
Finding Dominators Revisited
Extended Abstract

Loukas Georgiadis1 Robert E. Tarjan1,2

Abstract

The problem of finding dominators in a flowgraph arises in

many kinds of global code optimization and other settings.

In 1979 Lengauer and Tarjan gave an almost-linear-time

algorithm to find dominators. In 1985 Harel claimed a linear-

time algorithm, but this algorithm was incomplete; Alstrup

et al. [1999] gave a complete and “simpler” linear-time

algorithm on a random-access machine. In 1998, Buchsbaum

et al. claimed a “new, simpler” linear-time algorithm with

implementations both on a random access machine and on a

pointer machine. In this paper, we begin by noting that the

key lemma of Buchsbaum et al. does not in fact apply to

their algorithm, and their algorithm does not run in linear

time. Then we provide a complete, correct, simpler linear-

time dominators algorithm. One key result is a linear-time

reduction of the dominators problem to a nearest common

ancestors problem, implementable on either a random-access

machine or a pointer machine.

1 Introduction

We consider a flowgraph G = (V,A, r), which is a
directed graph with |V | = n vertices and |A| = m arcs
such that every vertex is reachable from a distinguished
start vertex r ∈ V . A vertex w dominates a vertex
v if every path from r to v includes w. Our problem
is to find for each vertex v in V − {r} the set dom(v)
which consists of the vertices that dominate v. The
immediate dominator of v, denoted by idom(v), is the
unique vertex w that dominates v and is dominated
by all the vertices in dom(v) − {v}. The immediate
dominators tree is a directed tree I rooted at r which
is formed by the edges {(idom(v), v) | v ∈ V − {r}}. A
vertex w dominates v if and only if w is an ancestor of
v in I [2]. Thus it suffices to compute idom(v) for all
vertices.

The dominators problem appears in program op-
timization and code generation [2, 4]. Lengauer and

1Department of Computer Science, Princeton University,

Princeton NJ, 08540. E-mail: {lgeorgia,ret}@cs.princeton.edu.

Research at Princeton University partially supported by the Na-

tional Science Foundation, under the Aladin Project, Grant No

CCR-0122581, Carnegie Mellon.
2Hewlett-Packard, Palo Alto CA.

Tarjan [14] gave an O(mα(m,n))-time algorithm, where
α(m,n) is an extremely slow-growing functional inverse
of the Ackermann function. A complicated linear-time
algorithm was announced by Harel [12], but the descrip-
tion is incomplete and contains some false arguments
(see [3]). Based on Harel’s work, Alstrup et al. [3] gave a
complete linear-time algorithm for the RAM model, but
using complicated data structures, in particular Fred-
man and Willard’s Q-heaps [8]. Buchsbaum et al. [6]
attempted to give the first simple linear-time domina-
tors algorithm by applying a new special-case analy-
sis of the path compression technique used in disjoint
set union and other problems [17]. We show, however,
that their analysis does not apply to their dominators
algorithm which means that despite being more com-
plicated, the Buchsbaum et al. algorithm is not asymp-
totically faster than the Lengauer-Tarjan algorithm. We
give an overview of the Buchsbaum et al. algorithm in
Section 3 together with a discussion of the reason it is
not linear. Our new algorithm is based on the Buchs-
baum et al. algorithm and can be implemented either
on a random-access or on a pointer machine.

2 Preliminaries

2.1 Partitioning the DFS tree Let D be a depth-
first search (DFS) tree [16] of the control flow graph
G = (V,A, r). We assume that G is represented by
adjacency lists. The DFS tree D is rooted at r and
parent(v) is the parent of vertex v in D. For simplicity
we refer to the vertices by their DFS numbers, so v < u
means that the DFS number of v is less than the DFS
number of u. As in [7] we partition D into trivial and
nontrivial microtrees. Each nontrivial microtree is a
maximal subtree of D that has at most g vertices and
contains at least one leaf of D, where g is a parameter
that we will fix appropriately. Each trivial microtree is
a singleton internal vertex of D. For any vertex v we
denote by micro(v) the microtree that contains v. Also
we denote by M the set of nontrivial microtrees.

