2008 IEEE International Conference on Services Computing

Built-to-Order Service Engineering for Enterprise I'T Discovery

Nikolai Joukov, Murthy V Devarakonda, Kostas Magoutis, and Norbert Vogl

IBM T. J. Watson Research Center
Hawthorne, NY

Abstract

Enterprise IT environments are complex: business ap-
plications rely on distributed middleware running on di-
verse hardware with components depending on each other
in many unexpected ways. Discovery of applications’ de-
pendency on IT is a critical step in managing application
and IT infrastructure together.

Many tools and practices have emerged to discover and
report IT assets and applications’ dependency on the IT as-
sets. However, our experience in the field shows that there
are significant challenges in effectively deploying the tools.
There is a critical need to research and develop flexible pro-
cesses, methods, and practices, and architecture-level sup-
port for them in the tools to enable successful discovery us-
ing a “built-to-order” approach.

In this paper we discuss our experiences with an ad-
vanced application-data relationship discovery tools in
large scale enterprise environments and based on these ex-
periences we identify three main challenges of effective dis-
covery. They are: deployment process and related secu-
rity issues; unavailability of software and administration-
related information; and tool integration. To address these
challenges, here we demonstrate a holistic approach that
includes flexible processes, methods, and practices in the
tools for achieving the necessary built-to order capability.

1 Introduction

Modern enterprises have sophisticated IT infrastructures.
Their numerous servers run a diverse set of applications
which serve various functions, interact with each other, and
use distributed middleware [16, 14]. Servers and their op-
erating systems are also diverse, configured differently, and
managed by different people who, frequently, do not even
interact with each other. As a result, there is usually no
person or an existing automated way to derive information
necessary for most IT assessment and transformation tasks.

Some typical reasons for needing information about the
whole IT structure include: (1) It is necessary, for the

978-0-7695-3283-7/08 $25.00 © 2008 IEEE
DOI 10.1109/SCC.2008.128

91

purposes of intrusion prevention, to discover all enterprise
servers and routers. (2) Software license management op-
timization may require finding all installed instances of a
software package. (3) Before a service delivery begins it
is usually a good idea to verify that the enterprise descrip-
tion provided in the contract corresponds to the actual in-
frastructure. (4) eDiscovery, in the form of software and
data relationships discovery, can help find who and which
applications may potentially access sensitive information
to prevent its leaking. (5) Capacity planning and perfor-
mance problems elimination require discovering the traffic
patterns between all involved assets and thus also the rela-
tionships between the assets. (6) Planning of recovery ac-
tions and availability-related analysis of important applica-
tions require discovering all involved assets together with
their mutual dependencies. (7) Virtualization and migra-
tion of servers and applications requires intimate knowledge
about the software and hardware components and their de-
tailed dependencies.

Not all potentially discoverable information is necessary
for a given type of analysis. For example, statistics about
the inter-node loads of requests may be sufficient for ca-
pacity planning and identification of performance problems.
However, for most IT optimization tasks, one needs de-
tailed information about the systems starting from the busi-
ness processes down to applications, middleware, hardware,
and their configurations (preferably at the level of individ-
ual data objects such as EJBs, database tables, messaging
queues, and files) together with their dependencies. In ad-
dition, this information must be accurate so that no assets or
dependencies are missing from the discovered information.
For example, one needs comprehensive information about
all data objects and their dependencies to plan recovery and
data reliability at the level of data objects. Similarly, a sin-
gle missed database dependency even if not used frequently
may make a virtualization or migration effort impossible
or undesirable. We call this form of discovery comprehen-
sive discovery.

In the ideal world one would collect all the information
about the enterprise IT assets, their dependencies, associ-
ated people, policies, business functions, and run-time uti-

IEEE
computer
psouety

lization in one database [13]. Analysis tools would in turn
analyze the information from the database and generate re-
ports, policies, and recommendations or even transform the
IT environments automatically.

