
Computing Frequency Dominators and Related
Problems

Loukas Georgiadis?

Hewlett-Packard Laboratories, Palo Alto, CA, USA

Abstract. We consider the problem of finding frequency dominators in
a directed graph with a single source vertex and a single terminal vertex.
A vertex x is a frequency dominator of a vertex y if and only if in each
source to terminal path, the number of occurrences of x is at least equal to
the number of occurrences of y. This problem was introduced in a paper
by Lee et al. [11] in the context of dynamic program optimization, where
an efficient algorithm to compute the frequency dominance relation in
reducible graphs was given. In this paper we show that frequency domina-
tors can be efficiently computed in general directed graphs. Specifically,
we present an algorithm that computes a sparse (O(n)-space), implicit
representation of the frequency dominance relation in O(m + n) time,
where n is the number of vertices and m is the number of arcs of the
input graph. Given this representation we can report all the frequency
dominators of a vertex in time proportional to the output size, and an-
swer queries of whether a vertex x is a frequency dominator of a vertex
y in constant time. Therefore, we get the same asymptotic complexity as
for the regular dominators problem. We also show that, given our rep-
resentation of frequency dominance, we can partition the vertex set into
regions in O(n) time, such that all vertices in the same region have equal
number of appearances in any source to terminal path. The computation
of regions has applications in program optimization and parallelization.

1 Introduction

Let G = (V, A, s, t) be a flowgraph with a distinguished source vertex s and
terminal vertex t, which is a directed graph such that every vertex is reachable
from s and reaches t. The concept of frequency dominators was introduced in [11]
with an application in dynamic program optimization. Formally, vertex x is a
frequency dominator of vertex y if and only if in each s-t path, the occurrences
of x are at least as many as the occurrences of y. We will denote by fdom(y) the
set of frequency dominators of y. Frequency dominators are related to the well-
studied problem of finding dominators, which has applications in several areas [9].
A vertex x dominates a vertex y if and only if every s-y path contains x. Similarly,
a vertex x postdominates a vertex y if and only if every y-t path contains x.
This is equivalent to stating that y dominates x in the reverse flowgraph Gr =
? Current address: Informatics and Telecommunications Engineering Department,

University of Western Macedonia, Kozani, Greece. E-mail: lgeorg@uowm.gr

s

x1

x2

x3

x4

t

z3

z4

z2

z1

y4

y3

y2

y1

vertex y fdom(y)

s {s, x1, t}
x1 {x1}
x2 {x2}
x3 {x3}
x4 {x4}
y1 {x1, x2, x3, x4, y1, y2, y3, y4}
y2 {x2, x3, x4, y2, y3, y4}
y3 {x3, x4, y3, y4}
y4 {x4, y4}
z1 {s, x1, z1, t}
z2 {s, x1, x2, z2, t}
z3 {s, x1, x2, x3, z3, t}
z4 {s, x1, x2, x3, x4, z4, t}
t {s, x1, t}

Fig. 1. The frequency dominators of a family of reducible graphs with n = 3k + 2
vertices and m = 5k + 2 arcs. (In this figure k = 4.) For each zi, fdom(zi) contains a
subset of the xj ’s. However, no pair of xj ’s is related under fdom. Hence, any transitive
reduction of the fdom relation without Steiner nodes requires Θ(k2) arcs.

(V, Ar, sr, tr), where Ar = {(x, y) | (y, x) ∈ A}, sr = t, and tr = s. We will denote
by dom(y) the set of dominators of y, and by domr(y) the set of postdominators
of y.

Both the dominance and the frequency dominance relations are reflexive and
transitive, but only the former is antisymmetric. The transitive reduction of dom
is the dominator tree, which we denote by D. This tree is rooted at s and satisfies
the following property: For any two vertices x and y, x dominates y if and only if
x is an ancestor of y in D [1]. For any vertex v 6= s, the immediate dominator of
v, denoted by d(v), is the parent of v in D. It is the unique vertex that dominates
v and is dominated by all the vertices in dom(v) \ {v}. On the other hand, a
transitive reduction of fdom can have complex structure; refer to Figure 1 for an
example.