The trivial microtrees constitute a tree with rela-
tively few leaves, the core C of the depth-first search
tree. Let τ be any microtree of D and let root(τ) be
its root. If root(τ) 6= r then v = parent(root(τ)) is a

1

2

3

4 5

6

7

8

9

10

11 12

13

14 15

16

17

18 19

20

21

22

23

24

25

26

27

28 29

30

31

Figure 1: Partition of the DFS tree. There are 10
nontrivial microtrees and 3 lines, which are encircled.
The nontrivial microtrees have size at most 3 and are
shown with dark vertices.

vertex in C. Also any vertex of the core has at least g
proper descendants in D. We note that v is a leaf of the
tree C if and only if all of its children in D are roots
of nontrivial microtrees. Therefore C has at most n/g
leaves. We can group the vertices of C into a set L of
paths with the following properties: if v1, v2, . . . , vk is
a path in L then vi+1 is the unique child of vi in C for
1 ≤ i ≤ k − 1, and vk has either zero or more than one
children in C. We call such a path a line. We denote
by line(v) the line that contains vertex v. Let L be the
number of lines. It is easy to verify that L is bounded by
twice the number of leaves in C i.e., L ≤ 2n/g. Figure
1 shows an example of this decomposition.

Let l = (v1 = s, v2, . . . , vk−1, vk = t) be a line in
L. The subtree Tt rooted at t is a union of microtrees
in M and a part of the core. For example in Figure
2.1, T1 is D and T9 = {9, 10, 11, 12}. For each vertex i,
1 ≤ i ≤ k − 1, we define a right subtree Ti and a left
subtree T ′

i of Tvi
. Ti contains vi and all descendants of

vi that are greater than vi+1 and are not descendants of
vi+1; T ′

i contains vi and all descendants of vi that are
less than vi+1. The trees Ti, T ′

i and Tvi+1
partition the

proper descendants of vi. All the children of vi, except
for vi+1, are roots of nontrivial microtrees. We also

define T (l) =
⋃k−1

i=1

(

Ti − {vi}
)

to be the set of vertices

in the right subtrees of l and T ′(l) =
⋃k−1

i=1

(

T ′
i − {vi}

)

to be the set of vertices in the left subtrees of l. Now
consider the core tree C; if we contract every line in L

into a single vertex we get a tree C′ with L vertices.
Let l and q be two vertices in C′ that correspond to the
lines (v1, . . . , vi) and (u1, . . . , uj). Then l is the parent
of q in C′ if and only if parent(u1) = vi. In this case we
say l = parentC′(q).

2.2 Semidominators and External Dominators

In this section we review some of the definitions and
results that are given in [14] and [7]. A path P =
(u = v0, v1, . . . , vk−1, vk = v) is a semidominator
path (SDOM path) if vi > v for 1 ≤ i ≤ k −
1. The semidominator of vertex v is sdom(v) =
min({u | there is an SDOM path from u to v}). From

[14] we know that for any vertex w 6= r, idom(w)
∗
→

sdom(w) and sdom(w)
+
→ w1. Moreover, if v

+
→ w

then either v
∗
→ idom(w) or idom(w)

∗
→ idom(v).

The following result [14] allows efficient computation
of semidominators and computation of immediate dom-
inators from semidominators.

Lemma 2.1. Let w 6= r and let u be a vertex for
which sdom(u) is minimum among vertices u satisfying

sdom(w)
+
→ u

∗
→ w. Then sdom(u) ≤ sdom(w) and

idom(u) = idom(w). Moreover, if sdom(u) = sdom(w)
then idom(w) = sdom(w).

Let micro(v) be the microtree (either trivial or non-
trivial) that contains v. A path P = (u =
v0, v1, . . . , vk−1, vk = v) is an external dominator path
(XDOM path) if P is an SDOM path and vi /∈ micro(v)
for 0 ≤ i ≤ k −1. The external dominator of vertex v is

xdom(v) = min({v} ∪

{u | there is an XDOM path from u to v}).

