
A Comparative Experimental Study of Parallel File Systems
for Large-Scale Data Processing

Zoe Sebepou1, Kostas Magoutis, Manolis Marazakis, and Angelos Bilas1

Institute of Computer Science (ICS)
Foundation for Research and Technology - Hellas (FORTH)

P.O.Box 1385, Heraklion, GR-71110, Greece
{sebepou,magoutis,maraz,bilas}@ics.forth.gr

Abstract

Large-scale scientific and business applications require
data processing of ever-increasing amounts of data, fu-
eling a demand for scalable parallel file systems com-
prising hundreds to thousands of disks. Modern parallel
file system architectures however, span a large and com-
plex design space. As a result, IT architects are faced
with a challenge when deciding on the most appropri-
ate parallel file system for a specific scientific or indus-
trial application in a large-scale computing installation.
Typically, the right choice depends on the characteris-
tics of the application as well as the design assumptions
built into a parallel file system. In this study, we take a
close look at two prominent modern parallel file systems,
PVFS2 and Lustre, and compare them experimentally on
a range of benchmark-driven scenarios modeling specific
real-world applications.

1 Introduction

The growing need for processing ever-increasing
amounts of data in large-scale scientific and business ap-
plications motivates research and development on par-
allel file systems that can offer scalable performance.
Scientific simulations of various physical processes, data
mining of large data sets to extract business intelligence,
and enterprise-level operations such as e-mail services
for large organizations, are examples of modern large-
scale applications that require computing infrastructure
comprising hundreds to thousands of processors. Such
large data-processing requirements typically translate to
high I/O throughput demands from parallel file systems
comprising hundreds to thousands of disks.

When designing a large-scale computing installation
for a scientific or industrial application, IT architects face
a challenge deciding on the most appropriate parallel file

1Also with Department of Computer Science, University of Crete,
P.O. Box 2208, GR-71409, Greece.

system. The right choice typically depends on the spe-
cific characteristics of the application as well as the de-
sign assumptions built into the parallel file system. In
this study, we address this challenge by taking a closer
look at two prominent parallel file systems and compar-
ing them experimentally on a range of benchmark-driven
scenarios modeling specific real-world applications.

Our choice of parallel file systems to evaluate in this
study, namely PVFS2 [12] and Lustre [5], is driven pri-
marily by the increasing interest on these systems by
the large-scale data processing community. Both sys-
tems share the fundamental design concepts of separa-
tion of data and metadata paths and the creation of I/O
parallelism through direct client access to the storage
servers [8]; however, they also differ in several other
facets of their architecture, on issues such as consistency
semantics, support for client caching, and metadata man-
agement. The experimental evaluation presented in this
paper aims to highlight the areas where the systems per-
form comparably as well as the areas where their per-
formance differs, using several industry-standard bench-
marks.

A common problem with many benchmark-driven ex-
perimental evaluation studies is the difficulty of under-
standing the impact of a multitude of tunable parameters
on the measured performance. A related problem is the
difficulty of extrapolating the measured results to a wider
range of applications. In this paper, we take a first step
towards solving this problem by establishing a common
framework based on a general model of applications per-
forming parallel I/O. In this model, described in detail
in Section 2, we capture typical application file-access
patterns, attributes, and other characteristics that impact
file performance. To understand the interaction of the
application model with the fundamental design concepts
behind PVFS2 and Lustre, in Section 3 we discuss their
key similarities and differences, focusing on issues such
as separation of control-data paths, parallelism, consis-
tency, and access semantics. In Section 4 we describe

the benchmarks used in our study and in Section 5, the
results of our experimental evaluation.

Our results show that:

• High bandwidth I/O for a large class of applications
is achievable through the use of parallel I/O paths to
file servers, offered by both PVFS2 and Lustre.

• Strict file-sharing semantics offered by Lustre are
useful for certain applications but come at the ex-
pense of higher overhead for applications that do
not require them.

• Efficient metadata management support in Lus-
tre can be a differentiating factor for metadata-
intensive applications requiring high transaction
rates operating on large sets of small data objects.

Finally, in Section 6 we discuss related work, and in Sec-
tion 7 we summarize our conclusions.

