
Research Issues in No-Futz Computing

David A. Holland, William Josephson,
Kostas Magoutis, Margo I. Seltzer, Christopher A. Stein

Harvard University
Ada Lim

University of New South Wales

Abstract
At the 1999Workshopon Hot Topics in Operating Systems
(HotOSVII), the attendeesreachedconsensusthat the most
important issue facing the OS research communitywas
“No-Futz” computing; eliminating the ongoing “futzing”
thatcharacterizesmostsystemstoday. To date, little research
hasbeenaccomplishedin this area.Our goal in writing this
paperis to focusthe research communityon the challenges
wefaceif weare to designsystemsthatare truly futz-free, or
even low-futz.

1 Introduction
The high costof systemadministrationis well known.

In addition to the official costs(suchassalariesfor system
administrators),countlessadditional dollars are wastedas
individual userstinker with the systemson their desktops.
The goal of “no-futz” computingis to slashthesecostsand
reducethe day-to-dayfrustration that futzing causesusers
and administrators.

We define“futz” to mean“tinkering or fiddling experi-
mentallywith something.” Thatis, futzing refersspecifically
to makingchangesto the stateof the system,while observ-
ing the resultingbehavior in order to determinehow these
relate and what combinationof statevalues is neededto
achieve the desiredbehavior. When we refer to “no-futz”
computing,we mean that futzing should be allowed, but
shouldneverberequired.Weinterpret“low-futz” in thisway
as well.

It shouldbe notedthat reducingfutz is not the sameas
makingasystemeasyto use.It is alsonot thesameashiding
or reducingcomplexity: it is aboutmanagingcomplexity and
managing difficulty. Computersystemsinvolve intrinsically
complex anddifficult things.Thesearenotgoingto goaway.
The goal is to make it aseasyaspossibleto copewith that
complexity and difficulty.

Systemscanbeeasyto usebut still requireunnecessary
futzing: TCP/IP configuration on older Macintosheswas
easyto adjust,but wasdifficult to setproperly. Onecanalso
imaginea(purelyhypothetical)systemthathidesall its com-
plexity: it appearsto needalmostno futzing at all, until it
breaks.Then, extensive futzing is required, to figure out
what happened.

Thegoalof No-Futzcomputingis to eliminatethefutz-
ing dueto poordesignor poorpresentation,not to try to find
a silver bullet for software complexity; no-futz computing
attacksareasthat areneedlesslycomplicated,not thosethat

are inherently complicated.
Let’s begin with anexampleof a good,hi-tech,low-futz

device, andunderstandits basiccharacteristics.While read-
ing the restof this section,keepin mind the computersys-
temsyouuseregularly (particularlytheonesyoudislike)and
how they differ from the example.

OurXerox256STcopieris ano-futzdevice. It performs
just aboutevery functionimaginablefor a copier:it collates,
staples,copiesbetweendifferent sizesof paper, will copy
single-sidedoriginalsto double-sidedcopiesandvice versa,
etc., and it even sits on the network and acceptsprint jobs
likeaprinter. However, it demandsno futzing. It hasinstruc-
tions printed on the casethat describehow to accomplish
commontasks.Its userinterfacemakesit impossibleto askit
to do somethingit cannot.It keepstrack of its operating
state,continuouslymonitoringitself, andcommunicatesin a
simplefashionwith its operators.Whenthereis a problemit
candiagnose,it displaysa clearmessageon its console.(For
example,“Papertray2 is empty.”) Whenit detectsaproblem
it cannotdiagnose,it begins a question-and-answerdialog
with theoperatorto diagnosetheproblemanddeterminean
appropriatecourseof action - and then, in most cases,it
guidestheoperatorthroughthatcourseof action.Theques-
tions it asksare simple,and can be answeredby a novice,
suchas“Did papercomeout whenyou tried to copy?” The
key factors that make this device no-futz are:

• Ease of use: The user documentationand user
interfaceareorganizedin termsof theuser’s tasks,not
in terms of the system’s internal characteristics.

• It is unusualto encountera situationwhereit is not
clearwhat to do next, even in the presenceof various
failures.

• Self-diagnostics:When a failure occurs, the copier
diagnoses it and offers instructions for fixing things.

• Simple,clearcommunication:It never askstheusera
question that the user cannot answer.