A path P = (u = v0, v1, . . . , vk−1, vk = v) is a
pushed external dominator path (PXDOM path) if vi ≥
root(micro(v)) for 1 ≤ i ≤ k − 1. The pushed external
dominator of vertex v is

pxdom(v) =

min({u | there is a PXDOM path from u to v}).

An XDOM path is also an SDOM path and an
SDOM path is also a PXDOM path, thus pxdom(v) ≤
sdom(v) ≤ xdom(v). If micro(u) = {u}, which is true if
u is in C, then pxdom(u) = xdom(u) = sdom(u). The
next result from [7] allows computation of immediate
dominators from pushed external dominators.

1Throughout this paper the notation “v
∗

→T u” means that v

is an ancestor of u in the tree T . “v
+
→T u” means that v is a

proper ancestor of u in T . We omit the subscript T when T = D.

Lemma 2.2. For any v, there exists a w ∈ micro(v)
such that

(1) w
∗
→ v;

(2) pxdom(v) = pxdom(w);
(3) pxdom(w) = sdom(w);
(4) idom(w) /∈ micro(v).

Moreover, if idom(v) /∈ micro(v) then idom(v) =
idom(w).

3 The Buchsbaum et al. algorithm

3.1 Overview of the algorithm The Buchsbaum
et al. algorithm preprocesses each nontrivial microtree
and finds the immediate dominators for the vertices
whose immediate dominators are inside the microtree.
Then it computes pxdom(v) for each vertex v in the
graph and uses Lemma 2.2 to find idom(v) for each
v such that idom(v) /∈ micro(v). The pxdom’s are
computed by processing the microtrees in reverse pre-
order. Let NCA(D,u, v) be the nearest common ances-
tor of u and v in the DFS tree D. Also let EN(v) =
{u | (u, v) ∈ A, u /∈ micro(v)} be the set of external
neighbors of v. We associate each vertex v ∈ V with
a value label(v) which is initially set equal to v. After
processing micro(v) we will have label(v) = pxdom(v).
This is accomplished by executing the following proce-
dure for each microtree τ .

for v ∈ τ do

a = parent(root(τ))
for u ∈ EN(v) do

if micro(u) is trivial then b = u
else b = parent(root(micro(u))) endif

if (b > a) then

x = min(
{

label(z) | NCA(D, a, b)
+
→ z

∗
→ b

}

)

else x = ∞ endif

label(v) = min({label(u), label(v), x})
done /* at this point label(v) = xdom(v) ∗ /

done

PushLabels(τ)

If b < a then b is a proper ancestor of a and it is
assumed that label(b) = b. When b > a then all the

vertices z 6= v that satisfy NCA(D, a, b)
+
→ z

∗
→ b have

been processed before τ and the corresponding pxdom’s
are known, i.e., label(z) = pxdom(z). Procedure
PushLabels(τ) completes the computation of pxdom(v)
for all v ∈ τ after all the xdom’s are known. This
is accomplished in linear time by finding the strongly
connected components of the graph G(τ) induced by
the vertices of τ and and processing them in topological
order (see [7] for the details).

In order to compute the immediate dominators
from the pxdom’s we need to know whether idom(v) ∈

micro(v). We start by constructing from G(τ) an
augmented graph aug(τ) as follows. We add a vertex t
and for each arc (u, v) such that v ∈ τ and u /∈ τ we add
the arc (t, v). Let iidom(v) be the internal immediate
dominator of a vertex v ∈ τ , which is defined as the
immediate dominator of v in aug(τ). From [6, 7] we
have:

Lemma 3.1. Let v be any vertex of a microtree τ . Then
idom(v) is in τ if and only if iidom(v) 6= t.