2 An I/O Model for Parallel Applications

Parallel applications typically access one or more files
throughout their execution for the purposes of reading
and writing their initial input, final output, or temporary
data; taking snapshots of their state; saving statistics, etc.
The I/O characteristics of a parallel application play a
key role in the resulting performance, through their inter-
action with the underlying file system architecture, and
can be characterized by a number of attributes, depicted
in Figure 1.

It is important to note that the type of file access may
vary for different phases of a parallel program. In gen-
eral, a parallel program consists of a number of phases
π1 through πn, each phase executed by a number of pro-
cesses P1 through Pm. During a phase πj , a specific
process Pi may be accessing a number of files f1 through
fn, with each file fk accessed either exclusively by Pi or
concurrently with other processes. In this model, each
triplet (Pi, πj , fk) is associated with a file access pat-
tern characterized through the following attributes: (a)
the type of the operations performed on fk (e.g. read,
write); (b) the average requested size in bytes; (c) the
degree of sequentiality (e.g., sequential, strided, mixed,
random); (c) the amount of I/O concurrency (e.g., num-
ber of outstanding I/Os per process). For files that are
open for access by multiple processes, we distinguish be-
tween files in which the processes do not overlap, and
files for which the processes do overlap. In the latter
case, we specify the degree of sharing (i.e., number of
bytes). Besides spatial overlap, we capture the degree of
temporal overlap (i.e., simultaneous access to a file) by
multiple processes.

Our intention in creating an I/O model of parallel ap-
plications is two-fold: First, we want to identify the

different types of behavior underlying real-world ap-
plications, so that we can understand and quantify the
demands they pose in the underlying parallel file sys-
tem. Second, we want to capitalize on the predictive
power of such a model by combining its instantiation for
specific applications with experimental results obtained
from standard or novel parallel file system benchmarks.
Such benchmarks alone cannot address the question of
“how does my application perform on parallel file system
X?”. A model-driven approach to application-specific
performance prediction is similar in spirit to previous
work on application-specific benchmarking [19] , which
has also been applied to file systems [22].

Predicting application performance over parallel file
systems, however, is a particularly challenging task,
complicated by the multitude of system components in-
volved (metadata and storage servers over storage con-
trollers (RAID) over potentially thousands of disk de-
vices) and the tiered architecture of most parallel file
systems. File and storage allocation policies can vary
significantly across parallel file systems and even across
installations of the same parallel file system. As a re-
sult, reasoning about performance of an application re-
quires taking into account specific characteristics of the
underlying parallel file system. For example, whereas a
specific phase of a parallel application appears to be ac-
cessing data in a (logically) regular manner, such as se-
quential or strided-sequential, the specific file allocation
policy may in effect turn this to a near-random pattern
towards the actual storage servers. Combining the afore-
mentioned application model with such characteristics of
parallel file systems in order to achieve accurate predic-
tion of application performance is part of our ongoing
and future work.

3 Overview of File System Characteristics

The parallel file systems used in this study, PVFS2 and
Lustre, are targeted for large-scale parallel computers as
well as commodity Linux clusters. A side-by-side com-
parison of the architectural concepts behind these sys-
tems, summarized in Table 1, reveals a number of sim-
ilarities as well as a number of differences. In terms of
similarities, both systems decouple metadata from data
accesses, offering clients direct data paths to a shared
object-based [8] storage pool addressable through a com-
mon namespace. One or more metadata servers are re-
sponsible for informing clients of the location of data
in the storage servers but are not involved in the actual
I/O operation. Both systems stripe data across the avail-
able storage servers, offering parallel I/O paths. Utilizing
such parallel data paths, clients can achieve scalable I/O
performance.

Key differences between the two systems are in their

2

Figure 1: I/O Model of Parallel Applications.

consistency semantics and in their caching and locking
policies. Starting from file access semantics, PVFS2
offers the UNIX I/O and MPI-IO interfaces to applica-
tions. However, the UNIX I/O interface implementation
in PVFS2 does not support POSIX atomicity semantics.
Instead, it guarantees sequential consistency only when
concurrent clients access non-overlapping regions of a
file (otherwise referred to as “non-conflicting writes” se-
mantics). On the other hand, Lustre’s implementation
of the UNIX I/O interface guarantees consistency in the
presence of concurrent conflicting requests.

