peak performance. The server is practically never a bottleneck in such applications due

to the large I/O size used. Performance is measured in terms of the throughput achieved

(records/s or MB/s).

40

The application is modeled by a single parameter, its CPU consumption per MB of

data a s/MB, which is assumed to be constant over time. The CPU overhead of the net-

work file system is o s/MB and the network can transfer data at a peak rate of 1/G MB/s1

[4,28], as per the network model of Section 2.2. The application performance can be

expressed as

(EQ 3)

depending on whether the network link (1/G) or the client CPU (1/(a+o)) turns out to be

the limiting resource.

In the analytical calculations that follow, I refer to two network file system setups

with different overhead parameters olow and ohigh (olow < ohigh). One of the systems (olow) is

able to reduce its per-byte overhead using one of the mechanisms described in Chapter

2, whereas the other (ohigh) incurs the overhead of memory copying for data movement.

Figure 9 shows the client throughput, calculated analytically using Equation 3, as a func-

tion of the network file system overhead for three characteristic values of the application

processing rate a: A heavily CPU-bound client (very large a, Figure 9(A)) achieves low

throughput, practically independent of the network file system overhead. An I/O-bound

Parameter Description

a
Application consumption of client CPU per MB of data (s/MB).
The inverse of a is the application record processing rate.

G
Gap per byte (s/MB). The inverse of G is the peak network
bandwidth for large messages.

olow
Network file system overhead when using some form of an
overhead reduction mechanism (e.g., RDDP)

ohigh
Network file system overhead when incurring the cost of mem-
ory copying for data movement.

TABLE 4. Summary of model parameters.

1. The discussion in this section assumes that the application performs I/O using large block sizes, for which
the network can reach its peak asymptotic bandwidth. For the Myrinet network used in this dissertation, this
is achievable for 4KB or larger blocks, as can be experimentally verified using a low overhead, raw commu-
nication benchmark.

min
1
G
---- 1

a o+
-----------,

 MB/s

41

client (small a, Figure 9(C)) achieves throughput close to the peak (1/G) offered by the

network link for a range of (small to moderate) values of overhead. The effect of over-

head becomes maximal for a client with balanced CPU and I/O usage (Figure 9(B)), as I

will analytically show in the remainder of this section.

Using Equation 3, I obtain a qualitative result on the benefit of lowering the net-

work file system overhead (o) for a particular application (a). I am interested in determin-

ing under which conditions the benefit of lower overhead becomes maximal. This benefit

can be expressed as

(EQ 4)

The maximal benefit is achieved for a value of a that maximizes Throughputlow and

simultaneously minimizes Throughputhigh. From Equation 4, this value is a = G - olow.

This is the largest a (bounded above by the capacity of the CPU) for which the network

link is saturated. The maximal such value is clearly the one that saturates the client CPU.

Consequently, the maximal benefit is obtained when both CPU and network link

resources are simultaneously saturated. For this value of a, the throughput ratio becomes

(EQ 5)

Throughputlow
Throughputhigh

min
1
G
---- 1

a olow+
--------------------,

min
1
G
---- 1

a ohigh+
---------------------,

---=

FIGURE 9. Effect of overhead under different application characteristics. (A) CPU-bound, (B)
balanced CPU and I/O usage (a = G - olow), and (C) I/O-bound.

1/(a + o)

Throughput (MB/s)

Overhead (s/MB)o o
low high

1/G

(B) a = G − o
low

Overhead (s/MB)

Throughput (MB/s)

1/(a + o)

o o
low high

1/G

(A) large a

1/(a + o)

Overhead (s/MB)

Throughput (MB/s)

1/G

o o
highlow

(C) small a

Throughputlow
Throughputhigh

a G olow–=

1 1
G
---- ohigh olow–()˙⋅+=

42

The maximal relative performance improvement is therefore linearly dependent on the

amount of overhead reduction.

3.2 Low Overhead File I/O

File I/O in traditional operating systems is staged in the file system buffer cache, and

memory copies are usually necessary to move data between network buffers, the file sys-

tem cache, and application buffers. One way to avoid copies in network file systems is

using direct transfer file I/O. This differs from what is commonly referred to as direct file I/O

and associated with the O_DIRECT flag of the POSIX open system call. While direct file

I/O implies a disabled file cache, which does not necessarily reduce memory copying,

direct transfer file I/O additionally implies copy-free data movement between the stor-

age device and user-space buffers.

In the following sections, I outline the use of two prominent network I/O models

in reducing the overhead of network file I/O. These are (a) direct data transfer between

the NIC and application space buffers using remote direct data placement (RDDP) (Sec-

tion 2.3.6.1), and (b) copy avoidance using VM re-mapping (Section 2.4.2.2). Both net-

work I/O models require new support at the NIC. Both can be implemented within a

kernel-based file client. While a kernel implementation does not reduce system-call costs,

there is no need to modify existing applications or even to re-link them if the kernel API

is preserved. However, it does require new kernel support, which is a barrier to fast and

reliable deployment. One of these mechanisms, remote direct memory access (RDMA),

enables a user-level file client structure, as for example in the case of the direct access file

system (DAFS) described in Section 2.4.3.

Direct transfer file I/O is easily achievable in direct-attached or SAN-based stor-

age systems by programming the disk controller to DMA the requested data blocks

directly to application buffers. Direct transfer file I/O in network file systems is more

challenging, as general-purpose NICs are not aware of upper-level transport protocol

packet formats and their semantics, and thus cannot usually be programmed to DMA the

data payload directly into application buffers.

43

3.2.1 Direct Transfer File I/O Using RDDP

One way to achieve direct transfer file I/O is with NIC support for RDMA or RDDP-

RPC. File system clients must be modified so that their I/O operations bypass the buffer

cache and propagate memory buffer information to the NIC, as shown Figure 10. A

drawback of using an RDDP mechanism is the need to register and pin user-level buffers.

In the case of kernel file clients, registration has to be performed by the kernel client, pos-

sibly on-the-fly and for each I/O, to be transparent to user-level applications. One prob-

lem with this requirement is the possibility that the kernel may be unable due to per-

process resource limits to pin the user-level buffers required for the transfer. Besides

introducing additional failure modes, the need for on-the-fly memory registration and

de-registration introduces a performance penalty in the data transfer path.

receiver buffer
Server: RDMA into

Post receive buffer
with NIC

���������	��
��������������������
�������

pointer to request RPC

��������������������
�������
Pin and register

Send RPC request

Wait for RPC response

RPC response signals
I/O completion

���	������� �	�!���������#"$����%&���

��������������������
�������

receiver buffer
NIC: DMA payload into

NFS pre−posting NFS hybrid

FIGURE 10. NFS client actions for a read request with either RDMA or RDDP-RPC.

44

3.2.1.1 Direct Transfer File I/O Using RDMA

In this method, tag advertisement is performed using RPC but data transfer is performed

using RDMA. RDMA imposes no buffer size or alignment restrictions. Direct transfer file

I/O based on RDMA is used in the recently proposed DAFS [29,64] and NFS-RDMA [22]

systems. DAFS is a file access protocol that performs data transfers using server-initiated

RDMA read and write operations, after explicitly advertising buffer addresses using

RPC. In Sun’s NFS-RDMA, buffer addresses are implicitly advertised by the RPC proto-

col. NFS-RDMA uses client- or server-initiated RDMA read operations issued from

within the RPC protocol to pull data from remote buffers.

RDMA requires registration and pinning memory buffers on both the client and

the file server. This is a disadvantage not found in RDDP-RPC, which requires registra-

tion and de-registration only on the receiving side (e.g., the client in the case of reads). An

advantage of RDMA, however, is that the frequency of host interaction with the NIC can

be reduced by caching registrations at the client and the server. With RDDP-RPC, NIC

interaction is required on each I/O to pre-post application receive buffers.

In Section 3.3, I evaluate the performance of a kernel-based NFS-derivative system

that performs data transfers using server-initiated RDMA. I refer to this system as NFS

hybrid because I consider it to be a hybrid between NFS-RDMA and DAFS. The reason is

that NFS hybrid performs data transfers using RDMA under the POSIX API, just like

NFS-RDMA. However, just like DAFS, it modifies the NFS protocol to pass client buffer

pointers to the server over the wire. My implementation of NFS hybrid for FreeBSD 4.6

over the Myrinet LANai is described in detail in Section 6.3.2.

3.2.1.2 Direct Transfer File I/O Using RDDP-RPC

The RDDP-RPC protocol enables the NIC to identify and separate NAS and RPC headers

from the data payload and deposit the latter directly into the target buffer on the host

using DMA. This dissertation presents the first evaluation of an NFS system using

RDDP-RPC. In Section 3.3, I refer to this system as NFS pre-posting. My implementation of

45

RDDP-RPC for the Myrinet LANai and NFS pre-posting for FreeBSD 4.6 is described in

detail in Section 6.2.

3.2.2 Direct Transfer File I/O using VM Re-mapping

Using an RDDP mechanism is one of several alternatives for improving access perfor-

mance of network storage. In this section I consider a prominent competing approach as

a basis for the empirical comparisons in Section 3.3. This approach uses VM re-mapping,

which is described in Section 2.4.2, to reduce the overhead of data movement in a kernel-

based NFS client. Like systems depending on RDDP, meaningful NFS enhancements of

this sort also rely on new support in the NIC. Section 6.1 describes an implementation of

a FreeBSD NFS client that uses VM re-mapping. This implementation relies on appropri-

ate Myrinet LANai NIC firmware modifications for header splitting. The structure of this

NFS client, which I refer to as NFS re-mapping in the experiments of Section 3.3, is shown

in Figure 11.

In the remainder of this chapter, I present an experimental performance evalua-

tion of (a) three systems based on RDDP mechanisms (DAFS, NFS hybrid, NFS pre-post-

Send RPC request

Wait for RPC response

RPC response signals
I/O completion

NIC: DMA payload into
aligned kernel buffers

���������
	����������

into application buffers

NFS re−mapping

FIGURE 11. NFS client actions for a read request with VM re-mapping. The NIC splits the
protocol headers before performing the DMA of the payload into aligned kernel buffers.

46

ing), (b) a system based on VM re-mapping (NFS re-mapping), and (c) standard NFS. All

systems were evaluated on a high-speed networking infrastucture using commodity PCs.

3.3 Experimental Results

The experimental setup consists of a cluster of four PCs, each with a 1GHz Pentium III

processor, 2GB SDRAM and the ServerWorks LE chipset. The PCs are connected via a

2Gb/s Myrinet switch over full-duplex ports. Each NIC has a 200MHz LANai9.2 net-

work processor with 2MB of on-board SRAM in 66MHz/64-bit PCI slots. PCI bus

throughput is measured at 450MB/s. All PCs run FreeBSD 4.6. Myrinet offers native sup-

port for the GM communication library [78]. GM is a user-level, event-driven networking

library that supports messaging and remote memory read and write operations. The

LANai drivers and firmware are based on the GM-2.0 alpha1 release featuring support

for remote direct memory access get and put primitives. The VI library is based on the

Myricom VI-GM 1.0 release. This is a host-based user-level library mapping VI opera-

tions to GM operations and used by the user-level DAFS client [64]. A kernel port of the

VI library supports the DAFS server [65]. Ethernet emulation is implemented in the stan-

dard LANai GM-2.0 firmware and drivers and supports UDP and IP checksum offload-

ing and interrupt coalescing. The Ethernet packet MTU is 9000 bytes. GM data transfers,

however, are fragmented and reassembled by the LANai using a 4KB MTU.

The GM driver and firmware are modified as described in Section 3.2 for RDDP-

RPC. NFS pre-posting and NFS hybrid are implemented by modifying the FreeBSD 4.6

kernel, as shown in Figure 2. NFS pre-posting uses the RDDP-RPC device interface. NFS

hybrid uses GM put to perform server-initiated RDMA writes to client memory buffers.

NFS re-mapping is implemented by modifying the FreeBSD 4.6 kernel as shown in

Figure 11. The LANai firmware is modified to perform header-splitting and to DMA the

payload in page-aligned 8KB network memory buffers.

Given the very low transmission error rates of Myrinet, I use UDP as a transport

protocol to avoid the higher overhead of TCP. This configuration approximates the bene-

fits of offloading TCP if it were supported by the NIC. Table 5 reports baseline network

performance of the protocols used over the Myrinet network. These numbers are col-

47

lected using the gm_allsize, pingpong and netperf programs for GM, VI-GM and

UDP/IP protocols, respectively.

3.3.1 Client Overhead

In this section, I present measurements of read throughput with a simple client and appli-

cation performance with the Berkeley DB database [81].

3.3.1.1 Client Read Throughput

This experiment measures file read throughput with a simple client performing asyn-

chronous read-ahead without any data processing. I compare DAFS to standard NFS and

to three optimized NFS implementations: NFS pre-posting, NFS hybrid, and NFS re-

mapping. The client reads data sequentially, using a varying block size, from a 1.5GB file

warm in the server file cache. Read-ahead prefetching at the application level is done via

the DAFS and POSIX aio APIs. NFS is mounted with the read-ahead parameter set to

zero in all cases to avoid kernel prefetching using the NFS I/O daemons (nfsiod). UDP/

IP is modified so that the NFS transfer size can match the application block size up to

512KB.

Figure 12 shows that for block sizes larger than 32KB DAFS can sustain read

throughput of about 230 MB/s. As shown in Figure 13, it achieves this throughput con-

suming less than 15% of the client CPU for 64KB or larger blocks by offloading the trans-

port to the NIC and by being able to avoid all memory copies. Per-I/O overhead is

progressively better amortized, since the unit of data movement always matches the

application block size. For small block sizes, DAFS achieves low per-I/O overhead by

Protocol Roundtrip (us) Bandwidth
(MB/s)

GM 23 244

VI 23 (poll)

 53 (block)

244

244

UDP/Ethernet 80 166

TABLE 5. Baseline Myrinet Performance. One-byte roundtrip time.

48

using polling instead of interrupts. Similarly to DAFS, NFS hybrid sustains 230 MB/s for

block sizes of 32KB or larger with CPU utilization dropping rapidly with increasing block

size. However, even though both DAFS and NFS hybrid use RDMA, NFS hybrid uses

more of the client CPU due to its higher per-RPC overhead. This is because NFS hybrid

incurs the overhead of per-RPC interrupts whereas DAFS is able to avoid it by user-level

polling. In addition, DAFS benefits from its integrated design that leads to shorter code

paths compared to the general-purpose NFS implementation. Both DAFS and the NFS

hybrid clients avoid registering application buffers with the NIC on each I/O by caching

registrations.

NFS pre-posting sustains 235 MB/s for block sizes 32KB or larger, with 8KB IP

fragments. It slightly outperforms systems using RDMA because the size of Ethernet

packets (8KB) is twice the size of the 4KB GM fragments. The decline in the client CPU

utilization is eventually limited for large block sizes as the total number of IP fragments

is independent of the block size. NFS pre-posting performs transport-level processing

0

50

100

150

200

250

4 8 16 32 64 128 256 512

R
ea

d
 th

ro
ug

hp
ut

 (M
B

/
s)

Block size (KB)

NFS pre-posting

s

s

s

s s s s s

NFS hybrid

5

5

5

5
5 5 5 5

5

DAFS

n

n

n

n
n n n n

NFS re-mapping

;

;

;

;

; ; ; ;

;

NFS

G

G G G G G G G

FIGURE 12. Client bandwidth performing read-ahead with variable application I/O block
size.

49

only on the last IP fragment of a UDP datagram. However, the LANai still notifies the

host on each incoming IP fragment. Even with interrupt coalescing, this incurs a non-

negligible host overhead due to IP fragmentation and reassembly. In addition, the NFS

pre-posting client interacts with the NIC for pre-posting application receive buffers on

each I/O.

NFS re-mapping sustains 235 MB/s for block sizes 32KB or larger, showing that

VM re-mapping is an effective overhead reduction technique. Just like NFS pre-posting,

data transfer with NFS re-mapping is performed in 8KB IP fragments. Unlike NFS pre-

posting, however, NFS re-mapping performs transport-level processing of all IP frag-

ments. The additional overhead of NFS re-mapping, compared to NFS pre-posting, is the

UDP/IP processing of IP fragments and VM re-mapping costs. This additional overhead

is reflected in the CPU utilization graph, showing a saturated client CPU for all NFS I/O

block sizes2. An exact break-down of the NFS re-mapping overhead between transport

FIGURE 13. Client CPU utilization performing read-ahead with variable application block
size. One way to look at these curves is as corresponding to per-byte (NFS), per-page (NFS re-
mapping) and per-I/O (DAFS, NFS pre-posting, NFS hybrid) costs.

0

25

50

75

100

4 8 16 32 64 128 256 512

C
lie

nt
 C

PU
 U

ti
liz

at
io

n
(%

)

Block size (KB)

NFS pre-posting

s s s s

s

s

s
s

NFS hybrid

5 5 5

5

5

5

5

5

NFS, NFS re-mapping
n n n n n n n n

DAFS

; ;

;

;

;

;
; ;

50

(UDP/IP) and VM re-mapping costs would require non-intrusive instruction profiling,

which is not available on the Pentium platform. Statistical kernel profiling [69], however,

shows that, contrary to earlier claims [108], VM re-mapping costs (invalidating TLB

entries, adding new TLB entries) account for only about 10-20% of the client CPU utiliza-

tion. The VM re-mapping overhead, however, could be higher in a symmetric multipro-

cessor architecture due to the higher cost of TLB shoot-down, which has to be

broadcasted on the system bus.

Standard NFS achieves a maximum throughput of 65 MB/s, limited primarily by

memory copying, which saturates the client CPU.

3.3.1.2 Berkeley DB Performing Asynchronous I/O

In this experiment, we3 use Berkeley DB to show the effect of client CPU overhead in

application performance. Berkeley DB [81] (DB) is an embedded database management

system that provides recoverable, transaction-protected access to databases of key/data

pairs. It is linked into the application address space and maintains its own user-level

cache of recently accessed database pages. DB is modified to asynchronously prefetch

database pages when it is possible to pre-compute a set of required pages.

In this experiment, an application uses DB to compute a simple equality join with

60KB records. The result of the join is a large list of keys, retrieved from the database file

located on the server. DB pre-computes the list of required pages and performs read-

ahead by maintaining a window of outstanding I/Os. To vary the computational require-

ments of the application, we increase the amount of data copied from the DB cache into

the application buffer for each record, from one byte to 60KB, and report the application

throughput in Figure 14. The throughput sustained by the application when there is little

memory copying is close to the wire throughput for all systems except NFS re-mapping

2. I attempted to use the Alpha processor’s low overhead hardware support for profiling, in a manner simi-
lar to its use in Chase et al. [23], with limited succcess. The problem was that, under FreeBSD, traps into PAL-
code, used for context switching, incorrectly appear to account for a large number of cycles, skewing results.

3. This experiment was performed in collaboration with Sasha Fedorova who was responsible for setting up
Berkeley DB in each case.

51

and standard NFS. NFS pre-posting performs slightly better than the other systems, as is

also the case in Figure 12. As the amount of copying increases, performance becomes lim-

ited by the client CPU. Relative system performance is inversely proportional to each sys-

tem’s client CPU overhead for 64 KB network I/O transfers (Figure 13), as was

analytically predicted in Equation 3.

An important point from Figure 14 is that the relative benefit of low overhead

implementations diminishes when the application is compute-bound (right end of

Figure 14). As application processing time per block decreases (from right to left in

Figure 14), reducing I/O overhead yields progressively higher returns because the I/O

overhead is a progressively larger share of total CPU time.

3.4 Summary

In this chapter, I focused on end-system overhead reduction in NAS applications. I

showed that three network I/O mechanisms, RDMA, RDDP-RPC (pre-posting), and

header-splitting with VM re-mapping, enable file access throughput that saturates a

FIGURE 14. Berkeley DB performing asynchronous I/O using 64KB I/O blocks.

0

50

100

150

200

250

0 8 16 32 64

D
B

 th
ro

ug
hp

ut
 (M

B
/

s)

Amount of data processed (KB)

NFS pre-posting

s

s

s

s

s

s

s

NFS hybrid
5 5

5

5

5

5

5

DAFS
n n

n

n

n

n

n

NFS re-mapping
;

;

;
; ;

; ;

NFS
G G G G G G G

52

2Gb/s network link when performing large I/Os on relatively slow, commodity PCs. In

addition to raw file access performance, measurements of a throughput-intensive Berke-

ley DB workload show that, as predicted in Section 3.1, low-overhead implementations

deliver the strongest benefit for balanced workloads, in which application processing sat-

urates the CPU when I/O occurs at network speed.