Whatmakesthissuchaninterestingexampleis thatonly
adecadeago,photocopiersrequiredmuchfutzing,mostlyby
expert servicemen,and were extremely frustrating for all
concerned.Sincethen,not only have copiersbecomevastly
fasterandmorepowerful, but both theuseandmaintenance
of them has becomevastly easier. Today’s copiers have
one-tenththecomponentsof their predecessors,significantly
more functionality, and dramatically reducedfutzing [6].
How can we make similar strides forward in computing?

That which works for a photocopiermay not be suffi-



cient for computers:the copieris a relatively straightforward
device with well-defined function and state,whereasgen-
eral-purposecomputersystemshave a wide variety of func-
tions, have essentially infinitely mutable state, and are
subjectedto complicatedand often ill-understoodintercon-
nections both within themselves and with other computers.

In the rest of this paper, we first discusssomecurrent
approachesto futz reduction,arguing that thesedo not attack
the problemdirectly andhave negative side-effects.We then
discusshow futz arisesin computersystemsand describe
what we believe is the key to a real solution:understanding
andmanagingsystemstate.Thenwe outlinesomedirections
for futureresearch,discussbriefly someexistingrelatedwork,
and conclude.

2 Curr ent Approaches to Futz Reduction
Thecostandfrustrationassociatedwith futzinghasled to

threecommonapproachesto futz reduction:(1) limiting the
scopeof functionality, (2) homogeneity, and (3) centraliza-
tion. Theseapproachesarenotmutuallyexclusiveandarefre-
quently used together.

The copier describedabove is an example of the first
approach:it is a special-purposedevice. Relative to a gen-
eral-purposecomputer, its functionality is quite limited. In
this context, it has addressedthe futz problem quite well.
Sincefutzing involvesstatechanges,specialpurposesystems,
which have relatively limited statespaces,can offer corre-
spondingly reduced futz. Other low-futz, limited scope
devices include dedicatedfile servers (e.g., Network Appli-
ance’s filers) and specialpurposeweb or mail servers (e.g.,
Sun’s Cobalt servers) among others.

Homogeneityis the secondapproachto futz avoidance.
This approachis most often seenin large installations.In
order to reducetotal installation-widefutzing, a singlestan-
dardmachineconfigurationis deployed everywhere.If there
is a problem,any machinecan be replacedwith any other
machine.Systemscan be reinstalledquickly from a master
copy. Maintenancerequirementsarereduceddrastically. Cus-
tom managementtools needonly interactwith one kind of
system,andarethusmuchcheaperto build. The administra-
tors seethe sameproblemsover andover again andcanpre-
paresolutionsin advance;nobodybesidesthe administrators
needs to futz with anything.

This approachcan reduceglobal futz drastically; how-
ever, it doesnot addressthe underlyingproblem:the amount
of futzing requiredby a singlemachineis constant.Further-
more, it has other flaws: first, it is inherently incompatible
with lettinguserscontroltheircomputers.While this is fineor
evendesirablein someenvironments(e.g.,theterminalsbank
tellersuse),it is unacceptablein others(e.g., researchlabs).
Second,it is a security risk. The samehomogeneitythat
makessystemadministrationeasieralsomakesbreak-insand
virus propagation easier:if you canget into onesystem,you
cangetinto all of themthesameway [1]. Third, mostorgani-
zationsgrow incrementally. Adding new computersto a col-

lectionof identicalexisting onesis difficult: thenew onesare
rarely truly identical,which inevitably cutsinto theeconomy
of scale.

The third approachto futz reduction is centralization.
Centralizationmoves state and its accompanying require-
mentsfor futzing, away from the systemswith which people
interactdirectly andinto placeswhereit is moreconveniently
managed.This givesadministratorstight andefficient control
over eachsystem.This makesit moreconvenientfor system
administratorsto futz andletssystemadministratorsdo more
of thefutzinganduserslessof it. While thisdoesreducecost,
there is no actual reductionin total futz. For that, another
approach is required.

Thesethreeapproachesarecapableof reducingthe futz
of, or at leastthe costof maintenancefor, computersystems
andnetworks.However, all of themarelimiting and/orhave
negative consequences.This is a result of attempting to
reducethe total futzable state,insteadof the futz problem
directly. We advocate the direct attack.