Lee et al. [11] presented an efficient algorithm for computing frequency dom-
inators in reducible graphs. A flowgraph G is reducible when the repeated ap-
plication of the following operations

(i) delete a loop (v, v);
(ii) if (v, w) is the only arc entering w 6= s delete w and replace each arc (w, x)

with (v, x),

yields a single node. Equivalently, G is reducible if every loop has a single entry
vertex from s. Reducible graphs are useful in program optimization as they
represent the control flow in structured programs, i.e., in programs that use
a restricted set of constructs, such as if-then and while-do. However, the
use of goto constructs, or the transformations performed by some optimizing
compilers can often produce irreducible graphs. Although there are techniques

that can transform an irreducible graph to an equivalent reducible graph, it has
been shown that there exist irreducible graphs such that any equivalent reducible
graph must be exponentially larger [5]. The algorithm of Lee et al. can compute
fdom(y), for any vertex y, in O(|fdom(y)|) time, after a preprocessing phase.
This preprocessing phase consists of computing the dominators, postdominators,
and the loop structure of G. Each of these computations can be performed in
O(m + n) time [4, 8], or in O(mα(m,n))1 time with simpler and more practical
algorithms [12, 14].

Another concept related to frequency dominators, that has also been used in
optimizing and parallelizing compilers, is that of regions [3]. Two vertices x and
y are in the same region if and only if they appear equal number of times in any
s-t path. Hence, x and y are in the same region if and only if x ∈ fdom(y) and
y ∈ fdom(x). Regions define an equivalence relation on the flowgraph vertices,
therefore we say that x and y are equivalent if and only if they belong to the
same region. Johnson et al. [10] showed that the problem of finding regions can
be solved by computing the cycle equivalence relation: Two vertices are cycle
equivalent if and only if they belong to the same set of cycles. Cycle equivalence
for edges can be defined similarly. In [10], Johnson et al. show that vertex cycle
equivalence can be easily reduced to edge cycle equivalence in an undirected
graph. Then, they develop an O(m + n)-time algorithm, based on depth-first
search, for computing edge cycle equivalence.

1.1 Overview and Results

In Section 2 we present an efficient algorithm for computing frequency domina-
tors in general flowgraphs. This algorithm is a generalization of the algorithm of
Lee et al. for reducible graphs, and achieves the same, asymptotically optimal,
time and space bounds. Then, in Section 3, we show that the equivalence relation
can be derived from our representation of the frequency dominance relation in
O(n) time. Our main results are summarized by the next theorem.

Theorem 1. Let G = (V,A, s, t) be any flowgraph with |V | = n vertices and
|A| = m arcs. We can compute an O(n)-space representation of the frequency
dominance relation of G in O(m + n) time, such that:

– For any vertex y we can report all the frequency dominators of y in O(|fdom(y)|)
time,

– for any two vertices x and y, we can test in constant time whether x ∈
fdom(y), and

– we can compute the regions of G in O(n) time.

Some of the methods we use to obtain these results may be useful in other graph
problems related to program optimization.

Finally, in Section 4, we describe a general framework that can express the
problems we considered in Sections 2 and 3 as a type of reachability problems
1 α(m, n) is a functional inverse of Ackermann’s function and is very slow-growing

[15].

in graphs representing transitive binary relations, and for which an efficient
reporting algorithm is required. We believe that this formulation gives rise to
questions that deserve further investigation.

1.2 Preliminaries and notation

We assume that G is represented by adjacency lists. With this representation
it is easy to construct the adjacency list representation of the reverse flowgraph
Gr in linear-time. Given a depth-first search (DFS) tree T of G rooted at s, the
notation “v

∗→ u” means that v is an ancestor of u in T and “v
+→ u” means

that v is a proper ancestor of u in T . An arc a = (u, v) in G is a DFS-tree arc
if a ∈ T , a forward arc if u

+→ v and a 6∈ T , a back arc if v
+→ u, and a cross

arc otherwise (when u and v are unrelated in T). For any rooted tree T , we
let pT (v) denote the parent of v in T , and we let T (v) denote the subtree of T
rooted at v. Finally, for any function or set f defined on G, we denote by fr the
corresponding function or set operating on Gr.

2 Efficient computation of the fdom relation

First we state some useful properties of frequency dominators. As noted in [10,
11], it is convenient to assume that G contains the arc (t, s); adding this arc does
not affect the fdom relation and allows us to avoid several boundary cases. Hence-
forth we assume that (t, s) ∈ A, which implies that G is strongly connected. In
particular, note that there is a cycle containing all vertices in dom(y)∪domr(y),
for any vertex y. We also have the following characterization of the fdom relation.