53

Chapter 4

Server Performance

High-performance network attached storage servers are typically dedicated systems

serving I/O requests from multiple clients. By not having to share the CPU with applica-

tions, NAS servers have more resources available for serving client I/O load. This usually

means that it is either the client CPU or the network link that limits performance in the

case of a single or small number of clients. For workloads involving many clients and

small I/Os (e.g., 4KB), however, such as in departmental office and engineering applica-

tions and in remote memory paging [38], performance can be limited by the server CPU,

due to the per-I/O control transfer and processing overhead of RPC. Even when RDDP is

used for data transfer, existing systems use RPCs for buffer tag advertisement on a

per-I/O basis, as described in Section 2.3.6.2. These RPCs contribute to per-I/O CPU

overhead, reducing server throughput and increasing response time in workloads domi-

nated by small I/Os. One way to address these problems is to use client-initiated RDMA,

without wrapping the RDMA in an RPC to prepare the server on a per-I/O basis.

Client-initiated RDMA without per-I/O RPC, however, introduces a number of

challenges: First, by not involving the server CPU on a per-I/O basis, the standard file

access control mechanisms are bypassed. Since clients are, in general, expected to be

mutually untrusted, new security mechanisms are necessary to enforce access control

without RPCs. Second, since the remote memory buffers are not prepared prior to the

54

RDMA, there is a possibility of remote page faults or other exceptions induced by RDMA

access. Third, using an RPC for each I/O enables file-level locking for the duration of the

I/O. Client-initiated RDMA, however, changes the atomicity of file access, as memory

hardware can only guarantee file access atomicity at the level of a memory word or cache

line.

In Section 4.1, I discuss the security issues underlying the RDMA model, as well

as the unique challenges of client-initiated RDMA without RPCs on a per-I/O basis. In

Section 4.2, I introduce Optimistic RDMA, my extension to the RDMA model that

addresses the transport-specific challenges described above. The remaining challenges

are addressed in the design of Optimistic DAFS, my extension to DAFS described in Sec-

tion 4.3.

4.1 RDMA Security

The three main concerns in RDMA are access control, authentication, and encryption, in

order of increasing safety guarantees. I define these safety and security issues in more

detail below:

• Access Control. Remote memory accesses are permitted only if these remote mem-

ory segments accessed have been explicitly exported by the remote node.

• Authentication. Data originates from a client whose identity can be verified.

• Encryption. Data cannot be observed in cleartext while in-transit on the network.

The authentication and encryption issues can be addressed in the transport protocol

underlying the RDMA protocol. For example, IPsec [56] is one way of doing it when

RDMA is layered over IP.

4.1.1 Access Control

Existing protocols have different ways of achieving access control. For example, the VI

protocol associates exported segments and VI endpoints with a Process Tag (PTag) identi-

55

fier. Access is possible only if the Ptag of the memory region accessed matches the Ptag of

the VI over which the access is attempted. This is equivalent to enabling an application to

access all memory that is mapped on the address space of the application’s process. With

this mechanism, an RDMA operation succeeds if

• The memory region has been exported, which can be verified at the NIC, and

• The access is over the VI connection that has been associated with this memory

region.

However, just like applications need to take additional care (e.g., use type-safe lan-

guages) to avoid wild pointer dereferences, this VI mechanism allows the possibility for

accidental access to exported memory regions. The reason is that the VI protection model

is too coarse, enabling access uniformly to all memory exported over a particular VI.

One way to enforce a more fine-grain model is to associate a protection key [21,49]

(PKey) with each exported memory region. A PKey should be a large (128-160 bit) num-

ber drawn from a sparse key space in a way that avoids collisions and prevents exhaus-

tive search. One possibility is to use message authentication codes (MAC) [57], computed

over a quantity identifying the memory region, such as the tuple (address, length).

Although per-region PKeys are an improvement over per-VI PTags, neither PKeys nor

PTags ensure authentication.

4.1.2 Authentication

Authentication involves proving that a client attempting an RDMA to a remote memory

region was indeed granted access to that memory region. Associating a single public key

PKey with a memory region does not guarantee authentication, since an adversary gain-

ing access to this key can successfully access the remote memory region. Authentication

can be achieved in two ways:

• Authenticating all packets communicated over a network connection. This

should be at the network or transport layer and be transparent to the RDMA pro-

56

tocol. A secret key should be shared between client and server, just like in the case

of IPsec AH-based authentication. Authenticating all packets is expected to have a

higher cost than authenticating RDMA operations only.

• Authenticating RDMA operations only. A secret key (PKeyS) should be associ-

ated with each memory region and shared between the server and the client. These

keys should be given to the client over a secure channel. The per-region key PKeyS

is used to compute a keyed-hashed MAC (HMAC) over the tuple (address, length,

timestamp); the timestamp guards against replays of RDMA operations. The

HMAC is computed at the initiator of the RDMA operation, it is sent alongside

with rest of the RDMA request, and re-computed and validated at the target of the

RDMA operation. In addition to authentication, PKeyS provides per-region access

control and thus supersedes PKey. The difference between PKeyS and the PKey is

that PKeyS is secret whereas PKey is public and transferred on the wire. A compli-

cation of this mechanism is the need for a secure channel to hand out per-region

PKeyS keys.

4.1.3 Encryption

Data encryption can be enforced via a secret key cryptography algorithm such as DES or

triple DES (3DES), as in IPsec EPS-based encryption.

4.2 Optimistic RDMA

In this section, I introduce Optimistic RDMA (ORDMA), a novel network I/O mecha-

nism that enables client-initiated RDMA without the need for an RPC on a per-I/O basis.

The following design challenges must be addressed in an ORDMA mechanism:

Security. To avoid accidental corruption or malicious buffer access by mutually untrusted

clients, ORDMA uses the cryptographic methods described in Sections 4.1.1, 4.1.2 and

4.1.3. Since the server is allowed to revoke access privileges to an exported memory seg-

ment, for example, when protecting or invalidating VM page translations, there is a need

57

to provide a mechanism to handle remote memory access faults. The next paragraph

examines two possibilities for such a mechanism and describes the one adopted by

ORDMA in more detail.

Handling remote memory access faults. Client-initiated RDMA may be faced with a

number of exception conditions at the target NIC. For example, some of the targeted VM

pages may no longer be resident in physical memory. In addition, targeted pages may be

locked or protected. In the case of non-resident pages, one option is to enable the NIC to

trigger a page-in disk I/O. However, this solution significantly increases the complexity

of the NIC design and most importantly, it may not be supported by the OS. The

ORDMA model enables clients to initiate RDMA that is guaranteed to succeed only if the

target buffer is valid and exported by the server and is neither locked nor protected. If

any of these conditions are not met, a recoverable access fault is signaled to the client by a

network exception. After catching an ORDMA exception, a client handler may recover by

retrying the access using an alternate access method, such as RPC.

Two important design choices in any ORDMA-based system are: (a) how a client finds

references to server memory buffers, and (b) how a client handles exceptions due to

failed ORDMAs. Section 4.3 describes the choices I have made in the Optimistic Direct

Access File System. In the following section, I discuss the safety requirements for RDMA,

existing approaches to ensure these requirements, and how ORDMA improves on them.

My implementation of Optimistic RDMA for FreeBSD 4.6 and the Myrinet NIC

are described in detail in Section 6.4.1.

4.3 Optimistic DAFS

The Optimistic Direct Access File System is an extension of the DAFS [29,64] protocol.

Just like DAFS, ODAFS can use RPCs for all file requests. In addition to RPC requests,

ODAFS clients may issue ORDMAs to directly access exported data and metadata buffers

in the server file cache.

ODAFS is based on the following key principles:

58

• Clients maintain a directory or cache of remote references to server memory. These

directories can be built either eagerly when clients ask the server for memory ref-

erences, or lazily when the server piggybacks memory references with each RPC

response.

• Directory entries need not be eagerly invalidated when the server invalidates VM

mappings for exported references1. Instead, invalid ORDMAs are caught at the

server NIC, which throws exceptions reported to clients2. An important advantage

of this consistency mechanism is that the server does not need to keep track of cli-

ents caching memory references.

• Clients are always prepared to catch an exception for each ORDMA operation. In

such a case, the client issues an RPC to access the data.

Other important considerations for ODAFS clients are determining the size of the

ORDMA directory, particularly in relation to the memory requirements for file data and

attribute caching, and the replacement policies appropriate for maintaining the ORDMA

directory. For the purposes of this study, I assume that the size of the ORDMA directory

is small compared to the size of the data cache, and use the LRU replacement algorithm

for ORDMA references. However, since ORDMA accesses are expected to be issued in

response to client cache misses, a more appropriate strategy would be similar to the

Multi-Queue algorithm for storage server caches [122].

My implementation of Optimistic DAFS for FreeBSD 4.6 and the Myrinet NIC is

described in detail in Section 6.4.2.

1. Piggybacking invalidations in RPC responses may reduce ORDMA exceptions without requiring explicit
invalidation messages. This method, however, will require that the server maintains state about which clients
cache what remote memory references.

2. The cost of ORDMA exceptions, however, should be masked by the much higher latency of the expected
disk I/O in the server.

59

4.3.1 Benefits and Limitations

ODAFS is targeted for workloads performing small I/Os. ODAFS is most beneficial with

significant memory-to-memory I/O traffic, such as that caused by small files and

attribute accesses, and high server cache hit rates. The benefit comes mainly from the low

server CPU overhead of the ORDMA mechanism. However, there are a number of work-

load characteristics that limit the applicability of ORDMA, and consequently the effec-

tiveness of ODAFS. These are:

• Few remote memory accesses, e.g., when client caching is effective in locally satis-

fying most file requests [77]. Note that this factor reduces the usefulness of any

remote file access protocol.

FIGURE 15. Optimistic DAFS client action flowchart (left) and system structure (right). A
directory in the client is caching remote memory references to the server cache. Remote memory
access is performed either via RPC, or via RPC followed by server-initiated RDMA, or via client-
initiated ORDMA. Caching takes place at different layers: Client data cache, directory, and NIC
TLB; Server data cache and NIC TLB.

NIC TLB

Server cache

Client cache Directory

NIC TLB

RPC, RDMA, ORDMA

Lookup Data

Cache

Lookup Directory

RPC + server RDMA
Use RPC or

Attempt ORDMA

Lookup Successful?

Lookup Successful?

ORDMA successful?

YES

NO

YES

NO

YES

NO

Access Complete

Access Complete

Access Request

60

• Low ORDMA success rate, i.e., low server cache hit rates. If many ORDMAs

result in failure, ODAFS performance is similar to that of DAFS as the cost of

ORDMA exceptions and subsequent RPCs is masked by the high latency of server

disk I/O.

• Many file accesses that cannot be satisfied via ORDMA. This could be because

the remote memory location of the target data may not be exportable. Examples

are directory name lookups, which require significant processing on the server

besides the actual data transfer.

• Small read–write ratio. Writes require the update of associated file state, such as

time of last modification and file block status on the server, besides the actual data

transfer. Append-mode writes are harder as they further require allocating disk

blocks on the server, checking resource limits, and potentially serializing over con-

current appending accesses.

• Low NIC TLB hit rates. Satisfying TLB misses for a NIC on the I/O bus can be sig-

nificantly more expensive than for a CPU TLB. In addition, network storage work-

ing sets can be very large and access patterns may not have enough locality to

render NIC TLBs effective.

Mixing ORDMA- and RPC-based file access has implications on the atomicity of file I/O

[112]. RPC-based file access guarantees that the entire I/O operation is atomic by locking

the entire file for the duration of the I/O. However, ORDMA-based file access guarantees

that at most one memory word is read or written atomically. By using both access meth-

ods, ODAFS effectively offers ORDMA’s atomicity semantics. For UNIX file I/O seman-

tics, client applications should explicitly lock files for the duration of I/O. In practice,

however, this is not a problem for high-performance applications, such as databases,

which explicitly lock files for the duration of their I/O operations.

61

4.4 Effect of Caching at Various System Levels

The efficiency and applicability of ODAFS on a workload depends on the function of var-

ious caching layers depicted in Figure 15. Caching efficiency is directly related to the

access pattern and to the sharing of the particular workload as well as the size of the

cache. High-performance application servers have caches of the order of 16-64GB. Stan-

dard clients, such as desktop and laptop PCs, have smaller memory caches (512MB-2GB).

Storage server caches are usually of the order of 16-64GB, with a total storage capacity in

the tens of TBs, as shown in Table 6.

Caches in various system layers are used to provide the buffers for staging data

when performing read-ahead and write-behind, and to take advantage of data re-use,

either due to locality in a client’s reference stream, or due to sharing between multiple cli-

ents. Cache misses can be classified as capacity misses, due to being unable to fit the entire

application working set, or consistency misses, due to invalidations triggered by conflict-

ing access to shared data by other clients. Application access patterns can broadly be cat-

egorized as random or sequential. Random access patterns are common in on-line

transaction processing (OLTP) and database workloads. In addition to uniformly distrib-

uted random patterns in such workloads, patterns with skewed frequency distributions

due to locality of reference are common in applications such as Web servers. These pat-

terns can be modeled by the Zipf distribution [123]. Sequential access patterns are com-

mon in scientific and decision-support applications. In case of sequential access patterns,

caches typically initiate read-ahead.

System Cache Disk Space

Network Appliance FAS900c 12GB 48TB

EMC Symmetrix 8830 64GB 70TB

IBM ESS Shark 800T 64GB 27TB

TABLE 6. Characteristics of three high-end network storage systems (as of 2002/2003). The
Network Appliance FAS900c is an NFS/DAFS file server. The EMC and IBM systems are block
storage servers accessed using SCSI over FibreChannel.

62

Client cache. Limited client caching capacity and the possibility of sharing in multi-client

workloads are expected to cause capacity and consistency misses and thus increase the fre-

quency of remote access to server memory. In multi-client workloads with write activity,

file updates necessitate invalidations of cached file state and force frequent remote mem-

ory access to data blocks and metadata (e.g., file attributes). Consistency callbacks

invoked by the file server, trigger the following actions by clients:

• Invalidate and flush cached file state when recalling caching rights.

• Reload the cache in subsequent accesses. If caching rights cannot be re-acquired,

this will lead to frequent remote I/O.

• Go to the server to open a file when lacking caching rights.

ODAFS can improve the first two actions by optimistically flushing and reloading the cli-

ent cache. The third action, however, may dominate performance with many small files,

unless directory lookups on the server are very efficient.

Server Cache. The server cache acts as an extension of the client cache. The network

access time of the server cache is typically many orders of magnitude faster than disk

access. Significant benefits are possible due to the increased cache capacity and the avoid-

ance of disk I/O. Wong and Wilkes [120] and Zhou, Philbin and Li [122] considered alter-

native server cache replacement policies. They reported improved server cache hit rates

with their proposed server cache management algorithms for a variety of workloads and

trace-based simulations. High server cache hit rates make tserver the dominating factor in

the mean I/O response time

where hc and hserver are the client and server cache hit rates, respectively, and tc is the cli-

ent cache access time, which is negligible compared to tserver . As I show in Section 4.5.1.2,

the relative performance between DAFS and ODAFS in a latency-sensitive workload is

tmean hc tc× hserver tserver×+=

63

determined by the relative performance of their remote memory access primitives

(RDMA vs. ORDMA), independent of the client cache hit ratio.

High cache server hit rates also put a strain on the server CPU, eventually limiting

throughput. In Section 4.5.1.3, I show that server throughput depends on the overhead of

the remote memory access mechanism in a throughput-sensitive workload dominated by

small I/Os.

Client Directory. The remote memory reference directory is used in case of client data

cache misses and, as such, it should be managed similarly to the server cache. This is a

read-only cache.

NIC TLB. The server TLB should also be managed similarly to the directory cache. The

Myrinet NIC TLB is currently managed using an LRU policy.

4.5 Experimental Results

In this section, I report experimental results using the setup described in Section 3.3.

Table 5 on page 47 reports baseline network performance for the protocols used over the

Myrinet network. In addition to the experimental setup described in Section 3.3, the GM

driver and firmware were modified as described in Section 6.4.1 for ORDMA, except for

protection keys, which are not yet supported in our implementation. In addition, the

Optimistic DAFS client and kernel server were developed as described in Section 6.4.2.

4.5.1 Server I/O Throughput and Response time

In this section I present microbenchmark and PostMark results highlighting the proper-

ties of ORDMA and the upper bounds for performance improvements in ODAFS appli-

cations. In all cases, a file cache based on DAFS open delegations [2] is interposed

between the application and the DAFS/ODAFS API. To avoid introducing platform-spe-

cific parameters, such as the cost of NIC memory registration and TLB misses, I ensure

that RDMA is issued on pre-registered buffers and always hits in the NIC TLB. The cost

64

of a NIC TLB miss is about 9µs for ORDMA in my prototype. This penalty can be reduced

in NICs that are integrated on the memory bus, or share a TLB with the host CPU [10].

4.5.1.1 Microbenchmarks

In this section I present measurements of I/O response time in reading a 4KB block from

server memory using (a) in-line RPC read, that is, the data payload in-lined with the RPC

response, (b) direct RPC read, that is, the data payload transferred by server-initiated

RDMA write, and (c) client-initiated ORDMA read. The file cache is configured with a

small number of data blocks but with a large number of headers that can retain remote

memory references. In this microbenchmark, a simple application sequentially reads

twice a 1GB file that was preloaded in the server cache, in increments of 4KB. The client

cache is configured with a 4KB block size and did not contain any portion of the file prior

to starting the experiment.

During the first pass, all I/O requests miss in the client cache, which, in response, ini-

tiates remote file accesses using either in-line or direct RPC. RPC responses carry remote

memory references to file blocks on the server cache. During the second pass, I/Os still

miss in the client cache. However, this time remote I/O may also be performed by

ORDMA since the client cache managed to map the entire file on the server after having

accessed it once during the first pass. Table 7 shows the I/O response time during the sec-

ond pass using different network I/O mechanisms. RPC in-line involves a memory copy

I/O mechanism
Response Time (µs)

in mem. in cache

RPC in-line read 128 153

RPC direct read 144 144

ORDMA read 92 92

TABLE 7. I/O response time with 4KB block size. The measurements in the column labeled
“in mem.” extend up to the point where the server response touches in client memory. The
column labeled “in cache” includes, in addition, the data copy into the client file cache. The
RPC direct and ORDMA cases transfer data directly into the client file cache.

65

in the client from the communication buffers to the file cache. ORDMA yields about 36%

lower response time than direct RPC.

4.5.1.2 Effect of Client Caching

In this experiment, I model a file client accessing a set of small files synchronously over

DAFS and ODAFS. The file set size exceeds the client cache size in all cases. I model such

a latency-sensitive workload by configuring the PostMark [54] benchmark for read-only

transactions without file creations or deletions. Each read I/O is preceded by a file open

and followed by a file close operation. After the first open of a file, which grants the client

an open delegation, each subsequent open or close for that file is satisfied locally. I use a

4KB average file size and configure the client cache with a 4KB block size. The client

cache hit ratio determines the frequency of remote memory access. By varying the size of

the client cache and keeping the file set size constant I progressively increase its hit ratio

from 25% to 50% to 75%. I find that in all cases ODAFS yields about 34% higher through-

0

5000

10000

15000

20000

25 50 75

I/
O

 th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Client cache hit ratio (%)

ODAFS

DAFS

FIGURE 16. PostMark I/O throughput with ODAFS (dark bar) and DAFS (light bar).
Single client with variable cache hit ratio.

66

put than DAFS (Figure 16), reflecting the difference in response time between ORDMA

and direct RPC. This is because, despite the benefit of client caching, overall performance

is sensitive to the cost of remote memory accesses. The DAFS server CPU utilization

drops from 30% to 25% to 20% as the client cache hit ratio improves. However, ODAFS

uses no server CPU after it manages to collect remote memory references for the entire

server cache, which occurs after the client has accessed each file at least once.

4.5.1.3 Server Throughput

In this experiment, I show the effect of per-I/O overhead on server throughput. I model a

multi-client, throughput-intensive workload dominated by small I/Os by configuring

two clients to sequentially read twice a 1GB file that was preloaded into the server cache.