3 The Source of Futz
Onedefinitionof “futz” is in termsof statemanipulation.

Thus,themorestatethereis to manipulate,themorefutzinga
systemallows. Mandatoryfutzing ariseswhenit is not clear
by inspection or documentationwhat manipulations are
requiredor whenthesupposedlycorrectmanipulationsfail to
producethecorrectresult.At this point,onemustexperiment
(or call for help).

If onecanmanipulatethe systemstatewithout resorting
to experimentation,futzing has not occurred.For instance,
seasonedUnix administratorsdo not have to futz to add
accountsto their systems.But beginnersgenerallydo. And
evenseasonedadministratorsusuallyhave to futz to getprint-
ing to work.

Note that the degree of futz dependson the level of
expertiseof the user. A premiseof no-futz computing,how-
ever, is thatoneshouldnot have to beanexpert,or thecostof
beinganexpertshouldbequitelow. Unix systemsarealready
quite low-futz for hard-coreexperts,but it takes yearsand
yearsof apprenticeshipto reachthatlevel. Reducingfutz for a
selectfew is not a solution,sowe needto examinesourcesof
futz as they appear to a casual user.

The mutablestateof a computersystemcan be broken
down into the following categories(this may not be a com-
plete list):

• Derivedstate:Stateautomaticallyderivedor generated
from other state.

• Policy state: Configurationstatethatreflectspolicy of a
site or user.

• Autoconfigdata: Datato beservedin somemannerby
the system in order to enable autoconfiguration for
other systems. For example, /etc/bootptab.

• Cached state: Cached results from autoconfiguration
protocols.



• Manual config state: Configuration state that reflects
the setup of the operating environment or hardware, and
needs to be set manually.

• OS file state: files (programs or data) that are part of
the operating system, as well as their organizational
meta-data.

• Application file state: files (programs or data) that are
part of installed applications, as well as their
organizational meta-data.

• User file state: user files and their organizational
meta-data. For example, a secretary’s word processor
files, or web pages.

• Application context: persistent saved application state
that is not user data. For instance, many environments
try to automatically recreate on startup where you were
when you left the last time.

• Systemcontext: persistent OS state that is not in any of
the above categories. For example, file system
meta-data.

• Cryptographic keys.

Policy state is a source of futz: the system acts on its pol-
icy settings, and if it acts incorrectly, somebody needs to
tinker with the settings until it behaves properly. Unfortu-
nately, policy state cannot be avoided in a general-purpose
computer system: policy decisions need to be made by
humans and the computer needs to know what they were. One
can reduce futz in this area by cutting back the amount of
state, and building special-purpose systems, but that inher-
ently reduces the amount of functionality as well. Reducing
futz in this area without cutting back functionality is feasible
as we outline in the next section.

Autoconfig data is another source of futz. This category
reflects futz that has been “centralized away” from other sys-
tems. It is not necessarily the case that all autoconfig mecha-
nisms require a server to serve data, but many of the existing
ones do. It is not unreasonable to suppose that development of
more sophisticated autoconfiguration can reduce or eliminate
most of the state and thus the futz in this category.

Cached state is not normally a source of futz. Cached
results can be purged or updated as necessary without any
manual intervention. Similarly, derived state is a solved prob-
lem: if it goes out of date, it needs only to be regenerated. The
Unix make utility is already routinely used for this.

Manual config state is a tremendous source of futz in
most systems today. Worse, it is the most difficult kind of futz
possible: unlike policy state, where various alternatives work
but may not be desired, most of the questions answered by
manual config state have only one or two right answers and
plenty of wrong answers, and wrong answers generally render
the system or components of it completely inoperative. Ulti-
mately, this is the category of futz that is most seriously in
need of reduction. Fortunately, it is possible to accomplish
this: to the extent that there are right answers, in almost all
cases, with sufficient engineering of components, those right
answers can be probed or determined from context. For

instance, the only reason we need video card and monitor
information in /etc/XF86Config is that on PC-based systems it
is not possible in many cases to safely or reliably interrogate
the hardware to find out what it is. In a hypothetical world
where you could query this hardware, which is easy to imag-
ine, this major source of futz could be abolished.

OS file state and application file state are an area in which
many current systems fall down: it is quite easy, in general, to
install new application software that breaks the system, or to
update the system and thereby break applications. It is also
possible to delete or rename important files inadvertently (or
lose in a power failure) thereby breaking the system. At
present, recovering from these problems is generally quite dif-
ficult. In this area, for most people, futzing at all tends to
equate to reinstallation.