Today very few organizations have deployed any auto-
mated discovery tools and even if such tools are deployed
the information collected is barely enough for the very basic
analysis. As a result, people who need the information for
analysis have to either deploy the tools themselves or per-
form the discovery manually or mostly manually. Unfortu-
nately, the last two options still overwhelmingly dominate.

In this paper we describe the real-world enterprise IT
comprehensive discovery process based on our experiences
with designing and using Galapagos—a comprehensive
data dependencies discovery system [14] and deployment
of IBM TADDM [15]. We analyze the reasons why in many
cases people refrain from using the automated and compre-
hensive discovery. We have identified and described in de-
tails three groups of challenges that limit the use of dis-
covery tools in the enterprises: (1) deployment process, (2)
difficulties with the discovery of certain types of informa-
tion, and (3) information integration. Finally, we present
our own findings about the optimizations of the discovery
process and present recommendations for the design of the
discovery tools and practitioners.

The rest of the paper is organized as follows: We de-
scribe existing methods of IT asset and dependencies dis-
covery in Section 2; Sections 3, 4, 5 describe the challenges
of deploying the discovery tools, discovering custom and
human-related information, and information integration re-
spectively together with some solutions and recommenda-
tions; we conclude in Section 6.

2 Existing Discovery Methods

We estimate that there are more than 60 commercial of-
ferings related to the infrastructure discovery in addition to
the research prototypes. We will not describe all of them
here. Instead we describe several typical projects.

Tools to discover hosts on the network by sending
SNMP (Simple Network Management Protocol) requests
have been around for a while. For example, nmap [10] was
first published in September 1997 [9]. Many modern tools
such as IDD [15] and Infrastructure Solutions Inc. (ISI)
Snapshot [3] use this as a form of initial discovery. SNMP-
based discovery is usually followed by a scanning of open
ports and other probing requests. Analysis of the target sys-
tem behavior allows them to discover signatures, identify
OSs and OS versions, and infer some information about the
other hardware and software components. Such network
scanning tools require special handling by the firewalls and
intrusion detection systems. As a result the scans are usu-
ally performed from the nodes located behind firewalls.

92

Modern routers are usually equipped with the special
ports that allow monitoring the network traffic. Some dis-
covery tools such as Aurora [12], eMulsa [11], and EMC
Smarts Application Discovery Manager (ADM) [8] exploit
this possibility to derive the information about the network
nodes and their software. The main benefit of this approach
is that it is usually not hard to get access to the routers
and their monitoring ports (if supported). Also this method
allows discovering the relations between software compo-
nents and nodes by inspecting the packet contents [4]. In ad-
dition, observation of the network traffic provides informa-
tion about the server load, which is important for tasks like
capacity planning and performance problems debugging.

Observing the nodes from outside does not allow to dis-
cover detailed and complete information about the systems.
This is simply because accessing configuration information
and file system contents requires credentials to avoid infor-
mation exposure and system compromise. A number of spe-
cial software interfaces allow accessing such configuration
with the proper credentials (e.g., [2]). However, such spe-
cific management interfaces have limited discovery capa-
bilities because they are usually not designed for discovery.
Also, they are not available for all software components and
usually not deployed.

Monitoring or inspection of the logs of the run-time ac-
tivity on the target systems is similar to the network traffic
analysis on the routers but can reveal information of the sys-
tem internals. For example, IBM Tivoli Application Depen-
dency Discovery Manager (TADDM) [15] can use 1sof
command to discover a list of files accessed by any appli-
cations. This type of run-time analysis is useful for the per-
formance analysis and capacity planning purposes. Unfor-
tunately, run-time monitoring does not allow to discover all
dependencies (e.g., a list of files that an application may use
in the future or uses very rarely) and also may require instru-
mentation of the production systems. This creates problems
for several types of analyses (e.g., recovery planning) and
can significantly complicate the tool deployment.

2.1 Galapagos and other agent-less tools

Agent-less discovery tools such as Galapagos [14],
TADDM, and HP Discovery and Dependency Mapping
(DDM) [1] have per-application or per-application type sen-
sors that log-in to the target systems and execute system
commands or query application-specific interfaces. With
proper credentials such sensors can use expert knowledge
about the software components and installation-specific in-
formation obtained from the system to discover most if not
all details about every system.