Lemma 1 ([11]). For any vertices x and y, x ∈ fdom(y) if and only if x belongs
to all cycles containing y.

Obviously, reversing the orientation of all arcs in a directed graph does not
change the set of cycles that contain a vertex. Thus, from Lemma 1 we get:

Lemma 2. For any vertex y, fdom(y) = fdomr(y).

Our algorithm will be able to identify easily a subset of fdom(y) using certain
structures that are derived from G. The remaining vertices in fdom(y) will be
found by performing the symmetric computations on Gr.

Let T be a depth-first search tree of G rooted at s. We identify the vertices
by their preorder number with respect to the DFS: v < w means that v was
visited before w. For any vertex v 6= s, the head of v is defined as

h(v) = max{u : u 6= v and there is a path in G from v to u

containing only vertices in T (u)},

and we let h(s) = null. Informally, h(v) is the deepest ancestor u of v in T such
that G contains a v-u path visiting only vertices in T (u). Note that the h function
is well-defined since G is strongly connected. The heads define a tree H, called

the interval tree of G, where h(v) = pH(v). It follows that the vertices in each
subtree H(v) of H induce a strongly connected subgraph of G, which contains
only vertices in T (v). Tarjan [16] gave a practical algorithm for computing the
interval tree in O(mα(m,n)) time using nearest common ancestor computations.
A more complicated linear-time construction was given by Buchsbaum et al. [4].

Now we also define

ĥ(v) =

{
v, if there is a back arc entering v,

h(v), otherwise.

We say that a vertex v is special if ĥ(v) = v. The following lemma provides
necessary conditions for frequency dominance.

Lemma 3. If x ∈ fdom(y) then the following statements hold:

(a) x ∈ dom(y) ∪ domr(y),
(b) x ∈ H(ĥ(y)), and
(c) x ∈ Hr(ĥr(y)).

Proof. The proof follows directly from the definitions. For (a), consider a vertex
x that neither dominates nor postdominates y. Then, there exist two paths P
and Q, from s to y and from y to t respectively, that both avoid x. The cate-
nation of P and Q followed by (t, s) is a cycle that passes through y but not x,
hence x 6∈ fdom(y) by Lemma 1. In order to show (b), suppose x ∈ fdom(y) but
x 6∈ H(ĥ(y)). Since H(ĥ(y)) induces a strongly connected subgraph, there is a
cycle C passing through y that contains only vertices in H(ĥ(y)). Then, x 6∈ C
which contradicts Lemma 1. Finally, (c) is implied by (b) and Lemma 2. 2

Similarly to the algorithm given in [11], our algorithm is also based on
computing dominators and postdominators. Here, however, we make explicit
use of the reverse graph and of properties of depth-first search. In particular, we
will need the following fact.

Lemma 4 ([13]). Any path from x to y with x < y contains a common ancestor
of x and y.

Now we provide sufficient conditions for frequency dominance.

Lemma 5. If w is in H(ĥ(v)) and dominates v then w is a frequency dominator
of v.

Proof. Let w ∈ dom(v) and w ∈ H(ĥ(v)). Notice that w satisfies ĥ(v) ∗→ w
∗→ v.

Therefore, the lemma is trivially true when ĥ(v) = v. Now suppose ĥ(v) = h(v).
For contradiction, assume that w is not in fdom(v). Then, Lemma 1 implies that
there is a cycle C containing v but not w. Let z be the minimum vertex on C.
Note that by Lemma 4, z is an ancestor of v. Hence, v belongs to H(z) and by
the definition of h(v) we have that z

∗→ h(v). Also, w 6= z (because w 6∈ C),

thus z
+→ w. Now observe that the DFS-tree path from s to z followed by the

part of C from z to v is an s-v path avoiding w. This contradicts the fact that
w ∈ dom(v). 2

Now, from Lemma 5 and Lemma 2 we get:

Corollary 1. Let w be vertex such that

(a) w ∈ H(ĥ(v)) and w ∈ dom(v), or
(b) w ∈ Hr(ĥr(v)) and w ∈ domr(v).