We can compute the iidom’s using any simple (but
superlinear) dominators algorithm. Since there may be
too many microtrees in D we can’t afford to run the
simple algorithm for each microtree individually. The
way to get around this problem is to use memoization
to avoid repeating the same computations for identical
graphs. In the worst case we will compute the iidom’s
for every possible aug(τ) of size O(g2) and use table
lookups to retrieve the iidom values in constant time. If
g = O(log1/3 n) this computation can be done in linear
time. Although this process seems to require a RAM it
can in fact be implemented on a pointer machine. This
is accomplished in [6] by sorting the graph encodings
using a variation of radix sort. After the iidom’s are
available we need to compute the immediate dominators
of the every vertex v that satisfies iidom(v) /∈ micro(v).
By Lemma 2.2 all we need to do is find the vertex

y on the path pxdom(v)
+
→ a such that pxdom(y) =

min({pxdom(z) | pxdom(v)
+
→ z

∗
→ a}). If pxdom(y) =

pxdom(v) then idom(v) = pxdom(v). Otherwise y is
a relative dominator of v, i.e., idom(v) = idom(y).
For vertices with relative dominators we complete the
calculation of immediate dominators in a preorder pass.

3.2 The problem in the analysis The Buchsbaum
et al. algorithm uses the same link-eval structure as
the Lengauer-Tarjan algorithm (Section 5 of [17]) to
implement the computation of x and y above (taking
minima on tree paths), but these computations involve
only nodes in the core. In fact the two algorithms
are essentially the same when the size bound on the
nontrivial microtrees is g = 1. In [6, 7] it is concluded
that the operations of the link-eval data structure take
linear time because the links are performed bottom-up.
That is we link v to parent(v) only after all the vertices
in the subtree rooted at v have been linked. Let T1

and T2 be the trees in the link-eval forest that contain
parent(v) and v respectively. It is straightforward to
verify that T2 always contains at least one leaf in C
and T1 is either a singleton or also contains at least
one leaf in C. The analysis assumes that all the
non-singleton trees in the link-eval forest have roots
which are leaves in C. In that case we only need

to link two leaves or a single vertex to a leaf, which
implies O(mα(m,L) + n) = O(m + n) running time.
The problem with this argument is that Tarjan’s data
structure [17] is not sufficiently flexible, in the sense
that we are not free to choose the roots of the trees
in the link-eval forest suitably so that the disjoint set
union result of [6] would apply. For example consider
the case where D is just a path (v1 = r, v2, . . . , vn).
Then C = (v1, v2, . . . , vk), where k = n − g = O(n).
Each successive link is of vi+1 to vi, and vi becomes
the root of the tree that contains vj , i ≤ j ≤ k.
Suppose we have pxdom(vk) = v1. Then a careful
look at the implementation of the link-eval structure
in [17, 14] reveals that vk will only participate in the
first link and all the other links will involve internal
vertices of C, while the analysis in [6, 7] assumes that
every vertex will eventually be linked to vk. What
we really get is the Lengauer-Tarjan algorithm applied
on a graph with O(n) vertices and O(m) arcs, so the
running time is not linear. We note that the special-case
analysis in [6, 7] for disjoint set union does apply to their
offline nearest common ancestors algorithm. In fact, the
pointer machine version of our algorithm requires this
result in order to achieve linear running time.

4 Our linear-time algorithm

4.1 Overview of our approach The conclusion
from the previous section is that we need a different way
to evaluate minima on paths inside a line. In particular
we show that we can use nearest common ancestor
queries on a fixed tree instead of using the standard data
structure of [17] for evaluating minima inside a single
line. We note that our definition of lines is similar to
the I-paths of [3], but we perform different operations
on the lines. To get a linear time bound the nearest
common ancestor queries have to be offline. We can
assure this if we deviate from the usual reverse preorder
processing of the vertices when it is necessary to do so.
Our results require neither complicated data structures
nor a linear-time disjoint set union algorithm, but they
do require a linear-time solution to the offline nearest
common ancestors problem as well as the memoization
for small subproblems proposed by Buchsbaum et al.
[7, 6]. For clarity we present an algorithm that consists
of two phases. As in [14] and [7] the two phases can be
integrated into one, which gives a more efficient solution
although the asymptotic running time is the same. In
Phase A we compute pushed external dominators for
each vertex and in Phase B we find the immediate
dominators. In Section 5 we show how to remove an
intermediate preprocessing step to get a more efficient
algorithm.