For reads larger than the cache block size, the cache starts internal read-ahead up to the

size of the application request. To vary the unit of network I/O, I progressively increase

the cache block size from 4KB to 64KB and measure server throughput for each cache

block size during the second pass, as shown in Figure 18. With ODAFS, the two clients

are able to saturate the server network link for all cache block sizes (except for 64KB due

to a performance bug in GM get) without using the server CPU. DAFS yields lower server

throughput for small I/O blocks, saturating the server CPU due to processing direct

RPCs. For the smallest cache block size of 4KB for which the difference between DAFS

and ODAFS is maximal, the DAFS server is primarily constrained by network interrupts.

Switching to polling for all network events, DAFS throughput improves to about 170

MB/s reducing the performance improvement attainable from ODAFS to

32%.

67

NIC TLB NIC TLB

NIC TLB

Server cache

Client cache Directory Client cache Directory

Client Client

Server

FIGURE 17. Server throughput experimental setup. Two clients sequentially reading a file
preloaded on the server cache, twice. The application block size is a multiple of the cache
block size, to trigger read-ahead by the cache. The measurements are taken during the second
pass over the file. The client cache, server cache, and NIC TLB hit ratio is 0%, 100%, and 100%,
respectively.

0

50

100

150

200

250

4 8 16 32 64

R
ea

d
th

ro
ug

hp
ut

 (
M

B
/s

)

Client cache block size (KB)

DAFS

5

5

5

5
5

5

ODAFS

n
n

n n
n

n

FIGURE 18. Server throughput. Two clients reading a large file using a large block size.

68

4.6 Summary

In this chapter, I focused on file access workloads involving multiple clients and small

I/Os. Such workloads stress the file server and are sensitive to per-I/O CPU overhead. To

ease the server CPU bottleneck, I propose a new network I/O mechanism, Optimistic

RDMA, that aims to improve server throughput and response time, and Optimistic

DAFS, my extension to the DAFS protocol that uses ORDMA. I evaluated ORDMA and

ODAFS on a prototype implementation on state-of-the-art network hardware. Perfor-

mance improvements in server throughput and response time with ORDMA/ODAFS

range up to 32% and 36%, respectively, for small I/O transfers in my prototype.

69

Chapter 5

Effect of Operating System Structure

Extensive research on system support for enabling I/O-intensive applications to achieve

performance close to the limits imposed by the hardware suggests two key areas: low

overhead I/O protocols and the flexibility to customize I/O policies to the needs of

applications. One way to achieve both is by supporting user-level access to I/O devices,

which enables user-level implementations of I/O protocols. One example of this

approach specific to network interface controllers (NICs) is user-level networking, which is

described in Section 2.3.1 and Section 7.1.3. In this chapter, I argue that the real key to

flexibility and high-performance in I/O-intensive applications is user-level file caching and

network buffering, both of which can be achieved without user-level access to NICs.

Avoiding the need to support user-level networking carries important benefits for

overall system design: First, a NIC exporting a privileged kernel interface is significantly

simpler to design and implement than one exporting a user-level interface. Second, the

kernel is re-instated as a global system resource controller and arbitrator. I describe a ker-

nel API and NIC support that can be used to implement high-performance servers and

demonstrate that its performance is comparable to the best of fully user-level and in-ker-

nel servers.

Since the early 1980’s it was understood that a fixed set of operating system

abstractions and a single API cannot be sufficient for the needs of all applications [106].

70

The flexibility to be able to set application-specific OS policies and for a way to extend

APIs is necessary. Extensible operating systems such as VINO [97] and SPIN [13] and radi-

cal OS architectures such as Exokernel [53] aimed for maximum flexibility in specifying

application-specific policies. Besides performance, rapid deployment of new functional-

ity is another reason that motivates the need for an extensible API.

5.1 Fallacies

Modular, component-based operating systems [1,39] with protection enforced by

separate hardware address spaces have good software engineering properties, such as

well-defined APIs between subsystem components and fault-containment within a

component. Besides the goal of structuring an OS with good software engineering

properties in mind, another goal is to achieve separation between policies and

mechanisms [1], offering applications the flexibility to specify their own policies using

the mechanisms exported by the operating system. Previous research in operating system

structure resulted in two commonly-held beliefs:

• Co-locating application servers and the operating system in the same address space is

required to achieve the necessary degree of flexibility. Flexibility is believed to be prima-

rily the result of integration between software layers, as was shown by user-level

Exokernel-based [53] or kernel-based servers [51].

• Single address space implementations are more efficient because they avoid the cost of pro-

tection domain crossings. Modular design and protection with hardware address

spaces is still believed to be costly, although research in systems such as L4 [61]

and Pebble [39] showed that the overhead of switching protection domains could

be as low as 150 machine cycles. Besides the cost of the IPC to cross protection

domains, modular systems tend to have longer memory footprints and thus, bad

cache behavior [24]. Monolithic operating systems [112] are also believed to suffer

from the cost of crossing the user-kernel system-call interface.

In this chapter, I show that:

71

• User space implementations of high-performance servers over a kernel API can be

as efficient as fully user-level implementations, given sufficient network and OS

support for RDDP, network protocol offload, and efficient event notification and

handling. Their performance difference lies only on the cost of crossing the sys-

tem-call protection boundary, which is rarely a dominant cost in I/O intensive

applications.

• High performance can be achieved with a kernel I/O API offering just the I/O

mechanisms, enabling applications to specify their own I/O policies.

5.2 Introduction

The need to reduce networking overhead in system-area networks in the early 1990's

motivated a flurry of research on user-level networking protocols. Projects such as

SHRIMP [17], Hamlyn [21], and U-Net [113] proposed user-level access to a network

interface controller (NIC) as an approach that offered two primary benefits: First, it

enabled host-based implementations of new, lightweight networking protocols with

lower overhead compared to kernel-based TCP/IP protocol stacks. Second, for

applications requiring use of the TCP/IP protocol stack, there is a potential for

application-specific customization of user-level libraries. In recent years, the need for

scalable and more manageable services, such as HTTP servers and network storage

systems, leads to more I/O going through the network, linking overall I/O performance

to the efficiency of the network subsystem and making network interface controllers

(NICs) a key system I/O device. The large-scale deployment of high-speed (1 Gb/s and

soon 10 Gb/s) Ethernet networks stimulated interest in the design of systems that offload

TCP/IP to a new generation of NICs and can transfer data directly between the network

and application buffers. Many such TCP-offload NICs are currently being designed to

export user-level interfaces to host applications [73].

In this chapter, I show that a user-level interface to TCP-offload NICs is not neces-

sary. A kernel host interface to the NIC in combination with an appropriately designed

network and file I/O application programming interface (API) can provide the perfor-

72

mance and degree of flexibility needed by I/O-intensive applications. I show that this is

possible with a simple asynchronous read/write network and file API, whose key fea-

tures are direct data transfers between the I/O device and application buffers and effi-

cient user-level event notification and handling. An important use of this API is to

support user-level file caching and network buffering. User-level caching offers full con-

trol over I/O policies, an essential requirement for resource-intensive applications, such as

databases [106]. Kernel caching through the standard read/write or mmap APIs is pref-

erable only when efficient inter-process sharing through a file cache is needed, as shown

in the comparison of Table 8. When the NIC support described in this dissertation is used

for network data transfers to and from an in-kernel cache, it does not offer applications

any additional control over their I/O policies.

The network and file API described above enables a new operating system (OS)

structure that blends ideas from traditional and novel/radical OS architectures: In accor-

dance with standard OS principles [70], resource abstractions, such as files and network

sockets, and global system policies, are implemented in the kernel. However, similarly in

spirit to more radical system designs, such as the Exokernel [53], full control over appli-

cation-specific I/O policies is possible with caching implemented in user space. This

caching, however, is performed over the file or network socket abstractions rather than

the raw hardware. The key advantages of this approach over Exokernel’s are improved

User-level
File Caching
Mechanism

Inter-process
Sharing

Control over
I/O Policy

Level of I/O
Atomicity

Visibility of
Updates

mmap Yes Prefetching,
Replacement Memory word

Immediately
(Shared

Mappings)

read/write
with RDDP No Full

Memory word
or

I/O operation,
when wrapped

in RPC

On read I/O

TABLE 8. Comparison between two user-level file caching mechanisms.

73

security and safety, due to a larger common kernel code-base, support for global resource

policies, and improved portability. To avoid conflicts between the user-level file and ker-

nel VM policies in systems with a unified file/VM management, I propose that applica-

tions use a combination of memory locking and dynamic adjustment of cache size to the

physical memory available to each application.

In summary, the main arguments presented in this chapter are: First, NICs export-

ing a user-level host interface pose significant implementation challenges. In contrast,

NICs exporting a kernel host interface are simpler to implement. Second, with the trans-

port protocol offloaded to the NIC, the key to lowering networking overhead is remote

direct data placement (RDDP). A kernel interface to a NIC enables a simple implementa-

tion of RDDP based on packet filters and tagged buffer pre-posting. Unlike existing RDDP

mechanisms which require new protocols, such as remote direct memory access (RDMA),

my implementation interoperates with existing transport protocols. Third, this NIC inter-

face can be used to implement a simple, kernel-based zero-copy I/O API. Applications

over this API are as efficient as applications using a user-level implementation of the

same API. The performance difference lies only in the user-kernel boundary crossing,

which is not a dominant cost. In addition, applications using this kernel-based I/O API

can be competitive with full in-kernel services. Fourth, kernel involvement is necessary

in order to enforce global policies. Systems that advocate implementing all system poli-

cies in user-space libraries [53] do not offer a solution to the problem of implementing

global policies without involving a privileged server. In addition, security and safety are

other benefits of my proposed design: For example, common kernel-based networking

code may be more robust against attacks than a multitude of user-level networking

stacks. A benefit of user-level networking is better portability due to bypassing the OS.

However, a kernel interface that is simple to implement should be rapidly incorporated

into most mainstream operating systems.

The layout of this chapter is as follows: In Section 5.3, I compare the benefits of

user-level networking to those of a kernel interface to a NIC offering TCP-offload and

RDDP. In Section 5.4, I present simple kernel support that enables applications to dynam-

74

ically adjust to the per-process available physical memory. In Section 5.5, I outline the

design of a file I/O API for flexibility. In Section 5.6, I propose mechanisms for efficient

implementation of that API. In Section 5.7, I examine the role of the kernel in enforcing

global policy and facilitating inter-process sharing through a file cache, and in Section 5.8,

the portability and specialization benefits of user-level implementations.

In Section 5.9, I extend the analytical model developed in Section 3.1 in order to

study the effect of the user-kernel protection boundary crossing in network-attached

storage application performance. My motivation to use an analytical model backed with

experimental measurements of key parameters, instead of a full experimental system

comparison, is based on the fact that the latter depends significantly on the quality of the

implementations and focuses on a particular point of the design space. An analytical

model enables the examination of the entire design space, provides significant qualitative

results, and points to the key parameters affecting system performance. Earlier studies of

operating system structure, such as the classical work by Lauer and Needham [58], have

also used analytical modeling to reason about system performance.

Finally, in Section 5.10, I present experimental results supporting the arguments

outlined in this chapter.

5.3 User-level vs. Kernel Interface to a NIC

Traditional NICs are designed to be directly accessible by a single trusted entity, typically

the kernel. User-level applications perform I/O by interacting with higher-level

abstractions, such as files and network sockets. When these abstractions are implemented

in the kernel, the latter ensures that NICs and other devices can be safely shared by

multiple processes.

Devices exporting a user-level host interface, as shown in Figure 19 (a), cannot

rely on the kernel for safe multiplexing between user-level processes. For this reason, a

user-level NIC has to implement and export higher-level abstractions, such as virtual

connection endpoints, and to maintain per-process and per-connection state. Such a NIC

should be provisioned with sufficient resources to manage a large number of connec-

75

tions. In addition, the NIC should maintain a table to store translations of user-space vir-

tual addresses to use in memory transactions on the system bus.

With switched Ethernet increasingly used as a low-latency, high-bandwidth (1-

10Gb/s) system-area network, there is renewed interest in low overhead implementa-

tions of the TCP/IP protocol. One widely considered option is to offload TCP/IP to the

NIC and enable direct transfers between the network and application buffers, as shown

in Figure 19 (b). I argue that since the TCP/IP protocol is offloaded to the NIC, and thus,

hard to customize, a user-level interface to such NICs is not necessary. A kernel interface

can match two important benefits of a user-level networking protocol:

• Copy avoidance through direct transfers between the network and application

address space buffers, possible with a remote direct data placement protocol [48].

• Control over I/O policy, which can be achieved by performing file caching and

network buffering in application address space.

It also offers two other benefits of user-level networking:

Direct data placement

in application buffers

Direct data placement

in application buffers
���������

NIC TCP/IP NIC

Legacy

App

Scientific

App

user processes

kernel

Server

HTTP
Database

App Server
Legacy

TCP/IP

Scientific

App

Active

Messages

HTTP Database

TCP/IP

Customized

user processes

DAFS

RPC

(RDDP)(RDDP)

(a) (b)

Sockets Files

FIGURE 19. (a) User-level networking vs. (b) kernel API to a TCP-offload NIC. Both models
enable RDDP, i.e., direct data transfers between the network and application address space.
In user-level networking, it is the NIC that multiplexes the hardware between multiple
processes.

76

• Low per-I/O latency of interaction with the NIC. A user-level access to the NIC

bypasses the kernel. Crossing the user-kernel interface, however, need not be an

expensive operation, as shown in Section 5.10.1.

• Customization of the networking protocol, which is achievable through a param-

etrized interface, e.g., socket options.

In practice, the only performance difference between a user-level and a kernel interface to

a TCP-offload NIC is the user-kernel protection boundary crossing inherent with a

kernel-based system-call API to higher-level services. In Section 5.9, I show that this

performance difference does not significantly affect application performance in most

network attached storage applications.

Direct data transfers between the network and application-space buffers through

either a user-level or a kernel interface require that the applications buffers are registered

with the NIC, i.e., pinned in physical memory and their VM translations known to the

NIC for the duration of the I/O operation. Registration involves the kernel and can be

performed either per-I/O or less frequently, by caching registrations. Pre-registering

large amounts of memory is sometimes possible but results in underutilization of physi-

cal memory in multiprogramming workloads.

5.4 A Hybrid OS Structure

Mainstream operating systems, such as UNIX, implement abstractions such as files (FS),

address spaces (VM), and network connections (Net) in the kernel, as shown in Figure 20

(a). Applications in these systems have limited control over I/O policies and often

experience high communication overhead because of the need for data movement

between software layers. Some extensible operating systems, such as VINO and SPIN,

preserve this structure and address these issues by enabling safe execution of kernel

extensions. An alternative to extensible operating systems, the Exokernel, structured as

shown in Figure 20 (c), enables construction of all OS abstractions in user space.

77

This dissertation describes a new OS structure, Hybrid OS, which is depicted in

Figure 20 (b). Hybrid OS combines features from (a) and (c). Like mainstream OS struc-

tures, Hybrid OS places all OS abstractions in the kernel. Following trends towards scal-

able network storage, it assumes that applications access storage using file access over a

network attached storage protocol, such as NFS. Hybrid OS exposes all file I/O policies

to user-space applications by moving file caching to user space using RDDP for file data

transfers. Network transfers are also performed using direct transfers between the net-

work and user-space buffers. In this model, the kernel is still responsible for VM manage-

ment, CPU scheduling, and most importantly, global resource allocation decisions.

The need for memory registration with the NIC requires involvement of the ker-

nel, as described in Section 5.3. This is true for Hybrid OS, as well as for user-level net-

working systems. Some amount of registration caching is desirable to reduce the

frequency of interaction with the NIC and to avoid VM page faults on the network data

path. This implies that some fraction of the system physical memory would be pinned on

behalf of the application and be unavailable to other system tasks. To ensure that there is

enough unpinned physical memory to be shared by new system tasks, some amount of

per-I/O registration is necessary. This is a cost that was not taken into account by user-

level networking research [113], which assumed a limited buffer pool. Per-I/O registra-

tion opens up the possibility that user-level file accesses result in page faults in the

VMFS

applications

Net

exokernel

NetVMFS

applications

applications

hardware hardware

(c)(b)

kernel

���������	��
�����

hardware

(a)

VM NetFS

VM cache

FS cache / Net bufs FS, VM cache / Net bufs

FS, VM cache / Net bufs

RDDP

FIGURE 20. OS structures. (a) Mainstream (UNIX) and extensible systems (SPIN, VINO), (b)
Hybrid (described in Section 5.4): File caching in the application address space, (c) Exokernel.

78

absence of any coordination between the application and the VM system. Some form of

application control over virtual memory management over the region used by the user-

level cache or adaptation to changing memory demands is necessary to avoid or reduce

such page faults.

5.4.1 Kernel Support for User-level File Caching

A problem with user-level file caching on a pageable memory object is that kernel VM

policies applied on the memory object may conflict with the file I/O policies used by the

application. For example, the VM page replacement policy may differ from the file cache

replacement policy, causing page faults. In addition, since the VM system is unaware that

the user-level file cache is actually backed by a remote file, paging activity results in

duplicate I/O. Some form of cooperation between the user-level cache, the kernel file

system, and the VM module is necessary to avoid these problems. A solution offered by

microkernels is to delegate responsibility for page replacement, page-in and page-out

I/O to user-level processes [1,71]. Extensible systems, similarly, offer applications control

over VM policies. In mainstream kernels, however, which are the focus of my work,

applications normally cannot fully control the memory backing their user-level cache.

My goal is to enable the cache to use all available physical memory if there is no

competition from other processes or fall back and use a smaller but fixed amount in case

of memory pressure. The application should not be involved in each VM action since that

would require support available only in microkernels and extensible systems. My scheme

distinguishes between two system states: (a) a single application, and (b) multiple appli-

cations competing for memory. In the first case, the user-level cache is allowed to use all

available physical memory. Part of the memory is pinned, with the rest registered with

the NIC on a per-I/O basis. In the second case, the user-level cache shrinks to the part of

physical memory that is pinned and cannot be reclaimed by the kernel. The kernel pro-

vides feedback to the application as to which is the case, prompting adjustment of the

cache size. This ensures that the probability of a user memory access to the file cache

resulting in a VM page fault is kept small. Previous research has explored the benefits of

79

kernel support that informs applications of their resource state [53,75], or even applica-

tions inferring that state without special support, for example, by probing the kernel [11].

5.5 Designing an I/O API for Flexibility

Based on the experience of implementing high-performance server applications

[40,51,85] over prototype research operating systems [53,84], it is now well understood

that a good I/O API should have the following characteristics:

Incorporate support for event-driven server structures. Event-driven servers have a

number of advantages [83,118] over thread- or process-based servers and require non-

blocking I/O APIs. Such APIs separate the issue of I/O operations from the notification

and handling of their completion. Most implementations of the read/write I/O API,

however, are blocking. The mmap API performs I/O by means of VM page faults, which

cannot be performed in a non-blocking manner by most operating systems.

Expose the cost of I/O operations. The cost of I/O operations can be exposed by

providing applications with information about system caching activity at various

memory objects. Such information can be obtained, for example, with the mmap/

mincore/mlock interfaces [70].

Offer control over I/O policy. Control over I/O policies, such as file read-ahead, write-

back, and page replacement, is important for resource-intensive applications, such as

databases [106]. Some degree of control over I/O policies can be achieved in existing

systems with APIs such as madvise or, in some cases, with compiler and OS support

[76].

Support traditional data passing semantics. Data passing between the application and

the kernel address space is traditionally performed via copy or share semantics [18]. With

copy semantics, the application is free to modify a buffer after issuing an I/O on it

without fear of corrupting the transfer. With share semantics, the application should not

80

modify the buffer until the I/O completes or otherwise risk corrupting the transfer. An

alternative data passing method, however, uses move semantics [18], where buffers are

exchanged between the application and the kernel. Move semantics is a natural way to

avoid memory copying in the user-kernel boundary, but deprives applications of control

of the allocation and layout of the I/O buffers.

An additional desirable property of an API is simplicity, so that it can be easily

implemented. This dissertation proposes a non-blocking, non-caching read/write I/O

API, incorporated with a versatile event notification mechanism. The basic components

of this API are:

• File and network I/O operations: read, write

• Event handling: poll, select, notify. The blocking versions of poll and

select, as well as notify, require kernel involvement. Notify is described in

Section 5.6.2.