Reducing this category of futz requires taking more care
in analyzing the dependencies among software components,
and improving the mechanisms with which software compo-
nents are bound to one another at runtime. We need several
things: automated analysis of runtime dependencies (a hard
problem), better systems for preventing accidental version
skew, and mechanisms for cross-checking that can be per-
formed at runtime to allow failures to occur gracefully. Rein-
stallation as a failure recovery mechanism is unacceptable.

User file state is inevitably a source of futz as things
become disorganized and users mislay their data. We see no
immediate prospects of cutting back on the futzing this
requires, although developing a good model for how applica-
tions should choose default save directories and the like
would be a good start. Content indexing techniques may be of
help as well.

Application context is normally automatically main-
tained, and only becomes a source of futz when it becomes
corrupted or saves an undesired application state. This prob-
lem is easily solved: check it for consistency when loaded, be
able to withstand it being deleted, and store it in a known
location so users can delete it if they so desire. In many cases,
simply not keeping such context is an adequate solution.

System context is essentially the same, except that it is
sometimes not possible (or meaningful) to erase it and start
over. It is much more important to check it for consistency
and repair any problems. With some engineering, failures that
require expert attention to repair can be made quite rare, as
they generally are with most Unix implementations of fsck.

Cryptographic keys are listed separately because they
have their own unique requirements for management, and
because they are mandatory for the use of secure autoconfigu-
ration protocols. In our experience, these are not large sources
of futz. Furthermore, a lot of attention has already been paid
to key management in the security literature.

All the above assumes that a user is changing state in
order to make some kind of desired configuration change,
either as ongoing maintenance or at system installation time.
There are two other cases in which one needs to interact in
intimate detail with the state of a system: to diagnose and



repaira systemfailureandto monitor thesystemfor signsof
upcoming failure.

Properlyspeaking,aswe have definedfutzing, diagnosis
is not futzing; rather than experimentallyadjustingstateto
achieve a result,diagnosisproperly involvesanalyzingexist-
ing state.Sometimes,however, one needsto experimentto
interpret the existing state. And additionally, a common
methodfor recoveringfrom asystemfailureis to futz until the
obvious signsof the failure have disappearedandthe system
appearsto beworking again. (Rebootingis a drasticexample
of this technique,andit works becausemuchsystemstateis
not persistent across reboot.)

Thereasonthis methodworks is thatmany systemprob-
lems involve the failure of supposedlyautomaticstateman-
agementmechanisms;tweaking the state tickles the state
managementmechanism,and with some luck it will start
functioning again. The reasonit is common is that actual
diagnosisby inspectionusually amountsto debugging and
requires an extremely high level of expertise.

If thesystemcandiagnoseproblemsitself, likeourcopier
can, this futzing becomesunnecessary. Even if it can only
diagnosea small numberof the most commonproblems,a
gooddealof mandatoryfutzing canbeeliminated.Self-diag-
nosisin softwaresystemsis an importantresearcharea.We
believe a good deal of progress is possible.

Monitoring for signsof upcomingfailure,includingmon-
itoring for securityproblems,doesnot, itself, involve futzing.
However, failure to perform monitoring can lead to huge
amountsof futzing later on - recovering from a server dying
can easily take as much futzing as installing a new one,
whetherthe deathtook placebecauseof hardware failure or
becauseof hackers.Therefore,automaticmonitoring is also
crucial to building true no-futz systems.This is another
important research area.

Ultimately, all of thesethings - monitoring, diagnosis,
andconfiguration- involve interactionwith the systemstate.
We believe thatresearchandengineeringin theareasoutlined
above cantamea goodproportionof the typical systemstate
space.However, policy state,cryptographickeys, andproba-
bly someleftover bits of statein theothercategories,arenot
going away. More is required;we needto be ableto manage
this state.

4 Futz and State Management
Thelessstateasystemhas,theeasierit is to organizeand

present to users in a coherent manner.
As outlined in the previous section,one can designout

somestateandautomatethehandlingof a lot more.This will
takecareof agooddealof futz. However, agreatdealof state
remains,and it requiresediting, and undoubtedly, futzing.
One cannoteliminate the editing. But one may be able to
eliminate the futzing.