We will use a mark bit to distinguish among differ-

ent states that the vertices go through during the course
of the algorithm. Initially none of the vertices in D is
marked. In Phase A we start visiting the vertices in re-
verse preorder and compute the pxdom’s of the vertices
that haven’t been processed yet. We use the mark bit
to keep track of the vertices in the core whose pxdom’s
have already been computed. For the vertices in M we
use the mark bit for a different purpose that we describe
later. When we find a vertex v in the core that is not
marked we process all the vertices in line(v) and mark
them. When we visit an already marked vertex we pro-
ceed to the next vertex in reverse preorder. This means
that if l = (v1 = s, v2, . . . , vk−1, vk = t) is a line in L,
t will be the first vertex of l that we visit. After vis-
iting t we will process all the vertices in l bottom-up.
Note that when we start processing l all the vertices in
T (l) and Tt and none of the vertices in T ′(l) have been
processed. To process a nontrivial microtree we can use
the procedure of Section 3.1, but we use a new data
structure to compute x in the inner loop.

The second phase is similar to the corresponding
part of Buchsbaum et al. algorithm [6, 7]. We start
by finding the internal immediate dominators in the
microtrees of M. Then we process all the vertices in
reverse preorder and locate the immediate dominators
for the vertices in C and for the vertices v ∈ M that
have immediate dominators outside micro(v). Again we
use our new data structure to evaluate minima on tree
paths.

4.2 Range Minimum Queries Our first algorithm
will use as a subroutine a solution to the offline Range
Minimum Query (RMQ) problem. In an instance of this
problem we are given an array A =

[

a1 a2 . . . an

]

and a set QA of queries. A query is a pair of array
indices (i, j), such that 1 ≤ i ≤ j ≤ n. For each pair
(i, j) ∈ QA we want to find the index of a smallest
element in the subarray

[

ai ai+1 . . . aj

]

; that is
RMQ(A, i, j) = arg mink∈[i...j] ak is the answer to query
(i, j). It is known that the RMQ problem can be
reduced in linear time to the offline Nearest Common
Ancestor (NCA) problem and vice versa [10]. An
instance of the NCA problem consists of a tree T and a
set QT of queries. A query in QT is a pair (u, v) where
u and v are vertices of T . If we refer to the vertices of
T by their preorder numbers then,

NCA(T, u, v) =

max({w | w ∈ T such that w
∗
→ u and w

∗
→ v}).

Such queries can be answered offline on a pointer
machine in O(|T | + |QT |)-time [6]. Also there are
solutions to the offline NCA problem on a random-

access machine that answer each query in constant time
using O(|T |) time for preprocessing [13, 15, 5]. We note
that the linear-time pointer machine algorithm requires
QT to be known a priori, while the RAM algorithms
don’t have this restriction.

For our algorithm we want to be able to
answer range minimum queries for the array
[

sdom(v1) . . . sdom(vk)
]

, where l = (v1, v2, . . . , vk)
is a line in L. This problem can be solved offline if
the semidominators of the line have been computed
before we need to answer any query. The order of the
pxdom calculations ensures that this is the case. In
later sections we use the notation

RMQ(vi, vj) = arg min
vj′ ∈ vi

∗

→vj

sdom(vj′).

In Section 5 we show how to use nearest common
ancestor calculations on a fixed tree directly; that is,
we remove the intermediate step that reduces RMQ to
NCA.

4.3 A data structure for Link() and Eval() in

C In this section we implement a data structure that
can perform links and evaluations of path minima on
a forest F induced by the vertices of C. We start by
implementing a data structure that performs the same
operations on a forest F ′ induced by the vertices of C′.
Initially each node in C′ is a singleton tree in F ′. For
any vertex l ∈ C′ let rootF ′(l) be the root of the tree
the contains l in F ′. The operations are:

Link(l, q): Link the tree rooted at l in F ′ to the tree
rooted at q in F ′. In our algorithm we will
always have q = parentC′(l).