This API offers the desirable properties for the following reasons: First, being a non-

blocking API, it can support event-driven services. Second, it exposes the cost of I/O by

always involving interaction with the I/O device. However, this assumes that other

hidden costs, such as VM page faults in user-level memory access, are avoided, as

described in Section 5.4.1. Third, it offers full control over the I/O policy, for example

when the I/O is staged in a buffer pool in the application’s address space. Fourth, it

supports standard share semantics. In addition to these properties, such an API is easy to

implement and can be used to compose more complex operations. For example, the

equivalent of a sendfile1 interface can be composed by a file read and a network write.

This API can easily be added to existing operating systems.

1. The sendfile API, which is offered by many UNIX variants such as Linux, FreeBSD, and Solaris, as well
as Microsoft Windows, enables an application, such as a Web server, to transfer a disk file to a network socket
without reading it into user space. Using scatter/gather NIC capabilities, it is possible to transfer data off the
kernel buffer or VM cache without any memory copying. Properly implementing sendfile, however, can
be tricky due to the interaction between many OS subsystems (file system, VM, network).

81

5.6 Implementing the I/O API

An asynchronous, non-caching read/write I/O API requires NIC support for zero-

copy data transfer, discussed in Section 5.6.1, and OS support for efficient event

notification and handling, which is discussed in Section 5.6.2.

5.6.1 Zero-copy I/O

A key to reducing the host overhead of communication is the ability for zero-copy data

transfers between the network and the application address space2. One challenge with

zero-copy I/O is that it should be applicable to any data transfer protocol, such as HTTP,

NFS, etc. Zero-copy I/O can be achieved with appropriate NIC and OS support, as

described below for the input and output data paths:

Input. Zero-copy receives are possible for both solicited and unsolicited payloads.

For solicited payloads, such as read responses, zero-copy transfer is possible with NIC

support for remote direct data placement. RDDP requires that either the application

buffers are explicitly targeted by senders using packet header fields in a special remote

memory access protocol (for example, RDMA), or that the application provides buffer

2. The RDDP mechanisms which will be described in Section 5.6.1.1 (RDDP-RPC) and Section 5.6.1.2
(RDMA) have been introduced in previous Chapters. They are briefly described again here for completeness.

System Host-NIC
Interface

Protocol
Requirements

Alignment
Constraints

RDDP
RDMA User/Kernel RDMA No

Tagged pre-
posting Kernel Framing No

Payload alignment &
VM re-mapping Kernel Framing Yes

TABLE 9. Zero-copy input mechanisms.

82

location information to the receiving NIC prior to the I/O. In the latter case, a framing

protocol such as SCTP [105], is necessary, so that the NIC can detect the boundaries of

upper-level protocol headers and the data payload.

For unsolicited payloads, such as read requests and writes, zero-copy transfer is possible

with NIC support for data payload alignment and subsequent data movement to

application buffers, if necessary. The latter can be performed either by copying for small

amounts of data, or by VM page re-mapping. In the latter case, either the system or the

application must properly align their buffers to make sure VM re-mapping is possible.

These zero-copy input mechanisms are summarized in Table 9.

Output. Zero-copy sends are possible by setting up device transfers directly from

application buffers, using OS support to ensure that memory buffers are memory

resident for the duration of I/O [18].

For the remainder of this chapter I assume TCP/IP offload on the NIC and focus on

HTTP and NFS RPC as two examples of higher-level I/O protocols.

5.6.1.1 Tagged Pre-posting of Application Buffers

Pre-posting is the act of providing input buffers to the NIC prior to the I/O taking place.

It is the I/O method used in the queue pair (QP) abstraction [20,111]. In untagged pre-

posting, buffers are not associated with incoming messages. The NIC places an incoming

message to any of the posted receive buffers. In tagged pre-posting, each receive buffer is

associated with a particular incoming message. The tagged pre-posting method

described here does not require a new RDDP protocol. It relies, however, on a framing

protocol to mark the boundaries of protocol headers and the payload on the TCP/IP byte

stream. The host interacts with the NIC to inform it where to place incoming data. The

NIC is able to (a) identify higher-level protocol data formats, and (b) match a payload

with its target buffer in application space and transfer data directly between the device

and that buffer. It can achieve (a) and (b) with a combination of downloadable protocol-

83

specific packet filters and by preparing the NIC for RDDP prior to packet arrival by

tagged pre-posting of receive buffers.

Packet Filtering. Packet filters based on the Berkeley Packet Filter [68] (BPF) can be

installed by privileged users or by the kernel and are in use in network monitoring

utilities such as tcpdump, in modular or extensible systems such as x-kernel [47],

Exokernel [53], SPIN [13], VINO [97], and in systems such as Genie [18] and IO-Lite [84],

which can benefit from early demultiplexing of network traffic. Packet filters are based

on a simple language whose programs can easily be verified for safety. For example,

packet filters describing the HTTP and NFS RPC packet formats can be simply composed

and efficiently applied on an I/O data stream.

Tagged Pre-posting of Application Receive Buffers. Tagged pre-posting of receive

buffers can be used to associate higher-level protocol data units, such as headers and data

payloads, with specific buffers in the application address space [63]. The tag can be a

protocol-specific identifier, such as the RPC transaction number in the case of NFS. Even

when such an association is not necessary, for example when an application wants to

receive protocol data units (e.g., HTTP requests) in anonymous buffers, a pre-posting API

yields zero-copy implementations.

Pre-posting helps both in small message exchanges, such as requests for data in

HTTP or NFS (untagged), and in large message transfers (tagged). The benefit in small

message exchanges is in reducing the host overhead associated with transforming the

untyped byte stream to the HTTP or NFS RPC record stream. Large message transfers

benefit from the reduction in the data movement host overhead.

5.6.1.2 Remote Direct Memory Access

Using an RDMA protocol, the incoming messages carry the virtual memory addresses of

the target application buffers. This requires a prior message exchange to communicate

these addresses to the RDMA initiator. RDMA, however, does not require pre-posting of

buffers by the receiver. RDMA can be used for user-level or kernel access to the NIC. The

84

latter is much easier to implement as there is no need for an address translation table on

the NIC. This is because physical memory addresses can be used to target host buffers.

5.6.2 Efficient Event Notification and Handling

One of the keys to building efficient servers such as Cheetah [40,53], which is based on

the Exokernel, or kernel servers such as those based on the Adaptive Fast Path

Architecture [51] (AFPA), is a suitable event notification and handling mechanism.

Hardware event notification can take place either by interrupts or by polling. Event

handling can be performed either by a separate thread or by an upcall to a user-level

procedure. In what follows, I focus on user-level event handling over a kernel I/O API.

5.6.2.1 Polling vs. Interrupts

Polling is the act of checking the status of I/O, typically by examining a memory location

in kernel address space. Polling, however, is also possible in some systems by checking

the device status mapped in application address space [21,111,113]. Polling has low

overhead as it entails only a device interaction over the bus. In the case of a cache-

coherent I/O bus, this may just be a cached memory access. A drawback of polling is that

there may be a long delay between the time the event happens and the time it is handled

after successful polling. An advantage, however, is that by having full control over when

and at which points polling takes place, it is easy to account for event handling on behalf

of the process to which the events are delivered.

Interrupts are an alternative mechanism for hardware event notification. An inter-

rupt has its own stack and priority level. The priority of hardware interrupts is usually

Hardware Event Notification Event Handling

User-level (polling) Running user-level thread

Kernel-based (interrupt or polling)
Awaken user-level thread (poll/select)

Asynchronous upcall (UNIX signal)

TABLE 10. Implementation of user-level event processing. Notification by polling in the kernel
and handling by user-level upcall is expected to yield the lower overhead/latency.

85

higher than that of user-level processes. Interrupts typically result in low latency in han-

dling events. They require, however, saving and restoring the context of the executing

process, which increases the event notification overhead. They can occur at any time the

system priority permits. Therefore, care is needed to account for the interrupt processing

overhead on behalf of the process to which the events are delivered, rather than to the

currently executing activity.

5.6.2.2 Threads vs. User-level Upcalls

Event handling in user-space can be performed either in the context of a thread or in a

kernel upcall to a user-level procedure. Thread-based handling can be performed with

existing APIs such as select() or poll(), which enable a user-level thread to check

the status of an I/O or sleep waiting for an I/O condition. Upcall-based handling is

modeled on the hardware interrupt paradigm and has two key advantages over threads:

First, handling takes place with low latency: the delay between the occurrence of the

event and its handling is limited by the interval until the next scheduling decision.

Second, handling is event-driven and ensures progress by providing an execution context

to process events. Upcalls obviate the need for application or user-level library threads

otherwise needed for servicing I/O. User-level upcalls in mainstream UNIX-based

kernels are currently used only for a small set of signals [70] communicating process

error conditions and changes to process state. Kernel support for more general user-level

upcalls enabling handling of I/O events is needed, as described in Section 5.6.2.3.

5.6.2.3 Kernel Support for Event-Driven Servers

Previous experience with high-performance server architectures suggests that the

following two factors are key to building efficient user-level servers over a kernel I/O

API:

• Polling in the kernel for low overhead. An adaptive scheme that switches to

interrupts should be used when the presence of compute-bound processes does

not allow for frequent polling.

86

• Kernel upcalls to user-level handlers to reduce latency and to ensure progress.

One way to achieve both requirements is to modify the kernel scheduler to poll for I/O

events and schedule upcalls on a per-process basis. In this way, upcalls can be processed

next time the process is scheduled, similarly to the signal delivery mechanism in UNIX

systems. The Xok exokernel [53] uses a similar technique to combine efficient polling

with low latency delivery and handling. Implementation on a mainstream kernel

requires an API that enables a process to register upcall procedures to handle kernel-

exported I/O events. The kernel support for user-level upcalls can be used to implement

the VI notify API [111], which is not currently offered by any operating system. It can

also be used with existing abstractions such as sockets and QP-IP [20]. For example, in

the case of QP-IP, an upcall can be registered at the time a QP or CQ is created. An upcall

is scheduled each time a new message is received or transmitted on that QP.

To further reduce the overhead and latency of event handling, it is possible to

enable upcalls to user-level application handlers synchronously with event notification.

This mechanism is similar to the one used in scheduler activations [9] and requires the use

of schedulable kernel threads migrating into user-space and executing user-level proce-

dures.

5.7 Benefits of the Kernel

Two key benefits of the kernel are global policy and secure, efficient data sharing.

5.7.1 Global Policy

The role of the kernel has traditionally been to safely and securely multiplex system

hardware resources between competing processes. An overriding concern is to ensure

fairness in resource use. Operating system research has long recognized the importance

of separating policy from mechanism and looking into ways to enable applications to

specify the I/O policies that best suit their needs. One important issue is how to combine

per-process policies into the global system policy, particularly when applications have

87

conflicting needs. For example, many systems use global LRU for system-wide memory

management.

Extensible systems offered different solutions in controlling global policy. Systems

such as SPIN [13] and VINO [97] offered applications control over resource policy but

retained global policy in the kernel. Other systems that advocated eliminating all OS

abstractions and reducing the kernel to task of safely multiplexing hardware resources,

such as the Exokernel [53], or pushing abstractions into intelligent devices [113] do not

offer a solution on how to enforce global policies without going through the kernel.

5.7.2 Efficient Data Sharing

Inter-process data sharing is significantly simplified with the kernel on the I/O path. For

example, the kernel cache, which can be mapped in the kernel address space, can be used

for sharing. The existence of two alternative I/O paths, one that includes the cache and

one that bypasses it, ensures that only processes that are willing to share files do so.

Systems that do not use a kernel I/O API and always bypass the kernel have to rely on

shared memory segments and pair-wise shared mappings to implement some form of

sharing. An example of this approach is Maeda’s user-level service framework [62],

which is extended from user-level networking protocols to file systems. In addition to

data sharing, code sharing is beneficial as well: For example, a common kernel-based

networking code may be more robust against attacks than a multitude of user-level

networking stacks.

5.8 Benefits of User-level Implementations

Two key benefits of user-level implementations are improved portability and the

opportunity for specialization.

5.8.1 Portability

User-level implementations of OS services that only rely on device support (e.g., for user-

level networking) are fundamentally more portable than user-level implementations that

88

rely on specific kernel support, such as an appropriate API3. This is a significant benefit

for application developers who do not depend on features provided by certain operating

systems and not offered by others. This observation draws from my experience with the

user-level DAFS file client, which is easily portable between the FreeBSD, Linux and

Solaris platforms with no modifications. It does, however, require porting of the NIC

device driver.

5.8.2 Specialization

User-level implementations of OS services can usually be deployed in the form of user-

level libraries that are linked with applications. This approach enables the possibility for

specializing implementations of services and for placing these implementations in

separate libraries. Applications can choose the appropriate library to use according to

their specific needs. Specialized services are simpler to design, implement, debug and

maintain and can be more tightly integrated than general-purpose services, leading to

shorter code paths with improved performance. Previous research demonstrated that

specialization can, in some cases, be used to produce in-kernel implementations of

operating system functionality with performance comparable to user-level

implementations [74,75,88,89].

These observations draw from my experience with user-level DAFS and kernel-

based NFS implementations of file clients with similar functionality. The DAFS client

offers a simple API customized for high-performance resource-intensive applications and

does not offer a caching layer. The NFS client, however, is designed as a general-purpose

service to suit the needs of a wide variety of applications. It offers a POSIX API and sup-

ports caching, asynchronous I/O, and optionally, direct data placement. Although the

NFS file client can be used to provide the functionality for which the DAFS client is spe-

cialized (e.g., asynchronous I/O with direct data placement, as shown in Chapter 3), this

comes at the cost of increased layering due to the higher code complexity, leading to

3. Needless to say, they are also more portable than kernel-based implementations of OS services.

89

longer code paths and high per-I/O overhead. The DAFS client implementation, on the

other hand, has a more integrated design. It achieves compact, short code paths, offering

the desired service with lower per-I/O overhead, as was shown in Section 3.3.1.

5.9 Analytical Performance Modeling

In this section, I examine the effect of the protection domain crossings inherent in a

kernel-based file system implementation with a system-call API, on application

performance. This study is based on the analytical model developed in Section 3.1 and

assumes that (a) applications saturate the host CPU when performing I/O using

relatively small block sizes (e.g., 4KB-64KB), and (b) the NIC supports transport protocol

offload and an RDDP mechanism, eliminating the network protocol, memory copy and

checksum overheads listed in Table 11. I assume that the NIC itself never becomes a

performance bottleneck4, except for adding a latency component in the I/O data path.

With the assumption of transport protocol offload and the availability of an RDDP

mechanism, the only host overheads remaining are the system-call, file system, device

interaction, and interrupt processing costs, all incurred on a per-I/O basis. As will be

shown later, the real difference between a user-level and a kernel-based implementation

Source of Host
Overhead

Type of Overhead
without

Offload/RDDP

Type of Overhead
with

Offload/RDDP
System Call Per-I/O Per-I/O
File System Per-I/O Per-I/O
Interrupts Per-Packet Per-I/O
Device Interaction Per-Packet Per-I/O
Network Protocol Per-Packet -
Memory Copying Per-Byte -
Checksums Per-Byte -

TABLE 11. Sources of file system client overhead and their type. Most of the sources
of overhead are eliminated with a NIC offering transport protocol offload and RDDP.

4. This assumption does not always hold. For example, the NIC can limit I/O throughput when its process-
ing speed significantly lags behind the host CPU [101,96] or when using very small message sizes.

90

of a file client is the cost of the system-call protection domain crossing. I will next exam-

ine the effect of this cost on I/O throughput and latency, based on analysis of the opera-

tions to issue and complete I/Os (Table 12).

5.9.1 Throughput

For the purpose of this section, I am focusing on throughput-intensive applications that

perform I/O using asynchronous operations at the speed of the host CPU. The reason

that I focus on this domain is because the effect of additional overhead due to the system

calls is expected to be maximal when the CPU is saturated. Table 12 estimates the per-I/O

overhead, assuming that each I/O involves two operations, one to issue the I/O and

another to complete it. The difference between the “Best Case” and “Worst Case”

columns is that the latter assumes that the check for I/O completion is unsuccessful and

the application has to block waiting on the I/O. Blocking on I/O typically involves a

system call and an interrupt for notification.

Interrupts can be avoided in most cases in throughput-intensive workloads. This

is possible either because polling in user or kernel space is always successful, as is the

API
Per-I/O Overhead Total Per-I/O Overhead

Issue I/O Complete I/O Best Case Worst Case

User-level
Interaction

with the

NIC

User-level

NIC polling, or

System call +

(possible) interrupt

Two NIC

interactions

System call +

two NIC

interactions +

interrupt

Kernel-based

System call +

interaction

with the

NIC

System-call +

NIC polling +

(possible) interrupt

Two system
calls +

two NIC

interactions

Two system
calls +

two NIC

interactions +

interrupt

TABLE 12. Estimating the total per-I/O overhead for a user-level and for a kernel-based API. The
file system overhead is the same in all cases and not shown here. The kernel-based API
implementation incurs an additional overhead for implementing global policies (Section 5.7.1),
which is not shown here. The “Best Case” is based on the assumption that polling for I/O
completion is always successful. The NIC supports transport protocol offload and RDDP in both
cases.

91

case when small blocks are used on a fast network and with a sufficient amount of asyn-

chronous I/Os, or because the cost of per-I/O interrupts is amortized, as is the case when

large blocks are used. Looking at the “Best Case” column in Table 12, it becomes evident

that the only difference between the user-level and the kernel-based API, assuming the

same file system implementation, is the overhead of two system calls in each I/O.

Next, I will estimate the degradation in application performance caused by the

system-call overhead in a kernel-based API, compared to the performance achievable

with the same implementation and a user-level API. Using Equation 3 on page 40 and

dropping the assumption of large block sizes, the throughput (in terms of number of I/O

operations per second) achievable for a particular block size b can be expressed as fol-

lows:

(EQ 6)

For the purpose of this section, I consider block sizes b for which the host can

achieve its peak throughput 1/G when performing raw communication5. Note that the

network throughput for very small blocks (e.g., of the order of one to a few tens of bytes)

may be limited by the NIC to less than the asymptotic bandwidth 1/G of the network6.

The application processing a and overhead o(b) are expressed in units of time-per-

I/O operation. The overhead incurred by the host CPU per unit of time increases with

decreasing block sizes. In the case of a kernel-based API, the overhead of the two system

calls is an additional factor that contributes to the load of the host CPU. Next, I focus on

the following two questions:

5. In the Myrinet (LANai9.2) network used in this dissertation, this is possible for 4KB or larger blocks as can
be shown with a simple benchmark performing raw communication using Myrinet’s native GM communica-
tion library.

6. This limit stems from the latency incurred in setting up the NIC DMA engines for sending or receiving
very small messages. This limitation is captured in the gap (g) parameter of the LogGP model [4], described in
Section 2.2.

Throughput (b) = min 1
G
---- 1

a o b()+
-------------------,

 I/O
s

92

• Under what conditions does the performance difference between the user-level

and the kernel-based API become noticeable in throughput-intensive applica-

tions that have small computational requirements (i.e., small a)?

• What is the effect of the system-call overhead when the application involves sig-

nificant data processing (i.e., large a) and is therefore heavily CPU-bound?

The performance degradation using a kernel-based API compared to a user-level

API can be expressed as:

(EQ 7)

 Where the overhead parameter δ is defined as:

(EQ 8)

This parameter captures the fact that besides the overhead of the user-kernel

crossing, a kernel-based API incurs the overhead of parameter checking, which may

Performance Degradation (%)
Throughputuser Thoughputkernel–

Throughputuser

min 1
G
---- 1

a o b()user+
-----------------------------,

 min 1
G
---- 1

a o b()kernel+
---------------------------------,

 –

min 1
G
---- 1

a o b()user+
-----------------------------,

--

1
a o b()user+
----------------------------- 1

a o b()kernel+
---------------------------------–

1
a o b()user+

--

o b()kernel o b()user–

a o b()kernel+
--

δ
a o b()kernel+

=

=

=

=

=

δ User-kernel Crossing + Parameter Checking + Global Policy=

93

involve the cost of traversing the page table in case of validating memory addresses, and

that of implementing global policies (Section 5.7.1).