Support for POSIX consistency semantics in parallel
file systems requires cache consistency across file sys-
tem clients, typically implemented through the use of
a locking mechanism. Lustre utilizes a scalable intent-
based locking protocol whose functionality and manage-
ment are distributed across file servers. With intent-
based locking, a client that requests a lock on a direc-
tory in order to create a file in that directory, tags the
lock request with information on the intended operation
(i.e., to create a file). If the lock request is granted, the
metadata server uses the intention specified in the lock
request to modify the directory, creating the requested
file and returning a lock on the new file instead of the
directory. In Lustre, each file server is responsible for
the locking of the data stripes that it holds, avoiding a
single lock manager bottleneck and increasing availabil-
ity under failures. Lustre guarantees cache consistency
by forcing the clients that have cached data to flush their

caches before releasing any previously acquired locks.

Unlike Lustre, PVFS2 does not offer client-side
caching or any file locking mechanisms. Lack of client
caching fits well workloads with litttle or no data re-use.
However, the application is responsible for I/O policies
typically implemented in a file cache, such as prefetch-
ing. A benefit of not providing a client cache is the avoid-
ance of the double-buffering effect when data is stored
in both application and file system (client) buffers, in-
creasing memory pressure [13]. Both file systems by de-
fault implement client write operations asynchronously
(i.e., without the need to synchronize with the underly-
ing disk).

Lustre optimizes individual metadata operations by
maintaining a cache of pre-allocated objects, thus de-
coupling allocation and assignment of metadata objects.
Lustre further optimizes metadata operations by im-
plementing a metadata-specific write-back (WB) cache.
Through the use of that cache, a lock on a metadata ob-
ject granted to a client allows the client to cache any
modifications to that metadata object in its WB cache.
PVFS’s support for metadata optimizations includes a
server-side attribute cache (disabled by default) and a
client-side name cache (also disabled by default).

PVFS2 and Lustre differ in the way they distribute
metadata management tasks for performance and avail-
ability. PVFS2 distributes metadata management respon-
sibilities across any number of metadata servers in a par-
titioned, “share-nothing” manner that does not offer any

3

PVFS2 LUSTRE

Striping Pattern Configurable; defaults to round-robin Round-robin

Stripe Size Configurable; per directory Configurable; per file/directory

Striping Width
Configurable; Up to # of available Configurable; Up to # of available

I/O servers I/O servers

Caching
No data caching in file clients;

On file clients and file servers
optional attribute caching

Locking
Strong data, metadata locking at byte,

Not supported by base protocol page (4KB) granularity;
Distributed intent-based locking

Semantics “Non-conflicting writes” POSIX semantics

Metadata Management Multiple servers Active-backup pair of servers

Table 1: Comparison of the PVFS2 and Lustre file system architectures. Both systems decouple data from metadata
paths and achieve I/O parallelism through file striping.

Benchmark # Files Sharing Sequentiality Overlap Writes Reads
Outstanding I/Os

per client
IOzone (r) 1 N/A Sequential N/A 0% 100% 1 or more
IOzone (w) 1 N/A Sequential N/A 100% 0% 1 or more
PIO write p N Sequential N/A 100% 0% 1
PIO read 1 Y Sequential Y 0% 100% 1
PIO read/write 1 Y Sequential Y 50% 50% 1
Cluster PostMark many N Mixed N/A 66% 33% 1
Tile I/O 1 (r) 1 Y Strided N 0% 100% 1
Tile I/O 1 (w) 1 Y Strided N 100% 0% 1
Tile I/O 2 (r) 1 Y Strided Y 0% 100% 1
Tile I/O 2 (w) 1 Y Strided Y 100% 0% 1

Table 2: Benchmark configurations used in this study: p stands for the number of client nodes (12 in our setup).

availability guarantees. Lustre on the other hand, can uti-
lize two metadata servers in a primary-backup clustering
scheme, thus achieving high availability, without how-
ever improving performance.

PVFS2 is implemented in both user-level and ker-
nel versions whereas Lustre is implemented in the ker-
nel. With regard to their metadata server architecture,
PVFS2 uses the Berkeley DB database for mapping
file handles to object references whereas Lustre uses a
modified Linux ext3 in its metadata servers. Finally,
PVFS2 includes support for increased parallelism in non-
contiguous access patterns through an implementation of
the list I/O interface [4].