Theleftover stateconsistsmostlyof policy state,manual
configstate,andautoconfigstate.This statecanbethoughtof
asa list of configurationquestionsandtheiranswers.Theulti-

mategoal is to allow a userto type in answersto theseques-
tions, or changethe answersto suit changedcircumstances,
without needing much training or specialized knowledge.

It shouldnow beclearthatquestionformulationis crucial
— not just theirwording,althoughthatis significant,but what
questionsare asked, how interconnectedthey are with each
other, how they’re grouped, etc.

What this meansis that, once all the easierissuesare
addressed,theorganizationof thestatespaceof thesystemis
themostsignificantfactordetermininghow muchfutzing the
system will demand.

It is crucialto analyzethis statespacein detailanddeter-
mine how to bestdecomposeit into a set of variables(and
thusquestions).In thebestsuchdecomposition,thevariables
will beassimpleandasorthogonalto eachotheraspossible.
It will beclearwhatansweringeachquestionentailsandwho,
in any of several typical environments,ought to decidethe
answer. Thenthequestionsneedto bewritten in sucha man-
ner that the peoplewho typically fill theserolescan,in fact,
answerthequestionswithout needinganexcessive amountof
training,andthesoftwareneedsto bewrittensothatquestions
will not be posed to the wrong people.

For example,in almostall cases,thepersonsitting at the
computershould be the one to choosethe desktopback-
ground.However, it is notnecessarilythecasethatthisperson
shouldbeasked“What is theIP addressof your webproxy?”
— this questionmay needto be posed,but if so it shouldbe
posedin a context whereit is clearthattheansweris thelocal
network administrator’s responsibility.

Webelievethis is thekey. It is notaneasyproblem;in the
absenceof any useful decompositiontheoremsfor state
spacesor statemachines,it mustbesolvedby manualinspec-
tion andad-hocheuristicanalysis.Worse,onehasto address
the completestatespaceof the entiresystemat once;if one
leavessomestateout of theanalysisandtacksit on later, it is
almost guaranteed to be a poor fit.

At first glancethis might seemto meanthat all applica-
tion softwaremustbedesignedinto thesystem.This is not the
case.However, whatis necessaryis for thesortsof stateappli-
cationsmayneedto useto beanticipated;thatis, oneneedsan
abstractmodel of what an applicationis and does.Such a
modelshouldbereasonablygeneralwithoutgoingoverboard:
applicationsthat fail to fit will still work, but may require
increasedamountsof futzing.Allowing for theseapplications
in thegeneraldesignmight resultin evenmorefutzing in the
commoncase.Therewill beatrade-off, andthattrade-off will
need to be explored.

5 Research Directions in No-Futz Computing
If the systemscommunity is to ever build no-futz sys-

tems,we mustembarkon a researchprogramthat addresses
the key issuesin no-futz computing. This section defines
those areas.

The first stepon the pathto no-futz computingis deter-
mining how to measurea system’s futz. We wholeheartedly



endorsethe term “FutzMark” coinedat the last HotOS and
challenge researchers to define it.

We believe thecentralissuein no-futzcomputingis state
management.We must reducesystemstateto a manageable
level, isolate eachstatevariable so that it is orthogonalto
otherstatevariables,andmake it impossibleto specifyinvalid
states.Wherepossible,we shouldreplacestatewith dynamic
discovery. Where possible,we should devise ways to turn
staticstateinto dynamicallydiscoverablestate(e.g.,autoconf
data,manualconfigstate).Achieving orthogonalityis perhaps
themostdifficult aspectof this task,but alsothemostessen-
tial. Without orthogonality, theproblemsof managementand
testing grow factorially. If we can achieve orthogonality, it
becomes a manageable linear problem.

In lieu of total orthogonality, we needbettermechanisms
to identify inconsistentstateandremedyit. We needto iden-
tify (or avoid) versionskew amongsoftwarecomponentsand
do more extensive runtime cross checking and analysis.

Copingwith failure requiresa greatdealof futzing; thus
we needto achieve cleanerfailure models.In the fault-toler-
ance community, “f ailstop” behavior (ceasingoperationas
soonasa fault occurs)is considereddesirableso that failing
systemsdo not corruptstateor data.In thecontext of no-futz,
failstop behavior could permit the preciseidentification of
failurecauses.If systemscandiagnosetheir own failures,it’s
conceivablethat they canthendirect usersto performrecov-
ery, asour copierdoes.In general,we needto make progress
in the areas of self-diagnosis and automatic monitoring.