Then w is a frequency dominator of v.

It is easy to show, using Lemma 3, that the above conditions suffice to compute
frequency dominators. (See Lemma 6 below.) Note that in general dom(v) ∩
domr(v) ⊇ {v}, so several vertices may satisfy both (a) and (b) of Corollary 1.
Also, we point out that a vertex w that satisfies w ∈ domr(v) and w ∈ H(ĥ(v))
may not be a frequency dominator of v. (Consider w = e and v = c in Figure 2
for an example.)

Preprocessing. In the preprocessing phase we compute the interval tree H, the
dominator tree D, and the ĥ function in G. We also compute the corresponding
structures in Gr. For the query algorithm we need to test in constant time if two
vertices are related in one of the trees that we have computed. To that end, we
assign to the vertices in each tree T ∈ {H, Hr, D, Dr} a preorder and a postorder
number2, denoted by preT and postT respectively. Then x is an ancestor of y in
T if and only if preT (x) ≤ preT (y) and postT (x) ≥ postT (y). Calculating these
numbers takes O(n) time.

Queries. To find fdom(y) we report y and all the proper ancestors x of y in D

such that x is a descendant of ĥ(y) in H. To that end, we visit the dominators
of y starting from d(y) and moving towards s. At each visited vertex x we test
whether x ∈ H(ĥ(y)), which can be done in constant time using the preH and
postH numberings. We show below that we can stop the reporting process as
soon as we find a dominator of y not in H(ĥ(y)). (See Lemma 6.) Similarly, we
report all the proper ancestors x of y in Dr such that x is a descendant of ĥr(y)
in Hr. Therefore, we can answer the reporting query in O(|fdom(y)|) time.

To test whether x ∈ fdom(y) in constant time, it suffices to test if condition
(a) or condition (b) of Corollary 1 holds. Again this is easily accomplished with
the use of the preorder and postorder numbers for D and Dr.

Figure 2 illustrates the computations performed by our algorithm. Next, we
show that the algorithm finds all the frequency dominators of a query vertex.

2 A preorder traversal of a tree visits a vertex before visiting its descendants; a pos-
torder traversal visits a vertex after visiting all its descendants. The corresponding
numberings are produced by assigning number i to the ith visited vertex.

G

d e t

f

g h
b

a

c

e

t

g

h

s

d

f

D

s

a b

c

d

e

t

f

g

h

H

ba

s

c

g

fa b c

e

c

a

s

t

b

d

f

g

h

t

e

a

b

c

d g

f

h

s

t

e d

s h

Gr HrDr

vertex y dom(y) ∩H(ĥ(y)) domr(y) ∩Hr(ĥr(y)) fdom(y) region of y

s {s} {s} {s} {s}
a {s, a} {a, b, c, d} {s, a, b, c, d} {a}
b {b} {b, c, d} {b, c, d} {b, c, d}
c {b, c} {c, d} {b, c, d} {b, c, d}
d {b, c, d} {d} {b, c, d} {b, c, d}
e {e} {e, t} {e, t} {e, t}
f {f} {f, g} {f, g} {f, g}
g {f, g} {g} {f, g} {f, g}
h {f, g, h} {f, g, h} {f, g, h} {h}
t {e, t} {t} {e, t} {e, t}

Fig. 2. Computation of the fdom relation using dominator trees and interval trees. The
DFS-tree arcs of G and Gr are solid and remaining arcs are dashed. Special vertices
are filled in the interval trees.

Lemma 6. The query algorithm is correct.

Proof. From Corollary 1 we have that all the vertices that are reported during
a query for fdom(y) are indeed frequency dominators of y. Now we argue that
any frequency dominator x of y that is not found using condition (a) of Corol-
lary 1 is found using condition (b). In this case, Lemma 3(a) implies that x is a
postdominator of y. This fact combined with Lemma 3(c) means that condition
(b) of Corollary 1 applies.