4 Benchmarks

In this section we describe the benchmarks we use to
evaluate the parallel file systems. The discussion and

categorization of Table 2 follows the terminology of
the application model described in the previous section.
Several of the benchmarks use the MPI (Message
Passing Interface [23]) programming model, which
forms the basis for many parallel programs developed
for the scientific domain. MPI provides the mechanisms
to communicate between and synchronize processes
executing on the processors of a computing cluster.

IOzone: In this highly configurable benchmark [1] a
single process opens a file in order to perform a sequence
of I/O operations with a certain profile (operation mix,
access pattern, block size, etc.). IOzone is implemented
as a single thread. However, multiple concurrent
instances of IOzone can be explicitly started on a single
client node.

Parallel I/O (PIO): This benchmark [21] produces

4

a number of common spatial access patterns, such as
strided, nested strided, random strided, sequential, tiled,
and unstructured mesh. In this benchmark each process
issues a number of I/O requests of a given size to either
a single shared file or multiple exclusively-owned files.
The total amount of data transferred (termed buffer size)
is equal to the size of a single I/O request multiplied by
the total number of I/O requests issued by each process.

Cluster PostMark: PostMark [10] is a synthetic bench-
mark aimed at measuring the system performance over
a workload composed of many short-lived, relatively
small files. Such a workload is typical of mail and
netnews servers used by Internet Service Providers.
PostMark workloads are characterized by a mix of
metadata intensive operations. The benchmark begins
by creating a pool of files with random sizes within
a specified range. The number of files, as well as
upper and lower bounds for file sizes, are configurable.
After creating the files, a sequence of transactions is
performed. These transactions are chosen randomly
from a file creation or deletion operations, paired with
a file read or write. A file creation operation creates
and writes random text to a file. File deletion removes
a random file from the active set. File read reads a
random file in its entirety and file write appends a
random amount of data to a randomly chosen file. In our
evaluation we used a parallel version of this benchmark
called Cluster PostMark, which was developed in
our lab [7]. In this version, each PostMark process
performs transactions within their own independent file
set and synchronizes with all other processes over a
global barrier at the beginning and end of the benchmark.

MPI Tile I/O (Tile IO): This benchmark [16] models
scientific and visualization applications, which typically
access file data structured in a two-dimensional set
of tiles. In this benchmark, a number of processes
concurrently access a shared file in which data has been
laid out in a tiled pattern. A tile assigned to a specific
process may or may not be overlapping with a tile
assigned to a different process; we experiment with both
cases and refer to the corresponding configurations as
Tile I/O 1 and Tile I/O 2, respectively. The access pattern
is strided-sequential with a block size that depends on
tile dimensions.

User-Perceived Response Time: Measuring the perfor-
mance of interactive tasks is important as it attests to the
quality of the day-to-day experience of human users. To
estimate the response time of a typical interactive task as
perceived by users of a parallel file system we evaluate
the performance of the Unix ls -lR command on the
Linux kernel tree (about 25,000 files).

5 Performance Evaluation

Our experimental setup consists of a 24-node cluster of
Opteron x86 servers with 1GB of DRAM running Linux
2.6.12 and connected through a 1Gbps Ethernet switch.
In this cluster we deployed Lustre v1.6.0.1 and PVFS2
v2.6.3. Half of the nodes are configured as file servers-
one of them doubling as metadata server in both setups-
and the rest as clients. Each node of each file system is
provisioned with a dedicated logical volume comprising
four 40GB partitions of SATA disks in a RAID-0 con-
figuration. The total capacity of each parallel file system
in the 12-server setup is about 1.7TB. Each file server
node uses an underlying Linux file system of type ext3.
In all MPI experiments we use the MPICH2 implemen-
tation [2].

To ensure that the benchmark workloads exceed cache
capacity at clients and servers, thus producing significant
disk I/O activity, we used a (shared) file of about 12GB
(or about 1GB per client) in most cases. Files are laid
out using the same file-system stripping policy, which is
round-robin across all file servers using a 64KB stripe.
While this is the default for PVFS2, we had to explicitly
reduce Lustre’s default stripe size of 1MB. However, we
found that this change had minimal impact in our exper-
imental results.