Galapagos is a novel discovery technology that finds in-
dividual data objects such as EJBs, database tables, and files
and their interdependencies. For example, Galapagos can

map every database table to all lower files that a table im-
plemented by DB2 depends on. The core idea behind this
discovery is the modeling of the software components. In
the example above, a Galapagos model of DB2 contains
knowledge about the way DB2 maps tables to files based
on DB2 internal rules and configuration files.

In this paper we focus on the use of Galapagos and
TADDM in the enterprises.

3 Comprehensive Discovery Process

The process of discovering comprehensive information
about an IT environment is usually divided into three stages,
sometimes called levels:

1. The scanning process begins by discovering the infor-
mation at the network level (e.g., the list of servers);

2. Next, common information about the servers is col-
lected (e.g., CPU speed, list of running processes, and
mounted file systems);

3. Lastly, sensors specific to particular IT components
derive information specific to these components (e.g.,
data base table names and their dependencies).

These three levels of discovery are, in most cases, followed
by the discovery of relationships between assets and their
business roles (including their importance). There are two
main related reasons behind the staged discovery:

Nearly every discovery attempt challenges the security
policies of an IT environment. One needs credentials and
authorization to perform discovery. Naturally, the scanning
process is divided according to the authorization levels -
first, go behind the firewalls; next, obtain user-level access
to the servers; and lastly, obtain application-specific access
to specific files or applications.

Each discovery level is performed at a “deeper” layer of
system abstraction and an earlier-level discovery provides
information necessary for the later levels. For example, one
needs to know which OS is running on a server to deploy
level two and level three sensors that are different for differ-
ent OSs. Similarly, one needs to know which credentials to
request and which application administrators to contact to
perform application-specific discovery.

The exact information discovered at different levels
varies greatly depending on the technology and implemen-
tation. For example, NMAP-based network discovery tools
may provide server IP addresses and OSs, whereas tools
that monitor network traffic can discover some applications
and certain dependencies between them. Furthermore, mul-
tiple tools from different vendors may be used concurrently
because they discover different subsets of information that
can be derived at a given level.

93

3.1 Discovery Process Steps

The above described discovery process is shown in Fig-
ure 1 for the environments we studied. Each discovery level
consists of a similar sequence of steps and multiple tools
may be used at any given level. Nearly every step may alter-
nately be performed with manual discovery via interviews
and templates. The entire process may have to be restarted
because of security policy changes or turnover of the per-
sonnel in managing the assets. In addition to these rare
occurrences, relatively frequently, one may end up contact-
ing wrong people or be presented with wrong or incomplete
corporate policies. Let us now consider each discovery step.

2. Find people The deployment process begins by find-
ing the right people for a given level of discovery. For the
first level one needs to find people who know about the net-
work topology and network intrusion detection policies in
place. For the levels two and three it is necessary to find
people responsible for the servers or individual applications
respectively together with the corporate security supervi-
sors. In many enterprises, the number of individuals to con-
tact may be very large since different portions of an orga-
nization or even different classes of applications may have
different policies and people responsible for them. In re-
ality, this step consists of multiple meetings. During these
meetings the set of people involved gets refined. Also, fre-
quently meetings get rescheduled.

3. Send spreadsheets Upon finding the right people with
sufficient knowledge of the required information they are
required to fill out standardized surveys usually in the form
of spreadsheets. Such spreadsheets allow a degree of au-
tomation while collecting the initial information about the
enterprise. Also, they become reusable artifacts that can
help other forms of analysis [6]. Unfortunately, the spread-
sheets are designed for a general case and usually have more
questions than is necessary for a particular engagement.

4. Learn policies and describe scanning After identify-
ing the right asset owners and getting the common informa-
tion via spreadsheets, it is important to get “buy in” from
asset owners so they personally feel comfortable with the
scanning procedures. Asset owners are typically concerned
about the performance impact of the discovery tools and the
amount of work that they personally will have to do. Also,
at this step, it is important to learn the specifics of security-
related policies.