Eval(l): If l = rootF ′(l) return l. Otherwise, return
a vertex of minimum value among the ver-

tices q that satisfy rootF ′(l)
+
→C′ q

∗
→C′ l.

We implement these operations using the data
structure of Section 5 in [17], but our algorithm will
not call Link() and Eval(). Instead it will call two
procedures V Link() (Virtual Link) and V Eval (Virtual
Eval) which are built on top of Link() and Eval() and
operate on C. A line l = (v1, v2, . . . , vk) is represented
in F ′ by its top vertex v1. We associate with l a label
which, after all the vertices in l are linked, will be equal
to a vertex with minimum semidominator among the
vertices of l. To that end we use a field lineLabel that
is only defined for the top vertices of the lines and is
initialized to ∞. After linking vj to vj−1 we will have

lineLabel(v1) = arg min
u∈l and u≥vj

sdom(u).

V Link(v) performs a virtual link of v and u =
parent(v). When both v and u belong to the same
line l = (v1, . . . , vk) then we only have to set
lineLabel(v1) = u, if sdom(u) < sdom(lineLabel(v1)).
Our algorithm will process all the vertices in l before
any of them is linked to its parent, therefore V Link()
maintains the correct result for lineLabel. In the case
where v = v1 we also need to link v1 with u1, where u1

is the top vertex of line(u). This is accomplished by ex-
ecuting the real link Link(v1, u1). The implementation
of V Eval() assumes that for each vertex v ∈ C we store
a value

up(v) = arg min
u ∈ line(v)

and u≤v

sdom(u).

These values can be calculated in a straightforward
manner by a top-down pass over the line, after all the
sdom’s in the line are known. We further assume that
the lines whose semidominators have been computed
are preprocessed so that all the necessary RMQ’s are
answered in linear time. The role of V Eval() is to
return a vertex with minimum sdom among the vertices

z that satisfy rootF (b)
+
→ z

∗
→ b, where rootF (b) is the

root of the virtual tree built by V Link() that contains
b. If both rootF (b) and b are in the same line then
the value that we need is RMQ(c, b), where c is such
that parentD(c) = rootF (b). Otherwise the required
value is the vertex with minimum sdom among up(b),
lineLabel(Eval(parentC′(b′))) and lineLabel(c′), where
b′ is the top vertex of line(b) and c′ is the top vertex of
line(c). Since C′ has L = O(n/g) vertices and we call
V Eval() for less than m arcs, the total time that will
be spent on Link() and Eval() is O(mα(m,L) + L) =
O(m), for g = O(log 1/3n). This implies that n calls to
V Link() and O(n+m) calls to V Eval() take O(n+m)
time.

4.4 Pushed external dominators of the nontriv-

ial microtrees We process a nontrivial microtree τ as
in Section 3.1, but we use the data structure of the
previous section to maintain the link-eval forest in C.
A vertex v ∈ C can be linked to parent(v) only after
line(v) has been processed. Specifically v is linked when
it becomes the next vertex in reverse preorder and is not
processed again because it was marked after processing
line(v). Let c be the last vertex of the core that was
linked to its parent. Also suppose v ∈ τ is the next
vertex to be processed. Figure 2 shows the various situ-
ations that may happen when we examine the arc (u, v)
for u ∈ EN(v). Here b is the nearest ancestor of u
in C and similarly a is the nearest ancestor of v in C.
Also t is the bottom vertex of l = line(a). Since τ is

case (b2)
v in right microtree or T

t

v

u

a

b = root
F
(b)

line(a) = line(b)

b

case (a)

v

u

c

a = root
F
(b)

a

case (b1)
v in left microtree

v

u

c

b = root
F
(b)

a

v
b

case (d1)
v in left microtree

u

line(b)

line(a)

root
F
(b)

c

line(a)

v b

u

line(b)a

case (d2)
v in right microtree or T

t

root
F
(b)

case (c)

a = root
F
(b)

u

b

v

line(b)

c

Figure 2: Four possible locations of u ∈ EN(v). Any
of the four cases may apply when v is in T ′(l), but only
(b) or (d) may apply when v is in T (l) or in Tt ∩ M.