The effect of the system-call overhead becomes maximal when the host CPU is

close to its saturation point. Equation 7 therefore becomes most interesting in the region

of I/O block sizes for which the host is CPU-bound. This excludes block sizes for which

performance may be limited (a) by the NIC, or (b) by the network link7. A close look at

Equation 7 points to answers to the questions posed earlier:

• For throughput-intensive applications with small computational requirements

(i.e., small a), the degradation depends on the ratio:

(EQ 9)

The decomposition of the kernel API overhead to file system, device interaction,

and user-kernel crossing costs, is based on the assumptions about NIC support

outlined earlier, i.e., transport protocol offload and RDDP. It is also based on the

fact that cost of interrupts can be made negligible by successful polling. With a

0.5µs system-call cost on the Pentium III and with the file system and device inter-

action overhead in the tens of µs, this ratio is expected to be roughly somewhere

between 0-5%. In practice, the 5% upper bound should be a conservative estimate

if one accounts for the additional non-negligible overhead of application-level I/O

libraries such as Berkeley DB [81].

• For applications performing significant data processing (i.e., large a), there is prac-

tically negligible performance degradation since Equation 7 is no longer sensitive

to the user-kernel crossing cost.

7. For the Myrinet network, the interesting range is between 4KB and 32KB. The upper limit is derived from
experiments with most of the file system implementations described in this dissertation.

δ
File System Overhead Device Interaction Overhead δ+ +

94

5.9.2 Response Time

The effect of the system-call interface in I/O latency is minimal. For example, the

additional latency imposed by two system calls, one to issue the I/O and one to complete

it, is about one microsecond on the 1GHz Pentium III platform used in my experiments.

System-call measurements are outlined in Section 5.10.1. This is less than 1% of the

latency to fetch a 4KB file block from server memory, as measured in Table 7 on page 64.

5.10 Experimental Results

In this section, I report experimental results using the setup described in Section 3.3.

Table 5 on page 47 reports baseline network performance for the protocols used over the

Myrinet network.

5.10.1 System Call Cost

To quantify the cost of crossing the user-kernel boundary, I measured the system-call cost

on a Pentium III CPU clocked at 1GHz with FreeBSD 4.6. I found that a call to the

getpid() system service takes about 500 cycles (500ns). This result is corrected for

counter manipulation overhead. Earlier work measuring system-call invocation

overhead under different operating systems on the Pentium found that low overhead

access to system functionality is possible with mainstream operating systems such as

BSD UNIX and Windows [24].

5.10.2 Cost of Memory Registration

In this section, I present measurements of the cost of memory registration and compare it

to the system-call measurement of the previous section. Table 13 presents the results for

registering a variable number of pages. For these measurements, I used the Giganet

cLAN NIC instead of the Myrinet LANai NIC. The advantage of the cLAN over the

LANai in this particular experiment is that the former features a fully hardware-based

implementation of the VI protocol [111]. In the LANai implementation of the VI protocol,

the VI Translation and Protection Table (TPT) is maintained by the host. Thus, the LANai

95

VI memory registration/de-registration operations are more expensive than they would

be if the TPT was maintained by the NIC. For this reason, the cLAN offers lower cost of

interaction with the NIC for registering memory over a commodity PCI bus, and is more

representative of real implementations. Besides the interaction with the NIC, registration

requires kernel involvement to wire page translations in physical memory. However, the

cost of these operations does not depend on the NIC technology used. The observations

in Table 13 agree with a previous performance study of the performance of VI-based

user-level networking systems [104].

Section 5.4.1 argues that good utilization of physical memory requires some

amount of per-I/O registration in any system offering remote direct data placement,

independently of whether the NIC is accessible through a user-level interface or through

a kernel-based API. Comparing the measurements of Table 13 with the system-call mea-

surements of Section 5.10.1, it becomes clear that the cost of the user-kernel protection

boundary crossing is a small fraction of the cost of registering memory with the NIC.

Thus, a user-level networking system that does frequent per-I/O registrations is expected

to perform similarly to a kernel-based system, despite the fact that the latter incurs the

additional overhead of the system-call API.

5.10.3 File Access Performance

In this section, I show that a network file system client can be implemented equally

efficiently in user or kernel address space. I compare a user-level DAFS client (which I

refer to as DAFS) to an implementation emulating a kernel-based DAFS client (kDAFS).

Number of Pages Time (us)
1 15
2 17
3 19
10 28
100 165

TABLE 13. Cost of memory registration on the Giganet cLAN NIC with FreeBSD 4.6.

96

The latter is derived by modifying the user-level DAFS client to perform a null system

call at each function entry. A true kernel-based DAFS client is expected to be faster than

kDAFS for two reasons: First, the only difference between a true kernel-based DAFS

client and my approximation is that the former would execute code and access data in the

kernel instead of a user-level address space. This, however, should not impede

performance in any way. Actual kernel-based performance should be better due to

privileges enjoyed by the kernel address space, such as wired page mappings. Second,

the user-level approximation may in fact perform more than one system-call per I/O if

there is a need to block waiting for I/O completion.

Figure 21 shows that DAFS and kDAFS are equally effective in reducing commu-

nication overhead in a simple streaming workload. The only performance difference

occurs for small (4KB and 8KB) blocks, where the effect of the system-call overhead is

maximal. Even in this case, however, kDAFS is within 5% of the performance of the fully

0

50

100

150

200

250

4 8 16 32 64 128 256 512

R
ea

d
 th

ro
ug

hp
ut

 (M
B

/
s)

Block size (KB)

kDAFS

;

;

;

;
; ; ; ;

DAFS

G

G

G

G
G G G G

FIGURE 21. User-level versus emulated kernel-based DAFS client performance in streaming file
access. The kernel structure is about 5% slower for small (4KB and 8KB) blocks and performs
similar to the user-level structure for larger blocks.

97

user-level client. Note that this experiment focuses on communication using I/O block

sizes common in network storage applications. Distributed scientific and other applica-

tions typically use smaller I/O units and may find an advantage in the lower latency

offered by user-level networking.

5.11 Summary

In this chapter, I have shown that an appropriately designed API can provide the

flexibility required by I/O-intensive applications. Full control over I/O policies is

possible with this API through the use of application-level file caching and network

buffering. Even more importantly, this flexibility can be achieved without user-level

access to NICs, significantly simplifying NIC design and implementation. There is a

commonly-held belief, however, that kernel APIs hurt performance, due to the overhead

of protection domain crossing. In this chapter, I show that this overhead is rarely a

problem for I/O-intensive network attached storage applications. To demonstrate this, I

use an analytical model backed by experimental measurements of key parameters. I

show that performance in such applications is dominated by other overheads, such as

those of the file system and the host interaction with the NIC, incurred on a per-I/O

basis. Use of the kernel has other benefits, besides the protection and fault-isolation

provided by the system-call boundary. The kernel is trusted by all applications, and thus,

its involvement required to enforce global policies. In addition, involvement of the kernel

on the I/O is key to efficient, secure data and code sharing between applications. User-

level implementations, on the other hand, are more portable and can be better specialized

to the needs of I/O-intensive applications.

98

99

Chapter 6

System Design and Implementation

This chapter describes the design and implementation of the systems evaluated in this

dissertation and outlined in Table 14.

All systems were implemented by modifying or extending the FreeBSD 4.6 oper-

ating system. FreeBSD is a derivative of the Berkeley Software Distribution (BSD) release

4.4 [70], a variant of the UNIX [91] operating system. FreeBSD 4.6 features a unified VM

and file system cache. All NFS variants described in Sections 6.1 (NFS re-mapping), 6.2

(NFS pre-posting) and 6.3.2 (NFS hybrid), were implemented by modifying the standard

FreeBSD NFS client and server implementation. The DAFS kernel server is a new kernel

module that initially required changes in the FreeBSD buffer cache subsystem, as

described in Section 6.3.3.2. It was later modified to directly use the VM system interface,

NAS System Network I/O
Mechanism Uses RDMA Per-I/O Tag

Advertisement

NFS re-mapping Header Splitting No No

NFS pre-posting RDDP-RPC No Yes

NFS hybrid, DAFS RDMA Yes Yes

Optimistic DAFS Optimistic RDMA Yes No

TABLE 14. NAS systems and network I/O mechanisms evaluated in this dissertation. RDDP
mechanisms target per-byte overhead. Optimistic RDMA combines RDDP and per-I/O
overhead reduction.

100

as described in Section 6.3.3.3, avoiding the need for any core kernel modifications. The

only kernel support required by user-level code, such as the DAFS and ODAFS clients, is

a driver for the Myrinet network interface controller.

6.1 NFS Re-mapping

This section describes the NFS re-mapping server design and implementation. This

implementation differs from the one presented in the 2002 Usenix study [64] in that it is

based on the Myrinet NIC instead of the Alteon Tigon II. The advantage of this imple-

mentation is that it allows a more fair comparison between the VM re-mapping and

RDMA I/O models on the same network hardware. In addition, the Myrinet network

and LANai9.2 NIC remove many of the shortcomings of the older Alteon/Tigon-II hard-

ware, such as its higher NIC latency (132µs vs. 80µs one-byte UDP packet roundtrip time)

and lower link speed (120MB/s vs. 244MB/s).

The most general form of copy avoidance for file services uses header splitting and

page flipping, variants of which have been used with TCP/IP protocols for more than a

decade [19,23,108]. To illustrate, we1 briefly describe FreeBSD enhancements to extend

copy avoidance to read and write operations in NFS. Most NFS implementations send

data directly from the kernel file cache without making a copy, so a client initiating a write

and a server responding to a read can avoid copies. We focus on the case of a client receiv-

ing a read response containing a block of data to be placed in the file cache. The key chal-

lenge is to arrange for the NIC to deposit the data payload---the file block---page-aligned

in one or more physical page frames. These pages may then be inserted into the file cache

by reference, rather than by copying. It is then straightforward to deliver the data to a

user process by remapping pages rather than by a physical copy, but only if the user’s

buffers are page-grained and suitably aligned. This also assumes that the file system

block size is an integral multiple of the page size.

1. Part of the text describing the NFS nocopy VM re-mapping techniques (Section 6.1) is adapted from the
Usenix 2002 study [64]. The text describing the NFS-nocopy system in that paper was contributed by Jeff
Chase.

101

To do this, the NIC first strips off any transport headers and the NFS header from

each message and places the data in a separate page-aligned buffer (header splitting). Note

that if the network MTU is smaller than the hardware page size, then the transfer of a

page of data is spread across multiple packets, which can arrive at the receiver out-of-

order and/or interspersed with packets from other flows. In order to pack the data con-

tiguously into pages, the NIC must do significant protocol processing for NFS and its

transport to decode the incoming packets. NFS complicates this processing with variable-

length headers.

I modified the part of the Myrinet LANai adapter firmware emulating Ethernet

communication to perform header splitting for NFS read response messages. This is suffi-

cient to implement a zero-copy NFS client. Our modifications apply only when the trans-

port is UDP/IP and the network is configured for Jumbo Frames, which allow NFS to

exchange data in units of pages. To allow larger block sizes, we altered IP fragmentation

code in the kernel to avoid splitting page buffers across fragments of large UDP packets.

The RPC layer was modified to trade VM mappings of mbuf pages with their destination

buffer in the file cache. Finally, buffer cache VM pages are re-mapped copy-on-write

(COW) into application buffers2. This allows zero-copy data exchange with NFS block-

transfer sizes up to 32KB. Large NFS transfer sizes can reduce overhead for bulk data

transfer by limiting the number of trips through the NFS protocol stack; this also reduces

transport overheads on networks that allow large packets.

While this is not a general solution, it allows an assessment of the performance

potential of optimizing a kernel-based file system rather than adopting a direct-access

user-level file system architecture like DAFS. It also approximates the performance

achievable with a kernel-based DAFS client, or an NFS implementation over VI or some

other RDMA-capable network interface. As a practical matter, the RDMA approach

embraced in DAFS is a more promising alternative to low-overhead NFS. Note that page

flipping NFS is much more difficult over TCP, because the NIC must buffer and reassem-

2. Another possibility would be to trade VM mappings between file cache and application buffers, but that
would require invalidating the buffer cache page mappings.

102

ble the TCP stream to locate NFS headers appearing at arbitrary offsets in the stream.

This is possible in NICs implementing a TCP offload engine, but impractical in simpler

NICs such as the Myrinet LANai.

Header splitting without NIC support is in some cases possible using a software

technique called header patching [19]. This technique, however, is specific to the UDP pro-

tocol, requires extra protocol negotiation between the endpoints, and requires agreement

of a fixed header size for all protocols that benefit.

6.2 NFS Pre-posting

This section describes the NFS client implementation that uses RDDP-RPC supported by

the Myrinet LANai and FreeBSD 4.6. The client was modified as shown in Figure 10 on

page 43. In this implementation, I use the RPC transaction numbers as buffer tags. A tag

is associated with an application buffer at the time when the latter is pre-posted by the

receiving host, prior to sending the RPC request. Buffer tags are implicitly advertised in

the context of the RPC protocol message exchange. RDDP-RPC imposes no buffer size or

alignment restrictions on application buffers. Pre-posting of receive buffers (or pre-post-

ing, for short) has previously been used in a kernel-resident RPC-based global shared

memory service [6].

The implementation of an RDDP-RPC-based kernel client offering direct transfer

file I/O requires a device interface that communicates the following information to the

NIC:

• A description of the user memory buffer, including the physical address pointing

to the buffer, where data coming from the network is to be directly placed.

• A description of the request including the RPC transaction number and the type of

request, enabling the NIC to recognize the data payload in the RPC response.

This scheme requires simple modifications in the vnode layer of existing network

file clients to avoid the user/kernel copy, pin the user-level buffer in physical memory

and give the NIC the description of the user-level buffer rather than a pointer to an inter-

103

mediate buffer cache location. Both synchronous and asynchronous file I/O over an NFS

client offering such support enjoys zero-copy, uncached data transfer.

One drawback of this scheme is that the NIC needs to be able to parse transport

and application-level headers to understand RPC responses, which raises security and

safety issues. These issues can be addressed by requiring supervisor privileges to pro-

gram the NIC. Another drawback is that by bypassing the buffer cache, which abstracts

the device layer, the file client is no longer part of the device-independent part of the ker-

nel. Since not all NICs are expected to support an RDDP-RPC API, the file client depends

on the availability of a device-specific API. However, making NIC-assisted direct transfer

file I/O an option of the mount command is expected to work well in practice.

6.3 Systems using RDMA

This section describes my DAFS server and NFS-hybrid client and server implementa-

tions [63,64,65] for the FreeBSD 4.6 kernel. My DAFS server implementation has been

deployed and extensively used in a variety of academic and industrial environments.

Duke University, Rutgers University, Network Appliance Inc., and EMC Inc., are some of

the primary external users of this software.

6.3.1 NIC Requirements and Support for RDMA

This section describes the basic characteristics of the Virtual Interface [111] (VI) protocol,

used in the implementation of the DAFS server. These are:

• Direct application or kernel access to the NIC. This is possible by mapping parts of the

I/O bus space belonging to the NIC onto the process’ or the kernel’s address

space. Memory accesses to this space by the kernel or the process are translated by

the VM hardware into I/O bus transactions that are subsequently claimed by the

NIC.

• Memory registration with the NIC. The NIC includes a memory management unit to

enable it to translate virtual memory addresses to physical bus addresses to use

104

when setting up DMAs transfers. The host is responsible for registering VM trans-

lations with the NIC prior to their use.

• Efficient, asynchronous event notification and delivery mechanism. VI supports the com-

pletion group (CG) abstraction that simplifies the task of simultaneously polling a

large set of connections by aggregating their event notification and delivery into a

single structure. The CG is similar to the UNIX select or poll mechanism, only

more efficient by virtue of being directly supported by the hardware rather than

implemented in the kernel.

6.3.2 NFS Hybrid

This section describes the NFS client and server implementation that use RDMA over the

LANai NIC and FreeBSD 4.6. The NFS client API is unchanged, but the NFS client is

modified as shown in Figure 10 on page 43. The NFS wire protocol is extended to support

new RPC procedures that enable remote memory pointer exchange between client and

server. The server is modified to issue RDMAs transferring data between the server

buffer cache and client application buffers in response to appropriate client RPC requests.

Both the NFS client and the server perform caching of buffer registrations to reduce the

frequency of interaction with the NIC.

6.3.3 DAFS

In this section I describe the DAFS client and server evaluated in this dissertation. The

DAFS server is described in more detail as I personally designed and implemented this

system.

6.3.3.1 Client

The prototype user-level DAFS client used in this dissertation was designed by Jeff Chase

and Richard Kisley. It was originally implemented by Kisley and subsequently jointly

maintained and extended by the Duke and Harvard teams. This DAFS client was used in

the 2002 Usenix study [64].

105

6.3.3.2 Original Server Design and Implementation

This section describes the original DAFS server design and implementation using exist-

ing FreeBSD kernel interfaces with minor kernel modifications. The prototype DAFS ker-

nel server follows the event-driven state transition diagram of Figure 22. Events are

shown in boldface letters. The arrow under an event points to the action taken when the

event occurs. The main events triggering state transitions are recv-done (a client-initiated

transfer is done), send-done (a server-initiated transfer is done) and bio-done (a block I/O

request from disk is done). Important design characteristics of the DAFS server in the

current implementation are:

• The server uses the buffer cache interface to perform disk I/O (i.e. bread(),

bwrite(), etc.). This is a zero-copy interface that can be used to lock buffers

(pages and their mappings) for the duration of an RDMA transfer. RDMA trans-

fers take place directly to or from the buffer cache.

network I/O−driven
state diagram

disk I/O−driven
state diagram

Process
request

on
bread

Block

bp’s released

Block

locked

while
bp’s

Idle

Data not in cache

send−done

Request queued

recv−done

bio−done

Data in cache,

start RDMA

bp’s locked

FIGURE 22. Event-Driven DAFS Server. Blocking is possible with existing interfaces.

106

• RDMA transfers are initiated in the context of RPC handlers but proceed asyn-

chronously. It is possible that an RDMA completes long after the RPC that initiated

it has exited. Buffers involved in RDMA need to remain locked for the duration of

the transfer. RDMA completion event handlers unlock those buffers and send an

RPC reply if needed.

• The kernel buffer cache manager is modified to register/de-register buffer map-

pings with the NIC on-the-fly, as physical pages are added or removed from buff-

ers. This ensures that the NIC never takes translation miss faults and pages are

wired only for the duration of the RDMA.

Each of the network and disk events has a corresponding event handler that executes in

the context of a kernel thread.

• recv-done is raised by the NIC and triggers processing of an incoming RPC request.

For example, in the case of read or write operations, the handler may initiate block

I/O with the file system using bread(). After data is locked in buffers (hereafter

referred to as bp’s) in the buffer cache, RDMA is initiated and the bp’s remain

locked for the duration of the transfer.

• send-done is raised by the NIC to notify completion of a server-initiated (read or

write) RDMA operation. The handler releases locks (using brelse()) on bp’s

involved in the transfer and sends an RPC response.

• bio-done is raised by the disk controller and wakes up a thread that was blocking

on disk I/O previously initiated by bread(). This event is currently handled by

the kernel buffer cache manager in biodone().

The server forks multiple threads to allow concurrent processing in order to deal with

blocking conditions. Kernel threads are created using an internal rfork() operation.

One of the threads is responsible for listening for new transport connections whereas the

rest are workers involved in data transfer. All transport connections are bound to the

107

same completion group. Message arrivals on any transport connection generate recv-done

interrupts that are routed to a single interrupt handler associated with the completion

group. When the handler is invoked, it queues the incoming RPC request, notes the trans-

port that was the source of the interrupt, and wakes up a worker thread to start process-

ing. After parsing the request, a thread locks the necessary file pages in the buffer cache

using bread(), prepares the RDMA descriptors and issues the RDMA operations. The

RPC does not wait for RDMA completion. A later send-done interrupt (or successful poll)

on a completed RDMA transfer descriptor starts clean up and release of resources that

the transfer was utilizing (e.g. bp locks held on file buffers for the duration of the trans-

fer), and sends out the RPC response. Threads blocking on those resources are awakened.

Event-driven design requires that event handlers be quick and not block between

events. My original server design deviates from this requirement due to the possibility of

blocking under certain conditions:

• The need to wait on disk I/O initiated by bread(). It is possible to avoid using

the blocking bread() interface by initiating asynchronous I/O with the disk

using getblk() followed by strategy(). I opted against this solution in the

early design since disk event delivery is currently disjoint from network event

delivery, complicating event handling. Integrating network and disk I/O event

delivery is possible with appropriate kernel support [65].