The information necessary to create custom or update ex-
isting sensors is also gathered at this step. We will describe
custom sensors in Section 4.

6. Modify/create sensors It may turn out that an existing
asset sensor is not general enough to cover some existing
configuration. In that case the person performing the dis-
covery may request that tool maintainers update the sensor.

1. For each level 7«

v

2. Find People

v
3. Send spreadsheets

(
|
|

v
‘ v
(
|

4. Learn policies, describe scanning ‘

5. For each tool 74—
v

6. Modify / create sensors ‘

. Deploy?

st Nf
8. Get security 13. Submit sensor
approvals input request
v v
‘ 9. Get credentials ‘ ‘ 14. Run request ‘
v
‘ 10. Schedule scans ‘
v
‘ 11. Deploy sensors ‘
v

‘ 12. Scan test ‘

A A
‘ 15. Scan production ‘

v

‘ 16. Store information in tool model ‘ Yes
v

L 17. More tools?
v

‘ 18. Amend with manual information ‘ Yes
v

L 19. More levels? J—
v

‘ 20. Integrate information

Figure 1. A typical comprehensive enterprise
IT discovery process. For simplicity we do
not show the arrows here depicting events
that can happen at every step: a person per-
forming the discovery can give up at any step
and switch to the manual discovery via inter-
views and spreadsheets; the level may have
to be restarted at any step if there is a sig-
nificant policy change or change in the set of
people responsible for the assets.

94

Similarly, it may be necessary and possible to create custom
sensors for rare or unique applications. This topic will be
described in Section 4.

Security and deployment policies may require modifica-
tions of the main discovery tool or sensors. In particular, a
sensor may use a system command that is not supported or
contradicts with the security policies. In that case the com-
mand itself may be reimplemented to perform more specific
and allowed actions (e.g., access /proc interface instead
of using 1sof command) or the sensor may be changed
to collect less data. In the worst case, one may be forced to
change the scanning tool interface for accessing the sensors.
For example, ssh access to the servers by automated tools
is sometimes forbidden but is allowed via an http port;
Java-based sensors are not allowed in some environments
or require complicated approval procedures.

Obviously, such code updates cannot be performed for
every engagement. However, for important engagements or
if the problem persists many times tool and sensor updates
are more than justified.

7. Deploy? Sometimes, it turns out that the differences
between the existing tool and its deployment process and
allowed enterprise policies is so big that it is unpractical
to perform the deployment and update the code of the tool
itself. In that case one may skip the tool deployment process
as we will describe in Section 3.2.

8. Get security approvals It is important to get formal
approval of the deployment and scanning process from the
bodies responsible for security of the scanned assets. Some-
times such a body is a formal review board where one needs
to satisfy a list of formal requirements. There may be even
several separate boards, e.g. one responsible for the appli-
cation deployment (if the discovery tools is classified as ap-
plication) and another for credentials. In other cases for
smaller organizations one may get a permission based on
less well defined requirements. In any case, it is critical
to get a formal approval of the deployment process from the
security organizations. Without formal approval, asset own-
ers may resist the deployment process because of the fear of
violating corporate security rules.

During the security review process the system is usually
inspected in terms of what kind of credentials are necessary
and how these credentials are stored. Many per-application
sensors require credentials that may potentially give access
to the sensitive corporate data. In these cases it is desir-
able to minimize the level of access requested. For exam-
ple, Galapagos needs access to information about IBM DB2
database table names but does not require access to the data
stored in the tables. Whereas IBM DB2 db2admin group
members can access both tables and data, members of the
db2mon group can see only the table names. However, the
db2mon group may not be defined by default, and therefore
it may have to be created for the scanning process.

If the permission level required by the sensors is deemed
to be too intrusive and no lower permission groups exist, it
is sometimes possible to obtain policy exemptions by show-
ing the specific commands executed by the sensors. Unfor-
tunately, this requires extensive familiarity with the sensors
and practitioners may not have such familiarity. This im-
plies that sensors must be well documented.