We also need to argue that we can stop the search procedure for the vertices
in fdom(y) as soon as we find the deepest dominator of y that is not in H(ĥ(y)).
To that end, note that for any vertex z such that ĥ(y) ∗→ z

∗→ y, z ∈ H(ĥ(y)).
Therefore, if x ∈ dom(y) and x 6∈ H(ĥ(y)) then x

+→ ĥ(y), which proves our
claim. 2

Strict frequency dominance. Let us call vertex x a strict frequency dominator of
vertex y if and only if in each s-t path containing y, the number of appearances
of x is strictly greater than the number of appearances of y. E.g., in Figure
2, f and g are strict frequency dominators of h. We can show that such an x
must satisfy both conditions (a) and (b) of Corollary 1. Hence, with our fdom
structure we can test if x is a strict frequency dominator of y in constant time,
and report all the strict frequency dominators of y in O(|fdom(y)|) time. Note,
however, that this bound is not proportional to the size of the output.

Inverse frequency dominance. Let fdom−1(x) denote the set of vertices y such
that x ∈ fdom(y). The problem of reporting fdom−1(x) can be reduced to the
following task. We are given an arbitrary rooted tree T with n vertices, where
each vertex x is assigned an integer label `(x) in [1, n], and we wish to support
the following type of queries: For a vertex x and a label j, report all vertices
y ∈ T (x) with `(y) ≥ j. Let k be the number of such vertices. We can achieve an
O(k log n) query time (using O(n) space), thus getting an O(|fdom−1(x)| log n)
bound for reporting fdom−1(x).

3 Computing regions

Recall that two vertices x and y are equivalent if and only if they appear equal
number of times in any s-t path. Hence, x and y are equivalent if and only if
x ∈ fdom(y) and y ∈ fdom(x). As in Section 2, we assume that G contains the
arc (t, s). Then, by Lemma 1 it follows that x and y are equivalent if and only
if they appear in the same set of cycles.

The structure of Section 2 clearly supports constant time queries that ask
if two vertices are equivalent. Therefore, it is also straightforward to find the
equivalence class of a given vertex y in O(|fdom(y)|) time. Still, with this method
we can only guarantee an O(n2) bound for computing the complete equivalence
relation for all vertices (i.e., the regions of G). In this section we show how to

achieve this computation in overall O(n) time, with a somewhat more involved
manipulation of the structure of Section 2.

We start with a technical lemma that relates the structure of the dominator
tree to that of the interval tree.

Lemma 7. Let v be any vertex other than s. Then, all vertices w in H(v) such
that d(w) +→ v have the same immediate dominator x = d(v).

Proof. Let x be the minimum vertex that is an immediate dominator of any
vertex in H(v). Since v 6= s, d(v) is a proper ancestor of v and so x

+→ v. Let w
be a vertex such that d(w) = x. Then, w is not dominated by any vertex z that
satisfies x

+→ z
+→ w, thus for each such z there exists a path P from x to w that

avoids z. Also, since the vertices in H(v) induce a strongly connected subgraph,
then for any y ∈ H(v) there is a path Q from w to y that contains only vertices
in H(v). Therefore, the catenation of P and Q is a path from x to y avoiding z.
This implies that either d(y) = x or d(y) ∈ H(v). Setting y = v gives d(v) = x. 2

From the above lemma we immediately get:

Corollary 2. The subgraph of D induced by the vertices in H(v) and d(v) is a
tree rooted at d(v).

We begin with an initial partition of the vertices, which after a refinement
process (described in Section 3.1) will produce the actual equivalence classes.
Our first step is to label each vertex w in D with ĥ(w). Then, each vertex has
a unique label and two vertices are equivalent only if they have the same label.
Let L(v) denote the set of vertices labeled with v. Note that L(v) = ∅ if v is
not special; otherwise L(v) consists of v and the children of v in H that are not
special. Our goal is to compute the equivalent vertices for each L(v) separately,
using information from the dominator tree D. To that end, let w be any vertex
in L(v). We define d̂(w) to be the nearest proper ancestor z of w in D with
label v. If such a z does not exist for w, then we set d̂(w) = d(v). A simple and
efficient way to compute the d̂ function is by using path compression: Starting
from the parent of w in D, we follow parent pointers until we reach a vertex
z which is either the first vertex in L(v) or d(v). Then, we set d̂(w) = z and
make z the parent of all the visited vertices. In order to guarantee that this
process returns the correct d̂(w) for all w, we need to process the sets L(v) in
an appropriate order. We argue that it suffices to process the special vertices by
decreasing depth in H.