• Locking a bp twice by the same kernel thread or releasing a bp from a thread other

than the lock owner causes a kernel panic. Solutions are (a) to defer any request

processing by a thread while past transfers it issued are still in progress, to ensure

that a bp is always released by the lock owner and a thread never locks the same bp

twice, or (b) to modify the buffer cache so that these conditions no longer cause a

kernel panic. To avoid wider kernel changes in the original implementation, I

chose to implement (a).

An important concern when designing an RDMA-based server is to minimize response

latency for short transfers and maximize throughput for long transfers. In the current

108

design, notification of incoming messages is done via interrupts and notification of

server-initiated transfer completions via polling. Short transfers using RDMA are

expected to complete within the context of their RPC request. In this way, the RPC

response immediately follows RDMA completion, minimizing latency. Throughput is

maximized for longer transfers by pipelining them as their RDMA operations can be con-

currently progressing. The DAFS kernel server presently runs over the Emulex cLAN and

Myrinet VI-GM-1.0/GM-2.0-alpha1 transports.

6.3.3.3 Evolution of the Server Design

The original DAFS server design was constrained by the use of the file system interface

(bread(), brelse(), etc.) in many ways. Besides the locking issues mentioned in the

previous section, the use of bp’s, which are mapped on the buffer cache virtual address

space, raises two other issues: First, the core kernel (VFS layer) has to be modified to reg-

ister buffer cache mappings with the NIC. This makes the core (upper-part) of the

FreeBSD kernel device-dependent. Second, the limited virtual address space allocated to

the buffer cache in 32-bit CPUs, such as the Intel x86, implies that buffer cache mappings

will be frequently invalidated, causing unnecessary and costly de-registrations and re-

registrations with the NIC.

The solution chosen for the second (and current) generation of the DAFS server

design was to access file data using the VM getpages() and putpages() interface

instead. The benefits of this approach for overall system design are the following:

• The DAFS server (rather than the VFS layer) controls registration and de-registra-

tion with the NIC. The rest of the kernel need not be modified to accommodate the

server.

• File data can be mapped on a larger virtual address space than allowed by the

buffer cache. This is particularly useful in systems with large physical memory

configurations. In this way, VM pages that cache file state are guaranteed to

109

remain registered with the NIC, for so long as these pages are resident in physical

memory.

6.4 Optimistic RDMA and Optimistic DAFS

This section describes the implementation of the Optimistic RDMA (ORDMA) mecha-

nism and the Optimistic DAFS (ODAFS) system, which were described and evaluated in

Chapter 4.

6.4.1 Implementing ORDMA

The two main ORDMA implementation issues are (a) how to synchronize between the

NIC and the host CPU when accessing VM pages, and (b) how to report NIC–to–NIC net-

work exceptions in case of remote memory access faults.

6.4.1.1 NIC–host CPU synchronization

Synchronization is necessary because the NIC is allowed to set up DMA transfers

between the network and main memory independently of the CPU. The kind of NIC–

host CPU synchronization depends critically on OS support for multiple processors. An

ORDMA-capable NIC in a multiprocessor OS can fully participate in the VM system by

pinning/unpinning and locking/unlocking VM pages in response to network events.

This is because a multiprocessor OS offers the necessary synchronization structures for

the NIC to appear indistinguishable from an additional CPU to the OS, except for its per-

formance. On the other hand, a NIC in a uniprocessor OS may not be able to pin pages

from interrupt handlers if, for example, the OS is non-preemptive. In this case, synchroni-

zation via the host memory resident TPT is necessary.

The NIC should ensure that the following two conditions hold for the duration of

DMA: First, pages involved in DMA have to remain resident in physical memory. Sec-

ond, conflicting accesses by another CPU or NIC should not be allowed. I chose to satisfy

both requirements by treating VM pages with translations loaded in the NIC TLB as both

pinned and locked. The alternative of locking pages only for the duration of an I/O

requires frequent NIC–host CPU interaction and was deemed too expensive in the case of

110

a NIC on the I/O bus. All pages in the TPT, except those with translations loaded on the

NIC TLB, may be locked and invalidated by the host. The NIC updates the state of TPT

entries by interrupting on each TLB miss. These interrupts increase CPU overhead but

have the side-effect of speeding up the loading of TPT entries into the NIC, which is now

done via a host-initiated programmed I/O operation, instead of (possibly several) NIC-

initiated DMA on the PCI bus.

A drawback of having to synchronize via a device-specific page table is that the

OS has to be aware of and adapt to the idiosyncrasies of the NIC. For example, it should

always check with the NIC TPT before reclaiming a page and account for the fact that

attempts to reclaim a physical page may fail until the page is evicted from the NIC TLB.

To avoid starvation, the OS must increase its minimum free page threshold by the maxi-

mum amount of physical memory with page translations loaded on the NIC TLB. The OS

must also be able to limit the effective size of the NIC TLB to avoid excessive pinning by

the NIC.

6.4.1.2 NIC–to–NIC exceptions

ORDMAs may fail due to a variety of conditions, such as invalid address translation, pro-

tection violation, or failure to lock page(s). I decided to support such exceptions by

extending the VI protocol with recoverable RDMA failure semantics. Since VI is a layer

on top of Myrinet’s GM in our prototype, I first modified the Myrinet GM Control Pro-

gram to report such conditions as exceptions in low-level get (i.e., RDMA read) and put

(i.e., RDMA write) operations. These exceptions are reported as “soft” or recoverable

transport errors in the VI descriptor status flags, and can be appropriately handled by

higher-level software, such as the DAFS client and the ODAFS user-level cache.

6.4.2 Implementing ODAFS

My implementation of a prototype ODAFS client and server extends the following exist-

ing DAFS components: a user-level DAFS file cache [2], a user-level DAFS API imple-

mentation [64] and a DAFS kernel server [65]. The ODAFS prototype relies on the

ORDMA support for Myrinet described in Section 6.4.1.

111

The ODAFS server piggybacks remote memory references to data blocks in its

kernel file cache onto RPC responses to the client. The ODAFS client stores these refer-

ences in cache block headers. As data blocks are reclaimed by the client cache, memory

references are allowed to live in “empty” headers. The client cache is configured with

many more empty headers than data blocks. Ideally, it should have enough buffer head-

ers to be able to map the entire server physical memory available for file caching.

I also modified the DAFS API to allow passing of ORDMA references, and the

DAFS client implementation to include ORDMA operations in its event loop. On

ORDMA exceptions, the DAFS client retries the operation using RPC in order to guaran-

tee success. At RPC completion, the fresh piggybacked reference to the server buffers is

passed to the ODAFS client.

The ODAFS server maps file blocks on a private 64-bit virtual address map. This is

to ensure that there is always enough virtual address space to map large amounts of

physical memory for long periods of time. Thus, I ensure that NIC TLB invalidations are

due to the OS reclaiming a VM page due to memory pressure and never due to having to

share a small virtual address space. This 64-bit address space is addressable only by the

NIC and never by the CPU. It is therefore independent of whether the CPU has a 32- or

64-bit architecture. The current implementation of this 64-bit address space on the 32-bit

Intel Pentium architecture is based on a paged segmentation scheme, a technique that has

been used in the past to account for a limited machine-supported address space. For

example, it is similar to the overlays used in the case of the 16-bit PDP-11 architecture.

Ideally, the replacement algorithm used in the server NIC TLB should be the same

as the algorithm used in the client ORDMA directory.

6.5 Summary

This chapter described my implementation of the systems evaluated in this dissertation.

All software is freely available from http://www.eecs.harvard.edu/dafs.

112

113

Chapter 7

Related Work

This chapter expands on the related work described in Chapter 3. In Section 7.1, I intro-

duce direct-access networking and relate Remote Direct Memory Access (RDMA), which

is the prominent implementation of direct-access networking, to the new mechanisms

that I propose in this dissertation. In Section 7.2, I describe related previous work on

direct-access network storage systems. In Section 7.3, I relate direct-access network stor-

age systems to alternative designs based on virtual memory (VM) techniques.

7.1 Direct-access Networking

The term direct-access networking was introduced by the Direct-Access File System Collab-

orative (see Section 7.2) to characterize a class of transports offering RDMA capabilities.

This dissertation generalizes this term to encompass any network mechanism that sup-

ports remote targeting of application buffers, independent of whether the targeting takes

place by memory address, as in RDMA, or by another type of tag. An example of an alter-

native to RDMA for direct-access networking is the RPC with tagged buffer pre-posting

mechanism, which is related to previous work in Section 7.1.2.

Besides the issue of direct data transfers between the network and application

buffers, another issue that characterizes direct-access networks is the degree of involve-

ment of the end-system hosts in setting up the data transfer. RDMA does not strictly

require a handshake between the communicating hosts prior to the data transfer. Such a

114

handshake is not necessary, for example, when the initiating side already possesses a

memory reference to a remote buffer and the latter is known to be prepared for the

RDMA (e.g., registered with the NIC). Previous work in RDMA-based network file sys-

tems relied on impractical assumptions to safely use RDMA in this way [109]. In practice,

however, existing systems always wrap RDMA in an RPC on a per-I/O basis to set up the

transfer at both ends prior to the RDMA [29]. This method avoids remote memory access

faults during the data transfer at the expense of incurring the cost of an RPC on each I/O.

Optimistic RDMA is an extension to RDMA that avoids this cost by offering a practical

mechanism to handle and recover from possible remote memory access faults.

RDMA can be used either with a user-level or with a kernel interface to a NIC. An

overview of the history and present state of user-level networking as an interface to a

direct-access NIC is described in Section 7.1.3.

7.1.1 Remote Direct Memory Access

Spector [103] was the first to propose a communication model based on remote references,

simple inter-process communication primitives that allowed efficient implementation of

remote memory access. Spector’s implementation, however, was constrained by the sim-

plicity of his experimental platform, which was composed of Xerox Alto workstations

and 2.94 Mbit/s Ethernet. Thekkath and his colleagues [109] extended Spector’s remote

reference model to a true remote memory access model, incorporating virtual memory,

protected access, and time-slicing on workstations. Their remote memory access model is

composed of three operations (READ, WRITE, and Compare-and-Swap) and imple-

mented as MIPS machine instructions using unused opcodes from the R3000 instruction

set. A number of later projects explored RDMA implementations with appropriate NIC

support. The SHRIMP [17] project explored implementing a global shared memory

abstraction over specially-designed or commodity [78] network hardware. The original

SHRIMP prototype consisted of specialized hardware that mapped parts of a process’

address space to remote physical memory. Memory access by the application on a

remotely mapped region was transparently claimed by the SHRIMP hardware, by snoop-

ing on the memory bus, and transformed into an RDMA operation. Remote memory

115

access with SHRIMP involved sending physical memory addresses to the remote node.

Exported virtual memory regions were permanently pinned in physical memory.

Research in the context of the Hamlyn project [21] proposed sender-based management

of receiver buffers through the use of RDMA as a way to eliminate buffer overruns. All

these early RDMA systems made similar choices in terms of how to keep exported mem-

ory buffers resident for the duration of an I/O. They all assumed that a host CPU is either

the initiator of the RDMA or aware that an RDMA was in progress, and thus prepared for

it. The Optimistic RDMA mechanism removes this assumption and enables a practical

RDMA model where an RDMA can safely take place without the target host CPU being

aware or prepared for it.

RDMA also relates to bulk transfer primitives available in super-computers since

the 1980’s, such as the Thinking Machines CM-5 [60] scopy (functionally similar to a

remote memory write operation) and the IBM SP-2 [107] remote memory copy.

7.1.1.1 Address Translation Mechanisms

The primary requirement of RDMA is that the NIC holds physical memory addresses for

the directly-accessed application buffers and the application I/O buffers remain resident

in physical memory, at least for the duration of the I/O. To account for the address trans-

lation needs of the RDMA mechanism, the NIC is associated with a device-specific page

table. Due to physical memory size limitations of the NIC, the latter keeps only a cache of

the page table entries (i.e., a TLB), with the rest of the page table stored in host memory.

NIC TLB misses can be resolved by looking up the NIC-specific page table. Misses in the

NIC page table are possible when the RDMA is initiated by a remote node without a pre-

vious RPC to prepare the target memory buffers. Figure 23 shows the different possibili-

ties for address translation for the needs of the NIC and for keeping VM pages resident in

physical memory for the duration of RDMA.

The issues with NIC address translation for RDMA were examined by Welsh and

his colleagues [117] and by Schoinas and Hill [100]. Welsh and his colleagues proposed

116

that page translations be pinned in physical memory while their entries are loaded on the

NIC TLB. Lookups into the NIC TLB are performed by the NIC itself. Misses, however,

are handled by the host after the NIC throws an interrupt. In case of a NIC TLB miss, the

host is expected to lookup the NIC page table, issue a page fault to transfer the data from

the disk if the page is not resident in physical memory, and re-load the missing entry in

the NIC TLB. They did not, however, address the practical details of how well such a

design would work in a real implementation. In particular, this design requires that the

OS supports page-fault handling triggered by a device other than the CPU, which is usu-

ally not possible in uni-processor operating systems. It also requires that the faulting

RDMA operation be suspended for a significant amount of time, which may require sig-

nificant NIC-host collaboration due to the limited resources of the NIC. Shoinas and Hill

examined the NIC design space more thoroughly and considered the cases of (a) the NIC

performing both the lookup and the miss handling, which requires significant OS sup-

port to treat the NIC as a processor, and (b) the host CPU performing both the lookup and

the miss handling, which is possible when the host CPU has direct, protected access to

the NIC TLB. Miss handling by the host CPU is a practical choice with a NIC attached on

the I/O bus. Miss handling by the NIC is possible with NICs that are better integrated

with the host memory system (e.g., attached on the system bus) or that share a TLB with

the host CPU [10].

NIC initiator of RDMA (Host unaware)

Wire only while RDMA in progress

How are pages kept resident for RDMA?

Host initiator (or aware) of RDMA

NIC throw remote exceptionNIC trigger page−in while RDMA in progress

What if page not resident?

How does the NIC find translations?

Lookup TPT only Dynamic miss handlingWire permanently

Host will page−in and wire page if not resident

FIGURE 23. Design Decisions for RDMA Page Access and Address Translation. Optimistic
RDMA choices are in bold.

117

My Optimistic RDMA model differs from previous RDMA models in the way

access-fault handling is performed. With ORDMA, a miss in the NIC page table does not

trigger action by the host or by the NIC to establish a valid mapping and complete the

RDMA. Instead, an access fault results in reporting an exception to the initiator of the

ORDMA, signaling failure to perform the remote access.

7.1.1.2 Cost of Registration and De-registration

The cost of memory registration and de-registration can be avoided by pre-registering all

I/O buffers at once, if a limited buffer pool is used for communication. Resource-inten-

sive applications, however, such as databases, require large numbers of I/O buffers. In

such cases, a limited buffer pool introduces the need for memory copying to move data

received in intermediate user-level buffers to their final destination. The alternative of

registering application buffers on a per-I/O basis avoids memory copying, at the expense

of incurring registration costs. Zhou and her colleagues [121] proposed batching de-regis-

trations to reduce the average cost of de-registering memory. The DAFS server evaluated

in this dissertation reduces de-registrations by (a) implementing a large virtual address

space to match the physical memory configuration of the server machine, which often

exceeds the extent of the per-process virtual address space available in 32-bit architec-

tures, and (b) by batching de-registrations.

7.1.2 Other Approaches to Direct-access Networking

Anderson and his colleagues [6] used a form of tagged pre-posting to achieve direct data

placement in RPC-based data transfer. This work was in the context of an in-kernel RPC

service that they used to implement a Global Memory Service (GMS) [37] layer. Even

though their work was not directly related to a network storage system, the GMS net-

work memory layer can be transparently used by the local file and VM systems, achiev-

ing close to peak network bandwidth using a memory-mapped I/O interface. The RPC

with tagged pre-posting mechanism used in this dissertation is similar to the approach

described here in that it uses an RPC-specific tag (e.g., the RPC transaction number) to

identify anticipated incoming data payloads. It differs, however, in that it interoperates

118

with the explicit read/write I/O interface (in addition to the mmap interface), enables

direct transfers to application buffers, and is integrated with the NFS protocol.

7.1.3 User-level Networking

User-level access to NICs was originally proposed, developed and used in distributed

memory super-computers such as the Thinking Machines CM-5 [60], the IBM SP-2 [107],

and the Meiko CS-2 [45], since the 1980’s. These systems provided support for low-

latency communication protocols, such as Active Messages [114]. The potential benefits

of user-level networking with commodity NICs were demonstrated by the U-Net [113]

research project, which focused on the low communication latency and higher flexibility

possible with user-level access to ATM network interface controllers. A user-level net-

working protocol has been recently standardized with the Virtual Interface (VI) architec-

ture [111], a specification supported by Intel, Compaq, and IBM. This protocol facilitated

the commercialization of user-level networking technology and its introduction in com-

modity NICs.

A number of other research projects explored the potential of user-level network-

ing in distributed applications [17,21,78,82]. The SHRIMP [17] and Hamlyn [21] projects

also combined user-level networking with RDMA. The Mitsubishi DART [82] was

another user-level NIC offering very low latency over ATM networks. The Myrinet net-

work offered a programmable NIC platform [78] over which most of the user-level net-

working research has been conducted. All systems proposed and evaluated in this

dissertation were implemented on a switched Myrinet network with the LANai 9.2 NIC,

which is the most advanced implementation of the LANai architecture at the time of this

writing.

Besides reducing the latency of interaction with the NIC, user-level networking

also reduces the overhead of event handling. In particular, polling from user-space offers

much lower latency than the alternative of dispatching a thread to provide a process con-

text. Another way to reduce this overhead is by using Optimistic RPC (ORPC) [115]. With

ORPC, handling of the RPC takes place within the context of the original hardware inter-

rupt handler, avoiding the overhead associated with dispatching a thread. Hardware

119

interrupt handlers, however, are non-schedulable entities, and thus, cannot block. The

ORPC model is optimistic in the sense that it is hoped that event handling can be com-

pleted without blocking. If, however, blocking is necessary, a process or thread context is

spawned to carry on with event handling. ORPC is a mechanism to reduce the per-I/O

overhead of network data transfer, and thus, competitive to ORDMA. The latter, how-

ever, involves no interaction with the target host, resulting in greater reduction of per-I/

O overhead. ORPC still involves hardware interrupts and host-device interaction over

the I/O bus, operations whose performance is not expected to improve as quickly as core

CPU technology.

Besides user-level networking, user-level file systems were proposed in the con-

text of DAFS, as will be described in the following section. Earlier work arguing against

user-level file systems [116] assumed some form of kernel mediation in the I/O data path,

such as when using the UNIX mmap interface.

7.2 Direct-access Network Storage

In the fall of 2000, a new network attached storage protocol, the Direct Access File System

(DAFS), was proposed by Network Appliance Inc. [29]. DAFS relies on user-level net-

working to enable a user-level file client structure and RDMA for network protocol off-

load and memory copy avoidance [64]. Network Appliance and Intel jointly formed and

led the DAFS Collaborative, an academic and industrial consortium with the goal to stan-

dardize the DAFS protocol specification [29].

DAFS was designed with a number of assumptions in mind: First, the focus is

placed on the file client, where the application is running. With DAFS, the file server is

assumed to be overprovised and to always have sufficient resources. This assumption is

reflected in many design decisions taken in the DAFS specification. For example, when

there is a choice of performing an operation, such as issuing an RDMA, adapting endian-

ness, or computing a checksum on the client or on the server, DAFS chooses to do it on

the server. This assumption was challenged in this dissertation, which looked at file

access workloads involving multiple clients and small I/Os. Such workloads are

expected to stress the file server and require new mechanisms that lower the server over-

120

head. One such mechanism is Optimistic RDMA, described in Section 4.2. Second, the

DAFS designers assumed that the server is trusted to directly access client buffers. This is

another reason why RDMA operations are always initiated by the server. When RDMA

can be initiated by (mutually untrusted) clients, such as with Optimistic DAFS, stronger

safety guarantees than currently offered by RDMA implementations are necessary to

ensure that clients access server buffers for which they have been granted access rights

(Section 4.1).

Prior to DAFS, Thekkath and his colleagues [109] suggested using direct-access

networking primitives, such as remote memory read and write operations, for network

file access. Thekkath advocated the separation of data and control transfer in distributed

systems and proposed a new network file system structure based on client-initiated

RDMA as a means to lower I/O latency. They proposed using RPC only when control

transfer is necessary, otherwise use a pure network I/O mechanism, such as RDMA. One

limitation of their work, however, is the fact that their RDMA model makes the following

simplifying assumptions:

• Virtual memory buffers are pinned in physical memory, at the client and the

server.