Interestingly enough, we observed that in some cases it
is possible to convince the approvers that a scanning tool
is secure and get permission to broad access rights for all
systems. However, this process requires negotiations and
depends on the personalities involved. This approach has
drawbacks but helps speed up the deployment process be-
cause, instead of requesting many per-application creden-
tials it is possible to request one set of broad access rights
(e.g. root level access).

9. Get credentials The actual process of requesting cre-
dentials is usually automated for the large enterprises. How-
ever, even this automation requires efforts of supplying ap-
plication names and other information to the automated sys-
tems. In addition, system administrators may have to create
additional groups such as db2mon described above.

10. Schedule scans Frequently no perturbations of the
IT infrastructure are allowed during the times of important
business activity. For example, no scans or reconfigurations
may be allowed during the end of quarters because of the
importance of the accounting activity that may not be risked
or interrupted. This means that the discovery process may
have to be postponed till the end of such IT change freezes.

11. Deploy sensors Before the actual automated discov-
ery process can begin one may need to install additional
software or hardware. For example, one may have to re-
place routers that do not support Netflow information col-
lection. Similarly, it may be necessary to install some mon-
itoring software tools that are standard but not present on
all systems by default such as 1sof. This is yet another ex-
ample where sensor improvement may be justified to make
the deployment easy. Instead of expecting 1sof and sim-
ilar commands to be present on the system one may create
sensors that use the /proc interface directly. In other cases
it may be necessary to install sensors on the target systems
because no external log-in interfaces exist.

12. Scan test To make sure that the sensors will run cor-
rectly and show to the application owners that no perfor-
mance degradation is expected, it is sometimes desirable
or required to run the discovery on the test servers. Such
servers frequently exist for each corporate application and
are used for development and testing purposes.

15. Scan production With the proper approvals, creden-
tials, sensors, and prepared target systems it is now possible
to run the discovery on the actual production systems.

95

16. Store information in tool model The discovery tool
stores the discovered information in its own output format.

17. More tools? If a given tool does not provide all the
information necessary (e.g., has no sensor for some middle-
ware component), it may be possible to run another tool and
merge the results later.

18. Amend with manual information As we discuss in
Section 4, not all aspects of IT systems can be captured
automatically even with perfect sensors and all credentials.
Therefore, it is necessary to add that information for a given
level manually.

19. More levels? After a given level of scanning is com-
plete one may run the next level to get more detailed infor-
mation if necessary for the analysis.

20. Integrate information Information collected by dif-
ferent tools at different levels must be integrated for the sub-
sequent analysis. Even if the discovery process was per-
formed with only one tool it is still necessary to make the
results compatible in their representation with the analysis
tools. Section 5 addresses this step further.

3.2 Comprehensive Discovery Without
Credentials and Deployment

As we can see, steps 8—12 are lengthy, nontrivial, and
require serious involvement of the asset owners. In fact,
they usually correspond to the biggest portion of the whole
discovery effort. These efforts can be justified for long-term
deployment when the discovery tools are deployed once and
then used for years. However, for short-term and single-
time discovery engagements, the cost of deployment is usu-
ally not justified and that is why manual discovery is used in
so many cases. While deploying Galapagos and performing
the above steps, we realized that there is a way to achieve
the same accurate and automatically derived results with
significantly less efforts.

We noticed that most if not all sensors issue a small num-
ber of commands or read a small number of configuration
files and these are the only operations when they need cre-
dentials and access to the target systems. After that the
sensors perform analysis of the output of these commands
or configuration files. Therefore, we found it much easier
to request an asset owner to issue a couple of commands
or send us some configuration files than going through the
whole deployment process. Instead of going through steps
8-12 we do the following as shown in Figure 1.

13. Submit sensor input request We write a detailed de-
scription of the files or commands that our sensors need and
send them to the asset owners.