Lemma 8. Suppose that for each special vertex v, we process L(v) after we have
processed L(u) for all special vertices u ∈ H(v). Then, the path compression
algorithm computes the d̂ function correctly.

Proof. Let v be the currently processed special vertex. We denote by D̂ the dom-
inator tree after the changes due to the path compressions performed so far, just
before processing v. Let u be a special vertex in H(v). Then Corollary 2 implies

that when the path compression algorithm was applied to L(u), only vertices in
H(u)∪{d(u)} were visited. Moreover, Lemma 7 and the fact that H(u) ⊂ H(v)
imply d(v) ∗→ d(u). Also note that the parent of d(u) did not change. Now, since
v is an ancestor of u in H, there is no vertex in H(u) with label v. Hence, for
any y ∈ L(v) and x ∈ L(v) ∪ {d(v)}, x is an ancestor of y in D̂ if and only if it
is an ancestor of y in D. The claim follows. 2

The worst-case running time of this algorithm is O(n log n) [17], but in practice
it is expected to be linear [9]. We can get an actual O(n) bound for computing
the d̂ function via a simple reduction to the marked ancestors problem [2]. In the
marked ancestors problem we are given a rooted tree T , the vertices of which
can be either marked or unmarked. We wish to support the following operations:
mark or unmark a given vertex, and find the nearest marked ancestor of a query
vertex. In our case T = D and initially all vertices are marked. Again we process
the special vertices by decreasing depth in H. When we process a special vertex
v we perform a nearest marked ancestor query for all w ∈ L(v); we set d̂(w)
to be the answer to such a query for w. Then we unmark all vertices in L(v).
It follows from similar arguments as in the proof of Lemma 8 that this process
computes the correct d̂ function. Also, since we never mark any vertices, this
process corresponds to a special case of the disjoint set union (DSU) problem,
for which the result of Gabow and Tarjan [7] gives constant amortized time
complexity per operation. Since we perform two DSU operations per vertex, the
O(n) time bound follows.

Now it remains to show how to compute the equivalence classes for each L(v)
using the d̂ function.

3.1 Equivalence classes in L(v)

Let Dv be the graph with vertex set L(v)∪{d(v)} and edge set {(d̂(w), w) | w ∈
L(v)}. From Corollary 2 we have that Dv is a tree rooted at d(v). Let D′

v be
the forest that results after removing d(v) and its adjacent edges from Dv; the
trees in this forest are rooted at the children of d(v) in Dv. Let w be any vertex
in D′

v. Note that by condition (a) of Corollary 1 we have that all ancestors of
w in D′

v are in fdom(w). The next lemma allows us to compute the equivalence
classes in each tree of D′

v separately.

Lemma 9. Let x be a vertex in D, and let x1 and x2 be two distinct children
of x in D. Then no pair of vertices y1 ∈ D(x1) and y2 ∈ D(x2) are equivalent.
Also x can be equivalent with at most one of y1 and y2.

Proof. Let y and z be two equivalent vertices. Then y ∈ fdom(z) and z ∈
fdom(y). Since the dom relation is antisymmetric, Lemma 3(a) implies (with
no loss of generality) that y ∈ dom(z) and z ∈ domr(y). Hence, the vertices y1

and y2, defined in the statement of the lemma, cannot be equivalent. So, they
also cannot be both equivalent with x. 2

Now we can consider a single tree T in D′
v. Lemma 9 also implies that only

vertices with ancestor-descendant relation in T can be equivalent. Our plan is
to process T bottom-up, and at each vertex w of T test if w ∈ fdom(pT (w)). If
the outcome of the test is true then we add pT (w) to the same equivalence class
as w, since we already know that pT (w) ∈ fdom(w). If, on the other hand, the
outcome of the test is false, then the next lemma infers that no other vertex can
be in the same equivalence class with w.

Lemma 10. Let T be a tree of D′
v, and let w be a non-root vertex in T . If

w is not equivalent with pT (w) then w is not equivalent with any of its proper
ancestors in T .