Finally, thereareareasoutsideof systemsresearchwhere
progressis necessary. In particular, improvementsin user
interfacesand datapresentationwill reducefutz. Collabora-
tive interfaces,which actasintermediariesbetweenusersand
their machinesthat enablethemto work together, hold great
potential if appliedto no-futz computing.Securitymanage-
ment is sometimesconsideredoutsidethe realmof systems,
but insecurity is a major contributor to current futz and
improvement is needed.Improvementsin content indexing
will reduce the futz associated with user data management.

6 Related Work
Therehave beena numberof efforts to reducefutz in

computersystems.In a distributedsetting,Sun’s Sunray[4],
aswell asMicrosoft’s Zero Administrationinitiative andthe
associatedIntelliMirror [7] product,areprojectsto centralize
futzing.

TheSunraysystem’s desktopmachinesaresimple,state-
lessI/O deviceswith no administrationneeds.Sunrayrelies
on modern off-the-shelf interconnectiontechnologyand a
simpledisplayupdateprotocol(SLIM) to supportgoodinter-
active performance.In additionto eliminatingclient adminis-
tration,theSunraymodeloffersclientmobility. Clientsession
stateis entirely storedon the server and can be associated
with a smartcard that can be insertedin any Sunrayclient
connectedto the sameserver. Sunraysare anonymouscom-

modities.However, this doesnot eliminatetheadministration
cost.Sunrayserversarecomplicatedsystemsandnot easyto
administer:once,in our department,oneof the junior system
administratorsbrokeall theSunraysfor threedaysjustby try-
ing to install a new utility on the Sunray server.

Microsoft’s Zero Administrationinitiative is an effort to
reducetheadministrationneedsof Windows installationsand
thusthecostof ownership.Centralto ZeroAdministrationis
the IntelliMirror product, which helps an administrator(a)
manageuserdata,(b) install andmaintainsoftwarethrough-
out an organization,and (c) manageusersettings.Manage-
ment of user data requires knowledge of properties and
locations of users’ files so that the data is available both
online and offline from any computer. Manual installation,
configuration, upgrades,repair and removal of software
across an organization requires large managementeffort.
IntelliMirror automatesthis: it offersremoteOSinstallation,a
serviceallowing a computerconnectedon a LAN to request
installationof a freshcopy of theWindows OS,appropriately
configured with applications for that user and that computer.

Sun’sJini [5] for Java is anexampleof asystemthattries
to eliminate administrationin a decentralized(“federated”)
manner. Jini providesa distributedinfrastructurefor services
to register with the network and clients to find and use them.

7 Conclusion
Leadingsystemsresearchersidentified no-futz comput-

ing asanimportantresearchareatwo yearsago[3], but to the
bestof our knowledge,therehasbeenno significantresearch
activity in thisarea.Webelieveonereasonis thattheproblem
is enormouslycomplex and may not be solvable within the
constraintsof legacy systems.Regardless,until we identify
theimportantresearchquestions,no progresscanbemade.In
thispaper, wehave identifiedsome,if notall, of theimportant
areasin which researchmustbe conductedif we areever to
“solve” the problem of high-futz systems.

8 References
[1] Forrest,S.,Somayaji,A., andAckley, D., “Building diverse

computersystems,” In Sixth Workshop on Hot Topics in
Operating Systems, 1997.

[2] Dan Plastina,“Microsoft Zero AdministrationWindows”,
invited talk givenat the11thUSENIX SystemsAdministra-
tion Conference(LISA ‘97), October 26-31, 1997, San
Diego, California, USA

[3] Satyanarayanan,M., “Digest of Proceedings”,Seventh
IEEE Workshop on Hot Topics in Operating Systems,
March 29-30 1999, Rio Rico, AZ, USA.

[4] Schmidt,B. etal., “The interactiveperformanceof SLIM: a
stateless,thin-client architecture”,in Proceedingsof the
17th SOSP, December 1999, Kiawah Island, SC, USA.

[5] Waldo,J.,“The Jini Architecturefor Network-centricCom-
puting” Communications of the ACM, pp 76-82, July 1999.

[6] Conversationwith XeroxTechnicalRepresentative.January
18, 2001.

[7] http://www.microsoft.com/WINDOWS2000/library/howit-
works/management/intellimirror.asp as of April 23, 2001.