14. Run request Asset owners perform the actions re-
quested and send us the output sometimes simply via email.

It is important to note that this manual acquisition of the
information necessary for the scans is different from the
manual scans. Instead of asking the asset owners about a
complete and big set of properties and dependencies we re-
quest them to execute simple commands or copy configu-
ration files. It is the scanning step that we do automati-
cally that discovers accurate and comprehensive informa-
tion. However, instead of performing the discovery on the
target system we perform it on our own host with the same
sensors but with the production system’s data as input.

Overall, we would like to make two conclusions from
our discovery experiences: First, it makes sense to make
the discovery tools as flexible as possible—inflexible tools
in terms of deployment have limited applicability especially
for the short-term engagements. Second, in some cases it is
possible to discover precise and comprehensive information
without a completely automated discovery process.

4 Sensors and Information Discoverability

Information about IT systems is protected with various
security mechanisms. For example, one needs special cre-
dentials to access software configuration files. As we de-
scribed in Section 3.1, the less privileged credentials a sen-
sor needs the easier it is to deploy and use it. For example,
the complexity of the discovery level one sensors is mostly
due to the fact that they are inferring information about the
systems and even their software stack without logging on
to the systems. Such sensors may know that a particular
OS’s IP stack implementation may have a characteristic be-
havior in handling a particular type of a network handshake
protocol and identify that implementation. However, even
when the maximum possible level of access to all systems
and all components is available it is hard or even impossible
to discover some classes of the IT-related information:

1. Custom-made applications are common in the existing
enterprises. They require creation of the custom-made
sensors, which is long, expensive, and error-prone.

2. Some important information that is frequently critical
for analysis is not contained in any common digital
form and thus cannot be discovered without human in-
tervention or heuristics that do not always work.

We describe these problems related to the discovery of
information even if all credentials are available below.

4.1 Custom-made Sensors
Automated discovery tools use predefined mechanisms

and templates to collect information. They have limited in-
telligence to understand the system properties. Therefore, it

96

is much easier to discover information about standard and
widespread systems and manual intervention is usually nec-
essary to collect information about the custom-made sys-
tems. As a result, it is easier to discover information at the
lower discovery levels: custom-made hardware and operat-
ing systems is a rarity. However, software middleware and
application components are more diverse and thus harder to
describe by the sensors in all cases.

Figure 2 shows a diagram of a real custom-made enter-
prise application R that consists of about two million lines
of Java code. We will use it to illustrate the difficulties in
the discovery of custom-made applications and their depen-
dencies. First, from a discussion with the application team
manager we learned the high-level business purpose of the
application and the fact that it runs on a single dedicated
server together with a dedicated database and is accessed
by other applications via a messaging queue. This allowed
us to create a first-approximation sensor that assumed that
application R depends on all database tables that exist on the
server and provides services via a messaging queue with a
given name.

Soon we were able to meet with one of the application
architects. It turned out that the application consists of two
parts: R1 and R2. R2 reads in a big file and generates ta-
bles that R1 uses to answer external requests coming via a
messaging queue. The file itself is being fetched via ftp

fs: /data

fs: /home/rng/llb ‘ ‘

Tabdata xml T\

‘ ext-ssh.// ...I[rng_repos

L

write | |

Figure 2. A real-world application R with ex-
ternal and internal dependencies.

from a remote server once in two days by a cron job. We
were also shown the location of the application binaries and
the data file. After looking at this information we realized
that there is a missing dependency between the application
binary and its source files. It turned out that the source
was kept on a separate CVS server. This information was
sufficient for us to create a model of the application. We
plugged it into the rest of the discovered information about
the database and the servers that communicate with appli-
cation R remotely to find all mutual dependencies in the
enterprise. For example, another application located on an-
other server that is sending requests via the same messaging
queue depends on database RNGDB.

Despite of the fact that the process described above is
manual it allows us to perform the discovery automatically,
no matter how many times one needs to perform the discov-
ery. Another interesting observation is that the actual sensor
implementation effort is much simpler than the application
investigation, which is required for both: manual and auto-
matic discovery.