Client writes are performed asynchronously (i.e.,
without flushing to disk) on both file systems in all
benchmarks. Lustre’s client cache uses a write-back
policy, whereas PVFS2 does not perform client caching
for data at all. Details on all benchmarks can be found in
Section 4.

IOzone: In this benchmark we measure streaming per-
formance reading and writing a large file stripped over
all 12 file servers from a single client. The client process
performs I/O with configurable block size (1KB, 64KB,
1MB, 4MB), waiting on completion of each I/O opera-
tion. We perform experiments using a single client thread
(lstr-1thr, pvfs2-1thr) and four client threads (lstr-4thr,
pvfs2-4thr).

Our results for the case of reads (Figure 2) indicate
that both PVFS2 and Lustre can achieve the maximum
achievable single-client bandwidth of about 110MB/s
for large block sizes (upwards of 1MB) when us-
ing four client threads (lstr-4thr, pvfs2-4thr). For a
64KB block size and a single client thread, lstr-1thr
reaches 90MB/s whereas pvfs2-1thr achieves only about
45MB/s. We believe that the difference is due to the
lack of prefetching policies in the PVFS2 file client.
As a result, performance under PVFS2 is constrained
by the lack of I/O parallelism in the application. By
increasing the number of simultaneously executing
IOzone threads (pvfs2-4thr) we increase I/O parallelism

5

 0

 20

 40

 60

 80

 100

 120

40961024641

R
E

A
D

 B
an

dw
id

th
 (

M
B

/s
ec

)

block size in Kbytes

lstr-1thr
lstr-4thr

pvfs2-1thr
pvfs2-4thr

Figure 2: IOzone: read bandwidth; Single client, 12 servers.

 0

 200

 400

 600

 800

 1000

 1200

32MB16MB8MB4MB2MB1MB512KB256KB128KB64KB

B
an

dw
id

th
 (

M
by

te
s/

se
c)

Block Size

lstr-r
lstr-rmw

lstr-w
pvfs2-r

pvfs2-rmw
pvfs2-w

Figure 3: PIO: bandwidth; 12 clients, 12 servers.

at the client side, thus eliminating the performance
difference between the two file systems. As can be seen
from Figure 2, Lustre also stands to benefit from in-
creasing application parallelism from one to four threads.

PIO: In this benchmark we measure sequential access by
multiple file clients varying the block size from 64KB to
32MB, with each client process accessing a total of 1GB
of data. For each block size we measure three configu-
rations: (a) reads from a single shared file; (b) writes to
separate, exclusively-owned files; (c) reads followed by
writes (50%-50%) to a single shared file.

From the aggregate bandwidth results shown in Fig-
ure 3 we observe that PVFS2 performance scales con-
sistently across the 64KB-4MB block size range across
all configurations, leveling for larger block sizes (4MB-
32MB). In contrast, Lustre performance varies across
configurations. In the cases of reading from a shared
file (lstr-r) or writing to separate exclusively-owned files
(lstr-w), Lustre outperforms PVFS2 by at least 25-30%

for all block sizes. For block sizes larger than 4MB, Lus-
tre scalability improves to a nearly-linear rate when writ-
ing to separate exclusively-owned files. We attribute this
difference to Lustre’s use of a write-back client cache.

In the case of reads followed by writes to a sin-
gle shared file (lstr-rmw), Lustre performance is hit by
the overhead of maintaining strict consistency semantics
across all 12 clients, reducing aggregate bandwidth to
only a few MB/s for 64KB-1MB blocks, which increases
to about 100MB/s for block sizes up to 32MB. This over-
head is reduced in setups with fewer clients (and thus
lower cache consistency maintenance cost) as we exper-
imentally confirmed in a single-client single-server sys-
tem.

To investigate the causes of the leveling in per-
formance for PVFS2 (all configurations) and Lustre
(reads; lstr-r) starting at 4MB blocks, we measured PIO
performance with a single client and 12 servers, which
we expected to be consistent with the IOzone benchmark
for a single thread. We confirmed that expectation

6

(a) (b) (c)
files 100 800 8000
File size 10-100MB 1-10MB 4KB-1MB
Block size 64KB-2MB 16KB-1MB 4KB-128KB

Table 3: PostMark configuration parameters.

measuring about 90MB/s for both systems, which we
believe is the asymptotic performance achievable by a
single client when accessing a striped file over all 12
servers. Moving to 12 clients in the PIO benchmark,
aggregate bandwidth for PVFS2 falls short of that
achieved by Lustre by about 25%. We believe the reason
lies in inefficiencies within PVFS2’s metadata server
involved in all I/O operations.