• A hash-based remote memory address mapping scheme, enabling clients to com-

pute the remote memory location of data and metadata, avoiding the need for

buffer advertisement by RPC.

Pinned virtual memory buffers is not a realistic assumption, particularly in the

case of a file server buffer cache. In addition, hash-based remote memory mapping meth-

ods require significant network file system re-design. The advent of the VI protocol spec-

ification and the commercialization of the VI technology made practical new designs

possible, along the lines proposed by Thekkath. The Optimistic RDMA network I/O

mechanism and the Optimistic DAFS are two examples of such designs. ORDMA

removes the first assumption made by Thekkath, namely, that the VM buffers need to be

121

pinned in physical memory. ODAFS avoids the need for a hash-based mapping scheme,

enabling a much simpler system design.

Besides NAS systems, direct-access networking has been used in block storage

access. One such study was performed by Zhou and her colleagues [122]. They found

that user-level storage access, avoidance of interrupts by use of polling, and reduction of

the locking/synchronization cost contribute to high TPC-C transaction rates with a VI-

based storage server. However, they do not compare their system to other alternatives

such as iSCSI, FibreChannel, or optimized RPC-based block-level or file-level implemen-

tations.

Doyle and his colleagues [31] used DAFS to implement model-based resource pro-

visioning in a Web service utility. In their prototype, a user-level Web server (Dash) incor-

porates a DAFS user-level file system client, which enables user-level resource

management and full control over file caching and data movement.

Buonadonna and Culler [20] proposed a new networking API, Queue Pair over IP

(QP-IP) as an appropriate interface to NICs supporting transport protocol offload. QP-IP

is an alternative to sockets that is interoperable with IP protocols. QP-IP requires pre-

posting of communication buffers with the NIC. In addition to basic networking bench-

marking, Buonadonna and Culler evaluated a block-based network storage service, the

Network Block Device (NBD), and found significant throughput improvement and CPU

overhead reduction compared to the socket interface with a host-based TCP/IP stack.

The RPC with tagged pre-posting mechanism contributed in this dissertation can be

thought of as an extension to the QP-IP interface.

7.3 Reducing Overhead in Network File Systems using VM Techniques

The overhead of memory copying on the I/O path through the host CPU and memory

system can be reduced by performing logical rather than physical memory copying. One

way to achieve this is by using virtual memory (VM) re-mapping and copy-on-write

(COW) [1] techniques. Fbufs [33] is an example of an inter-process communication (IPC)

mechanism that supports sharing of I/O buffers between multiple protection domains

with a combination of VM page re-mapping and shared memory. The fbufs model has

122

been used to implement a zero-copy network protocol stack in the context of the Solaris

operating system [108] and a unified caching and buffering system called IO-Lite [84].

Both systems introduce a network and file API with move rather than copy semantics.

The drawback of move semantics is that the application does not control the data layout

since fbufs are allocated by the system. Brustoloni [18] introduced a number of VM tech-

niques that can be used to support efficient data movement on the network I/O path

with copy semantics. In addition, he showed that these techniques interoperate with the

UNIX mmap interface but not with the explicit read/write I/O interface [19]. Magoutis

and his colleagues [64] implemented and evaluated an NFS implementation that uses

VM page re-mapping to avoid memory copying in the incoming I/O data path.

All the VM techniques mentioned in this section require some support from the

network interface controller (NIC) to achieve early demultiplexing and/or aligned place-

ment in host memory buffers. Fbufs, for example, require the NIC to examine the incom-

ing data packet, associate it with a particular process, and place the data in a buffer from

the pool belonging to that process. Brustoloni’s input with early demultiplexing [18] tech-

nique assumes that the NIC aligns the data payload of incoming packets to the preferred

alignment of system buffers. VM page-remapping can be subsequently performed to

application-aligned buffers. Magoutis and his colleagues [64] implemented a header-

splitting NIC that separates the NFS data payload from all headers and DMAs the pay-

load to page-aligned system buffers. This system is described in detail in Section 6.1.

123

Chapter 8

Conclusions and Future Work

8.1 Conclusions and Wider Implications

The current exploding demand for storage capacity, driven by the rapid growth of Inter-

net e-commerce and by the rapid decline of the cost of on-line storage, makes the tradi-

tional model of direct-attached storage infeasible due to the scalability limits of

traditional I/O buses. Instead, a network storage model, where the storage devices are sep-

arated from the application servers by a scalable network infrastructure, becomes the

prominent alternative. The emergence of high-speed networks and the ability of applica-

tions and storage systems to transfer data at high rates, using aggressive I/O policies and

a high degree of parallelism in storage devices, put a stress on the part of the I/O data

path through the host CPU and memory system. The current mismatch in the technologi-

cal advances in network and memory bandwidth predicts that this performance bottle-

neck will only become worse in the future. These trends suggest that network storage

system designers should focus on optimizations that reduce the overhead of network

communication.

Network storage systems based on a block abstraction, or Storage-area Networks

(SAN), currently enjoy support provided by storage-specific network infrastructures to

reduce their communication overhead to the levels of direct-attached storage. Network

attached Storage (NAS) systems, however, which are based on a file abstraction, pres-

124

ently lack such support, and thus, result in higher communication overhead than SAN.

This dissertation shows that this is not a fundamental disadvantage of the NAS model. In

other words, it is possible for NAS systems to achieve high performance given appropri-

ate network interface support.

In this dissertation, I make the distinction between two types of overhead: Per-

byte (or data touching overhead) and per-I/O. One important point in the NAS system

design space that I consider is that of I/O-intensive file access workloads that perform

large I/Os. This is a class of workloads sensitive to the per-byte overhead of memory

copying, which is required for data movement due to the need for staging file data on the

I/O path between the network and application memory buffers. Two ways to avoid

memory copying, both relying on some network interface support currently not offered

by networking adapters, are to:

(a) Transfer data directly between the network and application buffers, bypassing

the kernel; or

(b) Move data by virtual memory page re-mapping rather than by physical mem-

ory copying.

I consider two different mechanisms to achieve (a) and one mechanism to achieve

(b). The mechanisms to achieve (a) are remote direct memory access (RDMA) and RPC

with buffer pre-posting. I show that all three mechanisms enable file access throughput

that saturates a 2Gb/s network link when performing large I/Os on relatively slow, com-

modity PCs. There are, however, differences in the overhead characteristics of these

mechanisms. RDMA has the lowest overhead when the host has previously registered all

VM pages used for communication with the NIC and there is no longer a need for per-I/

O registration. Buffer pre-posting and page re-mapping have higher overhead compared

to RDMA. This additional overhead stems from the need for registering buffers with the

NIC on a per-I/O basis with the former mechanism and from the cost of VM re-mapping

with the latter. Using an analytical model of network attached storage application perfor-

mance and experimental measurements of a Berkeley DB workload, I show that the

125

strongest benefit from reducing communication overhead is for balanced workloads, in

which application processing saturates the CPU when I/O occurs at network speed.

Another important design point examined in this dissertation is that of workloads

involving multiple clients and small I/Os. These workloads are most sensitive to the per-

I/O CPU overhead on the server. To ease that bottleneck, I propose Optimistic RDMA

(ORDMA), a new network I/O mechanism that improves server throughput and

response time, and Optimistic DAFS (ODAFS), my extension to the DAFS protocol that

uses ORDMA. Performance improvements in server throughput and response time with

my implementation of ORDMA and ODAFS on a high-speed network infrastructure

range up to 32% and 36%, respectively, for small I/O transfers.

Designing appropriate network I/O mechanisms, such as those described in this

dissertation, is one of the keys to improving the performance of I/O-intensive NAS appli-

cations in high-speed networks. These mechanisms, however, make up only one side of

the equation. Another important issue is the effect of the OS structure in network

attached storage application performance. In particular, a number of research projects in

the past have argued that:

(a) Co-locating the application server and the operating system in the same

address space, as proposed by the Exokernel architecture, is key to achieving high perfor-

mance due to the high degree of flexibility that they offer (e.g., by eliminating all fixed OS

abstractions [35]), and due to the avoidance of the protection domain crossing inherent in

a system-call API.

(b) Extensible operating systems, such as SPIN and VINO, are another prominent

alternative structure that offers the high degree of flexibility required by resource-inten-

sive applications. These systems, however, have been challenging to design and imple-

ment due to the complex safety and security issues involved.

In this dissertation, I show that flexibility can be achieved with an appropriately

designed API that exposes the I/O mechanisms and enables applications to specify and

fully control their I/O policies. This is possible, for example, by implementing file cach-

ing and network buffering policies in user space. Such an API can be simple to imple-

126

ment and therefore expected to facilitate its rapid deployment in mainstream operating

systems. In addition to flexibility, I show that the cost of the protection domain crossing

in a kernel API to the file system can be a small fraction of the total I/O overhead, even in

systems that have already reduced that overhead by using the network I/O mechanisms

proposed in this dissertation. An important benefit of involving the kernel on the I/O

path, besides the enforcement of global policies and the safe and secure sharing of code

and data between multiple applications, is that there is no need for a user-level interface

to network adapters, simplifying their implementations.

The conclusions of this dissertation have wider implications. They are evidence to

the convergence of network and I/O interconnects, as well as to the convergence of the

SAN and NAS models, as described in the following sections.

8.1.1 Network-I/O Convergence

Traditionally, storage and general network data traffic has been routed over separate

hardware data paths, which are exemplified by parallel or serial SCSI channels and

Ethernet networks, respectively. This separation led to different hardware and software

support for each type of I/O. The emergence of the network storage model as practically

the only feasible solution to the explosive demand for on-line storage, and the ubiquity,

scalability and low cost of Ethernet networks, point to their convergence as the next goal.

New support for efficient block and file access over Ethernet networks, such as provided

by the iSCSI [72] protocol and the RPC with buffer pre-posting mechanism proposed in

this dissertation and applicable to NFS, proves that storage I/O traffic over widely-

deployed network infrastructure can be as efficient as with locally-attached storage I/O

channels. In addition, the emergence of direct-access networks offers a unifying technology

that can be used to build general-purpose networking adapters that efficiently support

both block and file network storage traffic, in addition to the data traffic produced by

other, more general forms of inter-process network communication.

127

8.1.2 NAS-SAN Convergence

New network support for NAS and SAN systems, compatible with the widely-deployed

Ethernet infrastructure, lays the road to the anticipated convergence between the NAS

and SAN models. This convergence is in terms of the degree of specialization these sys-

tems require from the network infrastructure. For example, SAN systems, traditionaly

more specialized than NAS, are in the future expected to be deployed over Ethernet net-

works using the iSCSI protocol. In contrast, NAS systems, traditionally less specialized

than SAN, are now expected to be offered new services over Ethernet networks, in the

form of direct-access networking techniques such as RDMA and RPC with buffer pre-

posting mechanism (RDDP-RPC).

The significance of the convergence between the NAS and SAN models lies on the

fact that the choice between the two for deployment in a particular network environment

no longer depends on the network infrastructure offered by that environment. The choice

between the two systems can instead be made based on their structural differences sum-

marized in Table 15. Comparing NAS to SAN, NAS is preferable in a multi-client setup

due to its better file sharing properties. For a single client, however, a SAN is preferrable

if standard SCSI block access semantics is all that is required by the application. Both

SAN and NAS are subject to the same scalability limitations due to the involvement of

Network Storage
Architecture

Network
-aware
Client

File
Sharing

Virtualization
and Security Scalability Limit

NAS Yes Server Server
Server I/O subsystem

throughput

SAN Noa

a. This holds for a single client only. Multiple distributed clients require a synchronization mechanism.

Clients Server
Server I/O subsystem

throughput

NASD Yes Server Server/Storage
Devices

Aggregate storage
device throughput

TABLE 15. Comparison between the NAS, SAN, and NASD models.

128

the file or block storage server on the I/O data path between the clients and the storage

devices.

NASD, which was described in Section 2.1, is a bridging model, offering server-

managed file sharing while avoiding the storage server I/O bottleneck. NASD, however,

requires strong security support at the storage devices. It also requires the deployment of

network-aware clients, just like with NAS. Wide adoption of the NASD model relies on

storage device manufacturers offering the necessary security support. In practical terms,

improved scalability options in the server I/O subsystem available with new technolo-

gies such as Infiniband and PCI-X/PCI-Express may give the NAS model a competitive

advantage over NASD, particularly given the significant requirements of the latter to

ensure safe and secure direct client access to storage devices.

8.2 Future Work

An open question that is likely to stimulate further research in the field of direct-access

network attached storage in the near future is whether strong security in the network or

transport layer can be combined with RDMA without altering its benefits. This question

is particularly intriguing given the technological and time-to-market constraints limiting

the processing power of NICs [101]. A security protocol widely considered to be a stan-

dard on the Internet today, and therefore, a prominent candidate for deploying on direct-

access network adapters, is IPsec [56]. The question that arises is whether IPsec can be

offloaded to the NIC without affecting RDMA performance, particularly at projected

multi-gigabit per second network speeds.

Another possible direction of future research is an extension of the work pre-

sented in Chapter 5 to experimentaly compare the performance of a user-level implemen-

tation to a kernel implementation of the proposed API in a variety of workloads. Such a

comparison is expected to validate the analytical modeling approach of Chapter 5, taking

into account second-order effects such as cache, TLB, and page table behavior. It can be

performed using the Pentium processor architecture, possibly an additional alternative

architecture, or a CPU simulator. The latter can be used to study the effect of the CPU

architecture on system performance [93].

129

References

[1]. M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, M. Young,

“Mach: A New Kernel Foundation for UNIX Development”, in Proceedings of Sum-

mer 1986 USENIX Conference, pp. 93-112, Altanta, GA, 1986.

[2]. S. Addetia, “User-level Client-side Caching for DAFS”, Harvard University TR-

14-01, March 2002.

[3]. Alacritech, Inc., TCP/IP acceleration based on SLIC Technology, http://

www.alacritech.com.

[4]. A. Alexandrov, M. Ionescu, K. E. Schauser, C. Scheiman, "LogGP: Incorporating

Long Messages into the LogP model - One Step Closer Towards a Realistic Model

for Parallel Computation", in Proceedings of 7th Annual Symposium on Parallel Algo-

rithms and Architecture (SPAA’95), pp. 95-105, Santa Barbara, CA, July 1995.

[5]. D. Anderson, J. Dykes, E. Riedel, “More than an Interface - SCSI vs. ATA”, in Pro-

ceedings of Second USENIX File and Storage Symposium, pp. 245-256, San Francisco,

CA, March 2003.

[6]. D. Anderson, J. S. Chase, S. Gadde, A. Gallatin, K. Yocum, “Cheating the I/O Bot-

tleneck: Network Storage with Trapeze/Myrinet”, in Proceedings of 1998 USENIX

Annual Technical Conference, pp. 143-154, New Orleans, LA, June 1998.

[7]. D. Anderson, J. S. Chase, A. Vahdat, "Interposed Request Routing for Scalable

Network Storage", in Proceedings of 4th USENIX Symposium on Operating System

Design and Implementation (OSDI), pp. 259-272, San Diego, CA, October 2000.

[8]. T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, R. Wang, “Serverless

Network File Systems”, in Proceedings of 15th ACM Symposium on Operating Systems

130

Principles (SOSP-15), pp. 109-126, Copper Mountain Resort, Colorado, December

1995.

[9]. T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. "Scheduler Acti-

vations: Effective Kernel Support for the User-Level Management of Parallelism",

In Proceedings of 13th ACM Symposium on Operating Systems Principles (SOSP-13),

pp. 95-109, Pacific Grove, CA, October 1991.

[10]. B. Ang, D. Chiu, L. Rudolph, Arvind, “Message Passing Support on StarT-Voy-

ager”, CSG Memo 387, MIT Laboratory for Computer Science, July 1996.

[11]. A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, “Information and Control in

Gray-Box Systems”, in Proceedings of the 18th ACM Symposium on Operating Systems

Principles (SOSP-18), pp. 43-56, Banff, Canada, October 2001.

[12]. M. Baker, J. Hartman, M. Kupfer, K. Shirriff, J. Ousterhout, “Measurements of a

Distributed Filesystem”, in Proceedings of 13th ACM Symposium on Operating Sys-

tems Principles (SOSP-13), pp. 198-212, Pacific Grove, CA, October 1991.

[13]. B. Bershad, S. Savage, P. Pardyak, E. Sirer, D. Becker, M. Fiuczynski, C. Cham-

bers, S. Eggers, “Extensibility, Safety and Performance in the SPIN Operating Sys-

tem”, in Proceedings of the 15th ACM Symposium on Operating System Principles

(SOSP-15), Copper Mountain, CO, December 1995.

[14]. A. Birrell, A. Hisgen, C. Jerian, T. Mann, G. Swart, “The Echo Distributed File

System”, Technical Report #111, DEC SRC, Palo Alto, CA, September 1993.

[15]. A. Birrell, B. Nelson, “Implementing Remote Procedure Calls”, in ACM Transac-

tions on Computer Systems, (2)1:29-59, February 1984.

[16]. T. Blackwell, “Speeding up Protocols for Small Messages”, in Proceedings of

ACM SIGCOMM ‘96, pp. 85-95, Stanford, CA, August 1996.

[17]. M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, J. Sandberg, “Virtual Mem-

ory Mapped Network Interface for the SHRIMP Multicomputer”, in Proceedings of

21st Annual International Symposium on Computer Architecture (ISCA), pp. 142-153,

Chicago, IL, April 1994.

131

[18]. J. Brustoloni, P. Steenkiste, “Effects of Buffering Semantics on I/O Perfor-

mance”, in Proceedings of Second USENIX Symposium on Operating Systems Design

and Implementation (OSDI’96), pp. 277-291, Seattle, WA, October 1996.

[19]. J. Brustoloni, “Interoperation of Copy Avoidance in Network and File I/O”, in

Proceedings of IEEE INFOCOM’99 Conference, pp. 534-542, New York, NY, March

1999.

[20]. P. Buonadonna, D. Culler, “Queue-Pair IP: A Hybrid Architecture for System

Area Networks", in Proceedings of 29th International Symposium on Computer Archi-

tecture (ISCA), Anchorage, AK, May 2002.

[21]. G. Buzzard, D. Jacobson, M. Mackey, S. Marovich, J. Wilkes, “An Implementa-

tion of the Hamlyn Sender-Managed Interface Architecture”, in Proceedings of 2nd

USENIX Symposium on Operating Systems Design and Implementation (OSDI), pp.

245-259, Seattle, WA, October 1996.

[22]. B. Callaghan, T. Lingutla-Raj, A. Chiu, P. Staubach, O. Asad, “NFS over

RDMA”, in Proceedings of Workshop on Network-I/O Convergence: Experience, Lessons,

Implications (NICELI), Karlsruhe, Germany, August 2003.

[23]. J. S. Chase, A. Gallatin, K. Yocum, “End System Optimizations for High-Speed

TCP”, in IEEE Communications, (39)4:68-74, April 2001.

[24]. J. B. Chen, B. N. Bershad, “The Impact of Operating System Structure on Mem-

ory System Performance”, in Proceedings of 14th ACM Symposium on Operating Sys-

tem Principles (SOSP-14), Asheville, NC. December 1993.

[25]. N. Christenson, T. Bosserman, D Beckermeyer, “A Highly Scalable Electronic

Mail Service using Open Systems”, in Proceedings of USENIX Symposium on Internet

Technologies and Systems (USITS ‘97), December 1997.

[26]. D. Clark, ”The Structuring of Systems Using Upcalls”, in Proceedings of 10th

ACM Symposium on Operating Systems Principles (SOSP-10), pp. 171-180, Orcas

Island, WA, December 1985.

[27]. D. Clarke, V. Jacobson, J. Romkey, H. Salwen, “An Analysis of TCP Processing

Overhead”, in IEEE Communications Magazine, 27(6):23--29, June 1989.

132

[28]. D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramo-

nian, T. von Eicken, “LogP: Towards a Realistic Model of Parallel Computation”,

in Proceedings of SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, pp. 1-12, San Diego, CA, May 1993.

[29]. M. DeBergalis, P. Corbett, S. Kleiman, A. Lent, D. Noveck, T. Talpey, M. Whittle,

“The Direct Access File System”, in Proceedings of Second USENIX File and Storage

Technologies Conference, pp. 175-188, San Francisco, CA, March 2003.