In other cases we observed applications that use small
but numerous shell scripts, which source may be read by
the discovery team. Similarly, a web server may have a
large number of small CGI scripts. In these cases source
code analysis may be an easy way to create the models.

Numerous security-related projects automatically ana-
lyze application access patters by observing the run-time
behavior and by analyzing the code. We believe that in the
future some of these technologies could be used to construct
the application models automatically.

4.2 Human-Involved IT Dependencies

There are at least two types of information that cannot be
reliably discovered completely automatically:

Manual IT processes (e.g., manual backup, application
recompilation, and data movement). For example, applica-
tion R’s sources are stored remotely on a CVS server and
a person who wants to renew the application manually re-
trieves it from that server. This means that one needs to
know this dependency when planning the recovery of ap-
plication R. In this particular case one may infer the CVS
repository location by observing the presence of the CVS
directory but this heuristics has a limited applicability.

Business value and purpose Another example of infor-
mation that cannot be in general discovered automatically
is the business value and purpose of applications and ap-
plication data objects. For example, we can observe that
the LOG database table is only used for writing and no IT
services depend on it. However, we cannot automatically
decide that we do not need to back it up because it may be
necessary for several types of manual analyses. (In case of

97

application R it turned out that all database tables were re-
generatable locally and the LOG table was unimportant so
no database tables required backup.)

Deriving the business value of an application is even
more challenging and is almost always done completely
manually. The only rare exceptions are heuristics such as
dependence of the server or application name on the busi-
ness role if such rules are enforced in the enterprise.

5 Integration of Tools and Information

Discovery tools can store the information they discover
in three ways:

1. Use a custom data schema, which implies manual or
custom analysis of the discovered information;

2. Use an existing asset database that is supported by
other discovery analysis tools; and

3. Integrate the tool into a federated service.

When we first designed Galapagos we used a custom
data representation scheme because it is abstract, flexible,
and other existing models that we considered did not sup-
port the types of objects and dependencies that we needed
(because others do not discover them). We stored the infor-
mation in an SQL database and complex SQL queries were
able to generate sophisticated reports about end-to-end data
and application dependencies [14].

As we used Galapagos we realized that (1) Galapagos
needs information from other tools to start the discovery;
(2) it would be convenient to share credentials and UI with
other tools like TADDM; (3) there are existing analysis
tools that support TADDM’s data representation but do not
support our custom model. As a result we started the effort
of merging Galapagos and TADDM into one tool. It even
turned out that the changes of the existing TADDM model
are small and non-intrusive.

In todays highly competitive IT services market, solu-
tions to a variety of services consulting and delivery en-
gagements are provided through the concerted action of
a set of tools. In addition, clients often demand the use
of cross-brand tooling in the delivery of integrated busi-
ness solutions. For these reasons, Service Providers require
information-integration technologies to enable the seam-
less interoperation of tools provided by different software
vendors, as well as those prototyped and deployed by re-
search organizations. Oftentimes the use of research tools
can provide unique, differentiating capabilities to a Service
Providers offering portfolio.

A solution to the problem of interoperability across a
set of tools can be provided by technologies that support
metadata federation services (MFES) [5, 7]. MFS offer in-
tegration across a portfolio of service offerings through the

use of a common, shared metadata repository for metadata
exchange between the tools. This exchange is particularly
suited for model-driven tools, whose underlying metadata
are captured and described in a formal model.

We demonstrated information integration between IBM
Rational Data Architect (RDA) and Galapagos, enriching
RDAs information with the relationships between database
entities (tables, columns, etc.) and the applications that are
accessing them. This allowed us to integrate Galapagos into
a framework that lets other existing and future tools to use
Galapagos-provided data for analysis automatically.

6 Conclusions

Automated IT discovery tools is a key enabling technol-
ogy for automation of the IT management and optimiza-
tion tasks. Unfortunately, comprehensive discovery tools
are hard to deploy and use. We have presented our experi-
ences with the real-world deployment of two state-of-the-art
comprehensive discovery tools: Galapagos and TADDM.