PostMark: We experimented with three configurations
of Cluster PostMark with the following characteristics:
(a) few large files: (b) a moderate number of medium-
size files; (c) many small files. The parameters in these
configurations are summarized in Table 3.

Looking at aggregate read throughput (depicted in Fig-
ure 4) for different block sizes, we observe that Lustre
outperforms PVFS2 across all configurations and block
sizes. In configuration (a), the benefit for Lustre is ex-
pected to be due to client caching, particularly in the ab-
sence of file sharing (i.e., no contention for the cache), as
well as its optimized metadata server architecture. As the
benchmark becomes less I/O-intensive with decreasing
file sizes, metadata management rises as the dominant
source of overhead. In this case (configuration (c)), Lus-
tre outperforms PVFS2 due to its more efficient metadata
operations based on its support for intent-based lock-
ing [5] and pre-allocation of metadata objects. Our re-
sults are similar for the aggregate write-throughput (not
shown).

Looking at aggregate transactions per second (de-
picted in Figure 5) for different block sizes, we observe
that in the metadata-intensive case (configuration (c);
large number of small files), Lustre outperforms PVFS2
by a factor of about 5 due to its more efficient metadata
management operations. PVFS2 performance could in
principle be improved by enabling additional (active)
metadata server, a feature not supported by Lustre. In
our experience however, we were not able to observe a
measureable performance difference when using more
than one metadata servers.

Tile-IO: In this MPI benchmark, a large file is logi-
cally partitioned into a two-dimensional grid of tiles. In
this experiment we configure the benchmark for 12 tiles
(6×2), each tile comprising 1254× 1254 elements of 512
bytes each. In this logical structure, which is overlaid on

a shared 9.5GB file, each file client is assigned and ac-
cesses a specific tile. We measure the cases of (a) non-
overlapping file access (i.e., clients do not access any
common data); (b) overlapping file access in one dimen-
sion of the 6×2 grid. The block size with which MPI is
performing file I/O is determined by tile dimensions and
element size, in this case about 620KB.

This benchmark is expected to stress the file systems in
more than one ways. First, access by each client to a ded-
icated tile (case (a)) requires effective strided-sequential
I/O to non-contiguous regions in the file, resulting in a
near-random access pattern (Section 2). Second, overlap
in file accesses between clients in case (b) is expected to
stress Lustre’s cache consistency mechanisms. In con-
trast, PVFS2 is not expected to be impacted from shar-
ing since it lacks support for file caching. In addition,
PVFS2 avoids the double buffering effect between appli-
cation buffers and file client cache, which is expected to
impact Lustre.

Figure 6 reports aggregate read and write throughput
respectively, in the cases of overlap and no overlap
in tiles. Lustre outperforms PVFS2 by about 10% in
aggregate read throughput (Figure 6 (a)) in both cases,
aided by its more efficient metadata server implemen-
tation. Both systems benefit from overlap in tiles as
they can take advantage of server-side file caching. In
contrast, PVFS2 outperforms Lustre by a factor of two
on aggregate write bandwidth (Figure 6 (b)) as Lustre
is experiencing the overhead of maintaining cache
consistency. Unfortunately, this overhead is not justified
by the benchmark semantics which do not require strict
consistency. Both systems benefit from write-back
caching at file servers.

User-perceived Response Time: Interactive tasks com-
mon in day-to-day operations performed by human users
are key to the adoption of parallel file systems by practi-
tioners. To get a feeling for the performance of a typical
such task, we measure the response time of a Unix ls
-lR operation on all files in the Linux version 2.6.12
kernel tree (about 25,000 files). Our results are summa-
rized in Table 4in the cases of a local file system (ext3),
Lustre, and PVFS2. We observe that PVFS2 is about
40% slower than Lustre. Both parallel file systems, how-
ever, exhibit a significant slowdown (about an order of
magnitude) compared to a local file system.

7

Figure 4: Postmark: Aggregate read throughput; 12 clients, 12 servers.

Figure 5: Postmark: Transactions per second; 12 clients, 12 servers.