In all cases we may have u = b. In case (a), a
+
→ b and

a, b ∈ l. In case (b), b
∗
→ a. In case (c), a

+
→ b and

b ∈ Tt. Finally, in case (d) we have neither a
+
→ b nor

b
∗
→ a. Cases (a), (c) and (d) are handled in V Eval()

and case (b) is handled separately.

t

s

vi

u

case (iii)

b

t

s

vi

u = vj

case (ii)

t

s

vi

u

b

case (i)

t

s

vi

vj = b

T'j

u

case (iv)

t

s

vi

T
j

vj = b

case (v)

u t

s

vi

u

case (vi)

b

Figure 3: Computing the semidominators of the line
l = (v1 = s, v2, . . . , vk = t)

nontrivial, a = parent(root(τ)). Then v is in T ′(l) if
and only if parent(c) = a. This implies a = rootF (b)
when line(a) = line(b) (case (a) of Figure 2) or b ∈ Tt

(case (c) of Figure 2). Also when a < b but not a
+
→ b

then v /∈ T ′(l) if and only if parent(c) = NCA(D, a, b)
(case (d2) in Figure 2). Case (b) is handled separately
without a call to V Eval() because it doesn’t require
evaluations of path minima and moreover b may have
already been processed so we must be careful not to set
sdom(v) = sdom(b) when b = u.

4.5 Semidominators in the core In this section
we give an algorithm ProcessLine(t) that computes the
semidominators of a line l = (s = v1, v2, . . . , vk−1, vk =
t) in L. The algorithm assumes that we have label(u) =
pxdom(u) for all vertices u > t, and label(u) = u for
any u ≤ t. In particular we don’t know the pxdom’s
in T ′(l). The computation of the semidominators relies
on finding strongly connected components on l as we
walk upwards from t to s. At vertex vi we examine
the incoming arcs (u, vi). The actions that we need to
execute depend on the location of u. Again b is the
nearest ancestor of u in C. We consider the following
cases (see Figure 3):

(i). b
+
→ vi. We update label(vi) =

min({label(vi), label(u)}).

(ii). u = vj for j > i. We contract the vertices of

the path vi
+
→ vj into a single vertex vi and set

label(vi) to be the minimum label in this path.

(iii). u ∈ Tt. We find x = min({label(w) | t
+
→ w

∗
→ b)}).

Then we contract the path vi
+
→ t as

if there were an arc (t, vi) and update
label(vi) as done in (ii). Finally we update
label(vi) = min({x, label(vi), label(u)}).

(iv). u ∈ T ′
j . It must be that j ≥ i. We handle this

case by contracting the cycle (vj
+
→ u, vi

+
→ vj)

into a single vertex vi. The vi
+
→ vj part is done

as in (ii). For the vj
+
→ u part we start from u

and walk backwards until we reach vj or a marked
vertex. For each vertex w 6= vj that we visit in
this walk, we mark w and for each arc (z, w) we
add (z, vi) at the end of the list of incoming arcs
of vi. (The added arcs will eventually be examined
while processing vi.)

(v). u ∈ Tj. We update label(vi) =
min({label(u), label(vi)}). If vj > vi we con-

tract the path vi
+
→ vj as in (ii).

(vi). Neither vi
+
→ b nor b

+
→ vi. Then vi < b.

We find x = min({label(w) | NCA(D,u, vi)
+
→

w
∗
→ b}). Then we update label(vi) =

min({x, label(vi), label(u)}).