1. We described a step-by-step deployment process and
showed that most development efforts spent on the tool
flexibility are more than justified. Powerful but inflexi-
ble tools are hard to deploy, which makes them useless
for short-term engagements. We also demonstrated
that a combination of the automated and manual dis-
covery can significantly cut the deployment efforts and
still provide most of the benefits of a completely auto-
mated deployment.

2. We demonstrated that custom-made software and
human-related IT dependencies are hard or even im-
possible to reliably discover automatically. However,
it is not hard to discover them manually and integrate
into the overall reusable automated discovery process.

3. We showed that there is still no common way to ad-
dress the data and tool incompatibility problems in the
industry. Therefore, modern tools have to support a
variety of data representations and invocation methods
concurrently. A custom data model may be best for
a stand-alone deployment; tight integration of UI and
data models may be good for tools frequently used to-
gether; an MFS-based integration is useful for cross-
brand and wide-scope integration.

Acknowledgments We would like to thank Alain Aza-
gury, George Galambos, Phil Harvey, Birgit Pfitzmann,
Marco Pistoia, Harigovind Ramasamy, and Raymond
Twitchell for guidance, numerous discussions of the project,
and participation in the Galapagos deployment.

98

References

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

HP discovery and dependency mapping (DDM) inventory
software. www.hp.com/hpinfo/newsroom/press_
kits/2007/softwareuniversebarcelona/ds_
inventory.pdf.

IBM tivoli storage manager. www . ibm.com/software/
tivoli/products/storage-mgr/.

ISI-snapshot... agent-less accurate and rapid IT infrastruc-
ture inventory, configuration and utilization collection using
a single tool. www.isiisi.com.

S. Basu, F. Casati, and F. Daniel. Web service depen-
dency discovery tool for SOA management. In Proceedings
of the IEEE International Conference on Services Comput-
ing (SCC 2007), pages 684—685, Salt Lake City, Utah, July
2007. IEEE.

M. Beyer. Why metadata matters to business intelligence
initiatives. Technical Report G00144814, Gartner Research,
September 2007.

K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su.
Towards formal analysis of artifact-centric business process
models. In Proceedings of the 5th International Conference
on Business Process Management (BPM 2007), pages 288—
204, Brisbane, Australia, September 2007.

M. Blechar. IBMs federated metadata management strat-
egy. Technical Report G00147616, Gartner Research, April
2007.

M. Bowker, B. Garrett, and B. Laliberte. EMC smarts appli-
cation discovery manager. Technical report, ESG Lab Vali-
dation Report, July 2007.

Fyodor. The art of port scanning. Phrack Magazine, 7,
September 1997.

Fyodor. NMAP(1),2003. www. insecure.org/nmap/
data/nmap_ manpage.html.

H. Kashima, T. Tsumura, T. Ide, T. Nogayama, R. Hirade,
H. Etoh, and T. Fukuda. Network-based problem detection
for distributed systems. In Proceedings of the 21st Interna-
tional Conference on Data Engineering (ICDE 2005), pages
978-979, Tokyo, Japan, April 2005. IEEE.

A. Kind, P. Hurley, and J. Massar. A light-weight and scal-
able network profiling system. ERCIM News, January 2005.
H. Madduri, S. S. B. Shi, R. Baker, N. Ayachitula,
L. Shwartz, M. Surendra, C. Corley, M. Benantar, and S. Pa-
tel. A configuration management database architecture in
support of IBM service management. IBM Systems Journal,

July 2007.
K. Magoutis, M. V. Devarakonda, N. Joukov, and
N. Vogl. Galapagos: Model-driven discovery of end-to-

end application-storage relationships in distributed systems.
IBM Systems Journal, February 2008. to appear.

C. R. Rich. #TADDM'’s flexible approach to discov-
ery. Technical report, IBM Corporation, July 2007.
ftp.software.ibm.com/software/tivoli/
whitepapers/TADDM s Flexible Approach
to_Discovery.pdf.

J. Scheck. Business technology: Taming technology
sprawl—HP hits snags in quest for savings through systems
consolidation. The Wall Street Journal, January 2008.