6 Related Work

The need of large-scale scientific and enterprise com-
puting applications has motivated significant research in
distributed file systems that can efficiently and reliably
support processing large quantities of data. Distributed
and parallel file systems, such as PVFS [12], Lustre [5],
GPFS [20], GFS [18], AFS [9], and Panassas [24], have
been developed to address the needs of a range of large-
scale applications. A number of independent evaluation
studies [3, 15, 14, 6, 11, 21] have explored various as-
pects of these parallel file systems.

An earlier experimental evaluation [3] at Lawrence
Berkeley National Labs compared AFS, GFS, GPFS and
PVFS to NFS [17] using PostMark, IOzone, and other
benchmarks. A follow-on study [15] evaluated a num-
ber of shared-storage file systems on issues such as par-
allel I/O performance, metadata operations, and scal-
ability using the MPTIO and METEBENCH parallel

tests. Two related experimental evaluations [14, 6] of
PVFS, Lustre and GPFS focused on I/O performance,
scalability, redundancy, ease of installation and admin-
istration characteristics using the IOR parallel bench-
mark from Lawrence Livermore National Lab. Another
study [6] focused on issues of installation, configuration,
and management of these systems on two heterogeneous
compute clusters using single-client and multiple-client
bandwidth tests. This study concluded that all measured
file systems outperformed an NFS installation and that
PVFS2, Lustre and GPFS performed comparably across
all their benchmark tests. Finally, Kunkel [11] focused
on parallel file system performance bottlenecks using
PVFS2 as a test case. This study introduced the idea of
replacing PVFS2’s methods accessing the underlying I/O
subsystem with stubs diverting I/O from physical stor-
age in order to avoid the performance impact of several
sources of inefficiency in the I/O subsystem. Results pro-
vided for a wide range of contiguous requests as well as

8

no overlap
overlap

0

20

40

60

80

100
R
e
a
d

(
M
B
/
s
e
c
)

PVFS2
LUSTRE

(a) Read

no overlap
overlap

0

50

100

150

W
r
i
t
e

(
M
B
/
s
e
c
)

PVFS2
LUSTRE

(b) Write

Figure 6: Tile I/O: Aggregate read and write throughput; 12 clients, 12 servers.

File System Response time (sec)
Linux ext3 (local) 5.5
Lustre 58
PVFS2 80

Table 4: User-perceived response time performing ls -lR on 25,000 files. Lustre and PVFS2 are configured as
single client, 12 servers.

for metadata operations.
Our work relates to the aforementioned experimental

evaluation studies in the focus on specific parallel file
systems, including PFVS and Luster, but differs in that it
provides a more comprehensive comparison spanning a
wide range of benchmarks.

7 Conclusions

In this paper we performed a comparative experimen-
tal evaluation of two prominent modern parallel file sys-
tems, PVFS2 and Lustre, over a range of benchmarks
modeling real-world applications. Our results indicate
that both file systems are successful in offering paral-
lel I/O paths to storage, achieving scalable performance
over a broad range of applications. In areas where the
file system architectures differ, such as in client caching,
consistency guarantees, and metadata management, our
results show that: (a) the cost of consistency manage-
ment can be an unnecessary overhead for applica-tions
that do not require it; (b) efficient metadata management
can be a differentiating capability, critical for applica-
tions that require high transaction rates over large sets
of small data objects. Beyond the specific benchmarks
used in our experimental evaluation, we outlined a gen-

eral model of parallel file access by applications, point-
ing to the key parameters that impact file access perfor-
mance and as part of future work we expect to use this
model to project our results and predict the performance
of a broader class of applications.

8 Acknowledgments

We thankfully acknowledge the support of the European
FP6-IST program through the UNIsIX project (MC EXT
509595), and the HiPEAC Network of Excellence (NoE
004408).

References

[1] IOzone Filesystem Benchmark. http://www.iozone.org.

[2] Mpich2. http://www.mcs.anl.gov/research/projects/mpich2.

[3] CHAN, S. Distributed File System Benchmarking. NERSC
Lawrence Berkeley National Lab, http://www-pdsf.nersc.gov/ sy-
chan/filesystems.html.

[4] CHING, A. Non-contiguous I/O through PVFS. In Proc. of the
IEEE Conference on Cluster Computing (2002).