Proof. For contradiction, assume w is equivalent with a proper ancestor z of
u = pT (w) in T . Notice that v

∗→ z
+→ u. Then, we either have a cycle C−u

through w and z but not u, or a cycle Cu through u but not w and z. The
first case contradicts the fact that u ∈ fdom(w). In the second case, let x be the
minimum vertex on Cu. From Lemma 4 and the fact that u ∈ L(v), we have
x

∗→ v
∗→ z. But then, the DFS-tree path from x to u, followed by the part of Cu

from u to x, forms a cycle through z that does not contain w. This contradicts
the fact that w and z are equivalent. 2

4 A General Framework

We can show that the problems we have considered in this paper can be formu-
lated in more general terms as follows. We are given a collection G of k directed
graphs Gi = (Vi, Ai), 1 ≤ i ≤ k, where each graph Gi represents a transitive
binary relation Ri over a set of elements U ⊆ Vi. That is, for any a, b ∈ U , we
have aRib if and only if b is reachable from a in Gi. Let R be the relation defined
by: aRb if and only if aRib for all i ∈ {1, . . . , k}. I.e., b is reachable from a in all
graphs in G. (Note that R is also transitive.) For instance, consider the relation
that is defined by the pairs (a, b) of vertices of a directed graph, such that a is
both a dominator and a postdominator of b. In this case we have G = {D, Dr}
(where the edges of the dominator trees are directed from parent to child).

Our goal is to find an efficient representation of R with a data structure
that, for any given b ∈ U , can report fast all elements a satisfying aRb. Another
related problem is to bound the combinatorial complexity of R, i.e., the size of
a directed graph G = (V,A), with U ⊆ V , such that for any a, b ∈ U , aRb if and
only if b is reachable from a in G. Some interesting results can be obtained for
several special cases. For instance, in the simple case where k = 2 and G1 and
G2 are (directed) paths, it can be shown that the size of G is O(n log n), and
moreover that there exist paths that force any G to have Ω(n log n) size [18].
On the other hand, we can represent R with a Cartesian tree in O(n) space,
and answer reporting queries in time proportional to the number of reported
elements [6].

Acknowledgements. We would like to thank Bob Tarjan, Renato Werneck, and
Li Zhang for some useful discussions.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, 1986.

2. S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proc. 39th
IEEE Symp. on Foundations of Computer Science, page 534.

3. T. Ball. What’s in a region?: or computing control dependence regions in near-
linear time for reducible control flow. ACM Lett. Program. Lang. Syst., 2(1-4):1–16,
1993.

4. A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and J. R.
Westbrook. Linear-time algorithms for dominators and other path-evaluation prob-
lems. SIAM Journal on Computing. To appear. Preliminary version available online
at http://arxiv.org/abs/cs.DS/0207061.

5. L. Carter, J. Ferrante, and C. Thomborson. Folklore confirmed: reducible flow
graphs are exponentially larger. In Proc. 30th ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages, pages 106–114, 2003.

6. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for
geometry problems. In Proc. 16th ACM Symp. on Theory of Computing, pages
135–143, 1984.

7. H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint
set union. Journal of Computer and System Sciences, 30(2):209–21, 1985.

8. L. Georgiadis and R. E. Tarjan. Finding dominators revisited. In Proc. 15th
ACM-SIAM Symp. on Discrete Algorithms, pages 862–871, 2004.

9. L. Georgiadis, R. E. Tarjan, and R. F. Werneck. Finding dominators in practice.
Journal of Graph Algorithms and Applications (JGAA), 10(1):69–94, 2006.

10. R. Johnson, D. Pearson, and K. Pingali. The program structure tree: computing
control regions in linear time. SIGPLAN Not., 29(6):171–185, 1994.

11. B. Lee, K. Resnick, M. D. Bond, and K. S. McKinley. Correcting the dynamic call
graph using control-flow constraints. In Proc. Compiler Construction, 16th Inter-
national Conference, CC 2007, pages 80–95, 2007. Full paper appears as technical
report TR-06-55, The University of Texas at Austin, Department of Computer
Sciences, 2006.

12. T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flow-
graph. ACM Transactions on Programming Languages and Systems, 1(1):121–41,
1979.

13. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–59, 1972.

14. R. E. Tarjan. Testing flow graph reducibility. In Proceedings of the Fifth Annual
ACM Symposium on Theory of Computing, pages 96–107, 1973.

15. R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM, 22(2):215–225, 1975.

16. R. E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica,
6(2):171–85, 1976.

17. R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms.
Journal of the ACM, 31(2):245–81, 1984.

18. L. Zhang. Personal communication, 2008.