[30]. M. Devarakonda, A. Mohindra, J. Simoneaux, W. Tetzlaff, “Evaluation of Design

Alternatives for a Cluster File System”, in Proceedings of 1995 USENIX Annual Tech-

nical conference, pp. 35-46, New Orleans, LA, January 1995.

[31]. R. Doyle, J. Chase, O. Asad, W. Jin, A. Vahdat, “Model-Based Resource Provi-

sioning in a Web Service Utility”, in Proceedings of 4th USENIX Symposium on Inter-

net Technologies and Systems (USITS ’03), Seattle, WA, March 2003.

[32]. P. Druschel, V. Pai, W. Zwaenepoel , “Extensible Kernels are Leading OS

Research Astray”, in Proceedings of 6th Workshop on Hot Topics in Operating Systems

(HotOS-VI), Cape Cod, MA, May 1997.

[33]. P. Druschel, L. Peterson, “Fbufs: A High-Bandwidth Cross-Domain Transfer

Facility”, in Proceedings of the 14th ACM Symposium on Operating Systems Principles

(SOSP-14), Asheville, NC, ecember 1993.

[34]. EMC Cellera HighRoad, White Paper, http://www.emc.com/pdf/products/

celerra_file_server/HighRoad_wp.pdf, January 2002.

[35]. D. Engler, M. F. Kaashoek, “Exterminate All Operating Systems Abstractions”,

in Proceedings of 5th Workshop on Hot Topics in Operating Systems (HotOS V), Orcas

Island, WA, May 1995.

[36]. J. Eppinger, L. Mummert, A. Spector. “Camelot and Avalon”. Morgan Kauf-

mann, San Francisco, CA, 1991.

[37]. M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, C. Thekkath, “Implement-

ing Global Memory Management in a Workstation Cluster”, in Proceedings of 15th

133

ACM Symposium on Operating Systems Principles (SOSP-15), Cooper Mountain

Resort, CO, December 1995.

[38]. E. Felten, J. Zahorjan. “Issues in the Implementation of a Remote Memory Pag-

ing System”, CS TR 91-03-09, University of Washington, March 1991.

[39]. E. Gabber, C. Small, J. Bruno, J. Brustoloni, A. Silberschatz, “The Pebble Compo-

nent-Based Operating System”, in Proceedings of the 1999 USENIX Annual Technical

Conference, pp. 267-282, Monterey, CA, June 1999.

[40]. G. Ganger, D. Engler, F. Kaashoek, H, Briceno, R. Hunt, T. Pickney, “Fast and

Flexible Application-Level Networking on Exokernel Systems”, in ACM Transac-

tions on Computer Systems, 20(1):49-83, February 2002.

[41]. G. Gibson, D. Nagle, K. Amiri, J. Buttler, F. Chang, H. Gobioff, C. Hardin, E.

Riedel, D. Rochberg, J. Zelenka, “A Cost-Effective, High-Bandwidth Storage

Architecture”, in Proceedings of 8th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS VIII), pp. 92-103, San

Jose, CA, October 1998.

[42]. G. Gibson, R. Van Meter, “Network Attached Storage Architecture”, in Commu-

nications of the ACM, 43(11): 37-45, 2000.

[43]. J. Hartman, J. Ousterhout, “The Zebra Striped Network File System”, in ACM

Transactions on Computer Systems, 13(3):274--310, August 1995.

[44]. J. Hennessy, D. Patterson, “Computer Architecture: A Quantitative Approach”,

Morgan Kauffman, 1992.

[45]. M. Homewood, M. McLaren, “Meiko CS-2 Interconnect Elan-Elite Design”, in

Proceedings of Hot Interconnects VI, Stanford, CA, August 1993.

[46]. J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham,

M. West, “Scale and Performance in a Distributed File System”, in ACM Transac-

tions on Computer Systems, 6(1):51-81, February 1988.

[47]. N. Hutchinson, L. Peterson, “ The x-kernel: An Architecture for Implementing

Network Protocols”, in IEEE Transactions on Software Engineering, 17(1):64-76, Janu-

ary 1991.

134

[48]. IETF Remote Direct Data Placement (RDDP) Working Group, http://

www.ietf.org/

[49]. InfiniBand Trade Association, InfiniBand Architecture Specification Volume 1,

Release 1.0, October 24, 2000.

[50]. A. Iyengar, J. Challenger, D. Dias and P. Dantzig, “High-Performance Web Site

Design Techniques”, in IEEE Internet Computing, 4(2):17-26, March 2000.

[51]. P. Joubert, R. King, R. Neves, M. Russinovich, J. Tracey, “High-Performance

Memory-based Web Servers: Kernel and User-space Performance”, in Proceedings

of 2001 USENIX Annual Technical Conference, Boston, MA, June 2001.

[52]. C. Jurgens, “FibreChannel: A Connection to the Future”, in IEEE Computer,

28(8):88-90, August 1995.

[53]. M. F. Kaashoek, D. Engler, G. Ganger, H. Briceno, R. Hunt, D. Mazieres, T.

Pinckney, R. Grimm, J. Jannotti, K. Mackenzie, “Application Performance and

Flexibility in Exokernel Systems”, in Proceedings of 16th ACM Symposium on Operat-

ing System Principles (SOSP-16), St. Malo, France, October 1997.

[54]. J. Katcher, “PostMark: A New File System Benchmark”, Network Appliance

TR-3022, October 1997.

[55]. M. Kazar, B. Leverett, O. Anderson, V. Apostolides, B. Bottos, S. Chutani, C.

Everhart, W. Mason, S. Tu, E. Zayas, “Decorum File System Architectural Over-

view”, in Proceedings of Summer 1990 USENIX Technical Conference, June 1990.

[56]. S. Kent, R. Atkinson, "Security Architecture for the Internet Protocol", RFC

2401, http://www.ietf.org/rfc/rfc2401.txt, November 1998.

[57]. H. Krawczyk, M. Bellare, R. Canetti, “HMAC: Keyed-Hashing for Message

Authentication”, IETF, Network Working Group, RFC 2104, February 1997.

[58]. H. C. Lauer, R. M. Needham, “On the Duality of Operating System Structures”,

in Operating Systems Review, 13(2):3-19 (1979).

135

[59]. E. Lee, C. Thekkath, “Petal: Distributed Virtual Disks”, in Proceedings of the 7th

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-7), pp. 84-92, Cambridge, MA, 1996.

[60]. C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Gan-

mukhi, J. V. Hill, W. Daniel Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M.

C. Wong, S.-W. Yang, R. Zak, “The Network Architecture of the Connection

Machine CM-5 (Extended Abstract)”, in Proceedings of Symposium on Parallel Algo-

rithms and Architectures (SPAA-92), pp. 272-285, San Diego, CA, June 1992.

[61]. J. Liedtke, “On Micro-Kernel Construction”, in Proceedings of 15th ACM Sympo-

sium on Operating Systems Principles (SOSP-15), pp. 109-126, Copper Mountain

Resort, Colorado, December 1995.

[62]. C. Maeda, “Service Decomposition: A Structuring Principle for Flexible, High-

Performance Operating Systems”, PhD Thesis, Carnegie Mellon, December 1997.

[63]. K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, “Making the Most out of

Direct-Access Network Attached Storage”, in Proceedings of Second USENIX File

Access and Storage Symposium, pp. 189-202, San Francisco, CA, March 2003.

[64]. K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, J. Chase, D. Gallatin, R. Kisley,

R. Wickremesinghe, E. Gabber, “Structure and Performance of the Direct Access

File System”, in Proceedings of 2002 USENIX Annual Technical Conference, Monterey,

CA, pp. 1-14, June 2002.

[65]. K. Magoutis, “Design and Implementation of a Direct Access File System Kernel

Server for FreeBSD”, in Proceedings of the USENIX BSDCon 2002 Conference, pp. 65-

76, San Franscisco, CA, February 2002; also appears in UNIX Magazine (in Japa-

nese), March 2003, ASCII Publications, Japan.

[66]. R. Martin, A. Vahdat, D. Culler, T. Anderson, “Effects of Communication

Latency, Overhead and Bandwidth in a Cluster Architecture”, in Proceedings of the

24th Annual International Symposium on Computer Architecture (ISCA), pp. 85-97,

Denver, Colorado, June 1997.

136

[67]. R. Martin and D. Culler, “NFS Sensitivity to High-Performance Networks”, in

Proceedings of SIGMETRICS ’99/ PERFORMANCE ’99 Joint International Conf. on

Measurement and Modeling of Computer Systems, pp. 71-82, Atlanta, GA, May 1999.

[68]. S. McCanne, V. Jacobson, “The BSD Packet Filter: A New Architecture for User-

level Packet Capture”, In Proceedings of the Winter 1993 USENIX Conference, pp.

259-269, San Diego, CA, January 1993.

[69]. S. McCanne, C. Torek, A “Randomized Sampling Clock for CPU Utilization

Estimation and Code Profiling”, in Proceedings of the Winter 1993 USENIX Confer-

ence, pp. 387-394, San Diego, CA, 1993.

[70]. K. McKusick, K. Bostic, M. Karels, J. Quarterman, “The Design and Implemen-

tation of the 4.4 BSD Operating System”, Addison-Wesley, 1996.

[71]. D. McNamee, K. Armstrong, “Extending the Mach External Pager Interface to

Accomodate User-Level Page Replacement Policies”, in Proceedings of the Mach

Usenix Workshop, pp. 31-43, Burlington, VE, October 1991.

[72]. K. Meth, J. Satran, “Design of the iSCSI Protocol”, in Proceedings of the 20th IEEE/

11th NASA Goddard Conference on Mass Storage Systems and Technologies, April 7-10,

2003, Paradise Point Resort, San Diego, CA.

[73]. J. Mogul, “TCP Offload is a Dumb Idea Whose Time Has Come”, in Proceedings

of Ninth Workshop on Hot Topics in Operating Systems (HotOS-IX), Lihue, Hawaii,

May 2003.

[74]. D. Mosberger, L. Peterson, P. Bridges, S. O’Malley, “Analysis of Techniques to

Improve Protocol Processing Latency”, in Proceedings of SIGCOMM’96, Stanford,

CA, August 1996.

[75]. D. Mosberger, L. L. Peterson, “Making Paths Explicit in the Scout Operating

System”, in Proceedings of the Second USENIX symposium on Operating systems

Design and Implementation (OSDI’96), Seattle, WA, October 1996.

[76]. T. Mowry, A. Demke, O. Krieger, Automatic Compiler-Inserted I/O Prefetching

for Out-of-Core Applications, in Proceedings of the Second USENIX Symposium on

Operating Systems Design and Implmenetation (OSDI’96), Seattle, WA, October 1996.

137

[77]. D. Muntz and P. Honeyman, “Multi-level Caching in Distributed File Systems

(your cache ain’t nuthin’ but trash), In Proceedings of 1992 USENIX Annual Technical

Conference, pp. 305-314, San Antonio, TX, January 1992.

[78]. Myricom LANai9.2 and GM communication library, Myricom Inc., http://

www.myri.com

[79]. D. Nagle, G. Ganger, J. Butler, G. Goodson, C. Sabol, “Network Support for Net-

work-Attached Storage”, in Proceedings of Hot Interconnects VI, Stanford, CA,

August 1999.

[80]. M. Nelson, B. Welch, J. Ousterhout, “Caching in the Sprite Network File Sys-

tem”, in ACM Transactions on Computer Systems, 6(1):134-154. February 1988.

[81]. M.Olson, K. Bostic, M. Seltzer, “Berkeley DB”, in Proceedings of USENIX Annual

Technical Conference (FREENIX Track), pp. 183-192, Monterey, CA, June 1999.

[82]. R. Osborne, Q. Zheng, J. Howard, R. Casley, D. Hahn. “DART - A Low Over-

head ATM Network Interface Chip. In Proceedings of Hot Interconnects IV, Stanford,

CA, August 1996.

[83]. J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, B. Welch, “The Sprite Net-

work Operating System”, in IEEE Computer Group Magazine 21(2), 1988.

[84]. V. Pai, P. Druschel, W. Zwaenepoel, “IO-Lite: A Unified I/O Buffering and

Caching System”, in Proceedings of Third USENIX Symposium on Operating Systems

Design and Implementation (OSDI’99), pp. 15-28, New Orleans, LA, February 1999.

[85]. V. Pai, P. Druschel, W. Zwaenepoel, “Flash: An Efficient and Portable Web

Server”, In Proceedings of the 1999 USENIX Annual Technical Conference, Monterey,

CA, June 1999.

[86]. B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, D. Hitz, “NFS Ver-

sion 3 Design and Implementation“, in Proceedings of 1994 USENIX Annual Techni-

cal Conference, Boston, MA, June 1994.

[87]. D. Pease, “IBM Storage Tank”, Work in progress presented at 1st USENIX File and

Storage Technologies Conference, Monterey, CA, January 2002.

138

[88]. C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J. Wal-

pole, K. Zhang, “Optimistic Incremental Specialization: Streamlining a Commer-

cial Operating System”, in Proceedings of the 15th ACM Symposium on Operating

Systems Principles (SOSP-15), Copper Mountain Resort, Colorado, December 1995.

[89]. C. Pu, H. Massalin, and J. Ioannidis. “The Synthesis Kernel”, in Computing Sys-

tems, 1(1):11-32, 1988.

[90]. R. Recio, “Server I/O Networks: Past, Present, and Future”, in Proceedings of

Workshop on Network-I/O Convergence: Experience, Lessons, Implications (NICELI),

Karlsruhe, Germany, August 2003.

[91]. D. M. Richie, K. Thompson, The UNIX timesharing system. Bell Systems Techni-

cal Journal 57, 6 (July-Aug 1978), 1905-1929.

[92]. D. Robinson, “The Advancement of NFS Benchmarking: SFS 2.0”, in Proceedings

of XIII USENIX LISA Conference, Seattle, WA, November 1999.

[93]. M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, A. Gupta, “The Impact of

Architectural Trends on Operating System Performance”, in Proceedings of 15th

ACM Symposium on Operating Systems Principles (SOSP-15), Copper Mountain

Resort, CO, December 1995.

[94]. Y. Saito and B. Bershad, “A Transactional Memory Service in an Extensible

Operating System”, in Proceedings of 1998 USENIX Annual Technical Conference,

New Orleans, LA, June 1998.

[95]. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, B. Lyon, “Design and Imple-

mentation of the Sun Network Filesystem”, in Proceedings of 1995 USENIX Annual

Technical Conference, Portland, OR, pp. 119-130, June 1985.

[96]. P. Sarkar, S. Uttamchandani, K. Voruganti, ”Storage Over IP: When Does Hard-

ware Support Help?”, in Proceedings of Second USENIX File and Storage Symposium

(FAST’02), pp. 231-244, San Francisco, CA, March 2003.

[97]. M. Seltzer and Y. Endo and C. Small and K. Smith, “Dealing with Disaster: Sur-

viving Misbehaved Kernel Extensions”, in Proceedings of 1996 USENIX Symposium

on Operating System Design and Implementation, Seattle, WA, October 1996.

139

[98]. Schlosser, S., Griffin, J., Nagle, D., Ganger, G., “Designing Computer Systems

with MEMS-based Storage”. In Proceedings of 9th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS IX),

Cambridge, MA, November 2000.

[99]. F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for Large Com-

puting Clusters”, in Proceedings of First USENIX Conference on File and Storage Tech-

nologies (FAST’01), Monterey, CA, January 2002.

[100]. I. Schoinas, M. D. Hill, “Address Translation Mechanisms in Network Inter-

faces”, in Proceedings of the Fourth International Symposium on High-Performance

Computer Architecture (HPCA-4), Las Vegas, NE, February 1998.

[101]. P. Shivam, J. S. Chase, “On the Elusive Benefits of Protocol Offload”, in Proceed-

ings of Workshop on Network-I/O Convergence: Experience, Lessons, Implications

(NICELI), Karlsruhe, Germany, August 2003.

[102]. C. Small, M. I. Seltzer, “A Comparison of OS Extension Technologies”, in Pro-

ceedings of 1996 USENIX Annual Technical Conference, pp. 41-54, San Diego, CA,

1996.

[103]. A. Z. Spector, “Performing Remote Operations Efficiently on a Local Computer

Network”, in Communications of the ACM, pp. 246-260, April 1982.

[104]. E. Speight, H. Abdel-Shafi, J. Bennett, “Realizing the Performance Potential of

the Virtual Interface Architecture”, in Proceedings of 13th International Conference on

Supercomputing, Rhodes, Greece, June 1999.

[105]. R. Steward, C. Metz, “SCTP: New Transport Protocol for TCP/IP”, in IEEE

Internet Computing, pp. 64-69, November 2001.

[106]. M. Stonebraker, Operating System Support for Database Management, in Com-

munications of the ACM, 24(7):412-418, July 1981.

[107]. C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A. Bender, D. G. Grice, P.

Hochschild, D. J. Joseph, B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, P. R.

Varker, “The SP-2 High-Performance Switch”, in IBM Systems Journal 34(2):185-

204, 1995.

140

[108]. M. Thadani, Y. Khalidi, “An Efficient Zero-copy I/O Framework for UNIX”,

SMLI TR95-39, Sun Microsystems Lab, Inc., May 1995.

[109]. C. Thekkath, H. Levy and E. Lazowska, “Separating Data and Control Transfer

in Distributed Operating Systems”, in Proceedings of 6th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS

VI), pp. 2-11, San Jose, CA, October 1994.

[110]. C. Thekkath and H. Levy, “Limits to Low-Latency Communication on High-

Speed Networks“, in ACM Trans. on Computer Systems, 11(2):179-203, 1993.

[111]. Virtual Interface Architecture Specification, Version 1.0, http://

www.viarch.org, December 1997.

[112]. U. Valhalia, “UNIX Internals: The New Frontiers”, Prentice Hall, NJ, 1996.

[113]. T. von Eicken, A. Basu, V. Buch and W. Vogels, “U-Net: A User-Level Network

Interface for Parallel and Distributed Computing”, in Proceedings of 15th ACM

Symposium on Operating Systems Principles (SOSP-15), pp. 40-53, Copper Mountain

Resort, CO, December 1995.

[114]. T. von Eicken, D. Culler, S. Goldstein, K. Schauser, “Active Messages: A Mech-

anism for Integrated Communication and Computation”, in Proceedings of 19th

Annual Symposium on Computer Architecture (ISCA), pp. 256-266, Gold Coast, Aus-

tralia, May 1992.

[115]. S. Wallach, W. Hsieh, K. Johnson, M. Kaashoek, W. Weihl, "Optimistic Active

Messages: A Mechanism for Scheduling Communication and Computation", in

Proceedings of 5th Symposium on Principles and Practices of Parallel Programming, pp.

217-226, April 1995.

[116]. B. Welch, “The File System Belongs in the Kernel”, in Proceedings of the 2nd

USENIX Mach Symposium, pp. 233-250, November 1991.

[117]. M. Welsh, A. Basu and T. von Eicken, “Incorporating Memory Management

into User-Level Network Interfaces”, in Proceedings of Hot Interconnects V, pp. 27-

36, Stanford, CA, August 1997.

141

[118]. M. Welsh, D. Culler, E. Brewer, “SEDA: An Architecture for Well-Conditioned,

Scalable Internet Services”, In Proceedings of the 18th ACM Symposium on Operating

Systems Principles (SOSP-18), Banff, Canada, October 2001.

[119]. J. Wilkes, Keynote talk at USENIX Conference on File and Storage Technolo-

gies, March 31, 2003, San Francisco, CA.

[120]. T. Wong, J. Wilkes, “My Cache or Yours? Making Storage More Exclusive”, in

Proceedings of 2002 USENIX Annual Technical Conference, pp.161-175, Monterey,

CA, June 2002.

[121]. Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. Philbin, K. Li, “Experiences

with VI Communication for Database Storage”, in Proceedings of the 29th Annual

International Symposium on Computer Architecture (ISCA), pp. 257-268, May 2002,

Anchorage, AK.

[122]. Y. Zhou, J. Philbin, K. Li, “The Multi-Queue Replacement Algorithm for Sec-

ond Level Buffer Caches”, in Proceedings of 2001 USENIX Annual Technical Confer-

ence, pp. 91-104, Boston, MA, June 2001.

[123]. G. Zipf, “Human Behavior and Principle of Least Effort”, Addison-Wesley

Press, Cambridge, MA, 1949.

142