[5] CLUSTER FILE SYSTEM, INC. Lustre: A Scalable, High-
Performance File System. White-paper, version 1.0.

[6] COPE, J., OBERG, M., TUFO, H., AND WOITASZEK, M.
Shared Parallel File Systems in Heterogeneous Linux Multi-
Cluster Environments. In Proceedings of the 6th LCI Inter-

9

national Conference on Linux Clusters: The HPC Revolution
(2005).

[7] FLOURIS, M. Cluster PostMark. Personal Communication.

[8] GIBSON, G., NAGLE, D., AMIRI, K., BUTLER, J., CHANG, F.,
GOBIOFF, H., HARDIN, C., RIEDEL, E., ROCHBERG, D., AND

ZELENKA, J. NASD: A Cost-Effective, High-Bandwidth Storage
Architecture. In Proc. of 8th Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(1998).

[9] HOWARD, J., KAZAR, M., MENEES, S., NICHOLS, D., SATYA-
NARAYANAN, M., SIDEBOTHAM, R., AND WEST, M. Scale and
Performance in a Distributed File System. ACM Transactions on
Computer Systems 6, 1 (February 1988), 55–81.

[10] KATCHER, J. Postmark: A New File System Benchmark. Tech.
Rep. TR3022, Network Applicance Inc., 1997.

[11] KUNKEL, J.-M., AND LUDWIG, T. Performance Evaluation of
the PVFS2 Architecture. In Proc. 15th EuroMICRO International
Conference on Parallel, Distributed and Network-Based Process-
ing (PDP) (2007).

[12] LIGON, W. I., AND ROSS, R. Overview of the Parallel Virtual
File System. In Proc. of Extreme Linux Workshop (1999).

[13] MAGOUTIS, K., ADDETIA, S., FEDOROVA, A., SELTZER, M.,
CHASE, J., G. A., KISLEY, R., WICKREMESINGHE, R., AND

GABBER, E. Structure and Performance of the Direct Access File
System. In Proc. 2002 USENIX Annual Technical Conference
(2002).

[14] MARGO, M. An Analysis of State-of-the-Art Parallel File Sys-
tem for Linux. In Proc. of 5th LCI (Linux Clusters Institute) Con-
ference (2004).

[15] NATIONAL ENERGY RESEARCH SCIENTIFIC COMPUTING

CENTER, NERSC LAWRENCE BERKELEY NATIONAL LAB.
http://www.nersc.gov/projects/GUPFS/results/filesystem/Filesystem.php.

[16] PARALLEL I/O BENCHMARKING CONSORTIUM. mpi-tile-io
Benchmark. http://www-unix.mcs.anl.gov/pio-benchmark/.

[17] PAWLOWSKI, B., JUSZCZAK, C., STAUBACH, C., SMITH, C.,
LEBEL, C., AND HITZ, D. ”NFS Version 3 Design and Im-
plementation. In Proc. of the USENIX Summer 1994 Technical
Conference (1994).

[18] RED HAT, I. GFS File System. http://www.redhat.com/gfs.

[19] SELTZER, M., KRINSKY, D., SMITH, K., AND ZHANG, X. The
Case for Application-Specific Benchmarking. In Proc. 7th Work-
shop on Hot Topics in Operating Systems (HotOS) (1999).

[20] SHMUCK, F., AND HASKIN, R. GPFS: Shared Disk File System
for Large Computing Clusters. In Proc. of 2nd USENIX Confer-
ence on File and Storage Technologies (FAST) (2002).

[21] SHORTER, F. Design and Analysis of a Performance Evaluation
Standard for Parallel File. Master’s thesis, Clemson University,
2003.

[22] SMITH, K. Workload-Specific File System Benchmarks. PhD
thesis, Harvard University, 2001.

[23] SNIR, M., OTTO, S., HUSS-LEDERMAN, S., WALKER, D.,
AND DONGARRA, J. MPI - The Complete Reference, Volume
1: The MPI-1 Core. MIT Press, 1998.

[24] WELCH, B., UNANGST, M., ABBASI, Z., GIBSON, G.,
MUELLER, B., SMALL, J., ZELENKA, J., AND ZHOU, B.
Scalable Performance of the Panasas Parallel File System. In
Proc. 6th USENIX Conference on File and Storage Technologies
(FAST) (2008).

10