The process that we use to contract a path vi
+
→ vj

is similar to Gabow’s linear-time algorithm for strong
components [9]. A stack S is sufficient to keep track
of the contracted paths in l. Each element of the
stack corresponds to a strongly connected component
scc of successive vertices in l and can be represented
by the highest vertex v in the component i.e., v =
min({u | u ∈ scc}). Then it is also true that sdom(v) =
min({sdom(u) | u ∈ scc}). Suppose that when we
reach vertex v the current status of the stack is S =
(ud, ud−1, . . . , u1), where v = parent(ud) and ui < ui−1

for 2 ≤ i ≤ d. Then we keep removing the top element
of the stack until we reach a proper descendant of u or
empty the stack. As we pop each element w < u in
S we update label(v) = min({label(v), label(w)}). The
other subroutine that we need carries out the backwards
walk from a vertex u in a left nontrivial microtree τ to
root(τ). To achieve the effect of contracting the path

P = (root(τ)
∗
→ u) we set the mark bit of w for all

w ∈ P . Since we don’t actually remove the vertices of
P we stop the backwards walk once we have reached a
vertex z such that it is either marked or in the core.
Note that if z has been marked then every vertex in the
path root(τ)

∗
→ z has also been marked. We can prove

by induction that ProcessLine() correctly computes
semidominators in lines.

Theorem 4.1. Let l = (v1 = s, v2, . . . , vk−1, vk =
t) in L. Assume that just before the execution of
ProcessLine(t) we have label(u) = pxdom(u) for any
vertex u such that u > t. Then after the execution
of ProcessLine(t) we have label(vi) = sdom(vi) for
1 ≤ i ≤ k.

Proofs and implementation details are omitted in this
extended abstract. The x values that we use in this
procedure correspond to path minima and are computed
by V Eval(). After a vertex u in T ′(l) is marked, every
subsequent visit to u will cost us O(1) time. Moreover,
the number of stack operations is O(k). Therefore, it is
not hard to verify that the execution of ProcessLine()
takes linear time with respect to the size of l∪T ′(l) and
the number of predecessors of the vertices in l ∪ T ′(l),
plus the time spent on V Eval(). A similar statement
holds for the procedure of Section 4.4 which processes
nontrivial microtrees. Since the total time time spent
on V Link() and V Eval() is linear the whole algorithm
runs in linear time.

5 An NCA-based algorithm

Our first algorithm uses RMQ to evaluate minima on
paths inside a line. We have already mentioned that in
order to solve the offline RMQ for an array A we can
use a linear-time reduction to the offline NCA problem
for a tree TA that is constructed based on the values of
A. This seems to be a redundant step, which we wish
to avoid. In this section we modify our algorithm so
that it directly uses NCA queries on a tree I(l) that is
constructed based on the immediate dominators tree of
a line l. This method is more desirable also because in
contrast to TA the immediate dominators tree has to be
constructed by the dominators algorithm anyway.

5.1 Line dominators tree The next lemma sug-
gests a method to construct the immediate dominators
tree I once we have computed the semidominators. (We
omit the proof in this extended abstract.) We note that
this process resembles the Aho, Hopcroft and Ullman al-
gorithm for finding dominators in reducible graphs [1].

Lemma 5.1. For any vertex w 6= r, idom(w) is the
nearest common ancestor of sdom(w) and parent(w)
in the immediate dominators tree I, i.e., idom(w) =
NCA(I, parent(w), sdom(w)).

We can locate NCA(I, parent(w), sdom(w)) easily by
using the fact that when idom(w) 6= sdom(w),
parent(w) is not dominated by any vertex v that sat-

isfies idom(w)
+
→ v

∗
→ sdom(w). If we start from

parent(w) and go up on the I-tree path from parent(w)
to r until we meet the first vertex x such that x ≤
sdom(w), then x = idom(w). In the simple case
where D is just a path (1, 2, . . . , n) we have idom(w) =
NCA(I, w−1, sdom(w)). So after the calculation of the
semidominators we can construct the dominators tree I
incrementally in linear time. For a general graph, how-
ever, this procedure can take O(n2) time. Now we apply
this method to a line l = (v1, v2, . . . , vk) in L and con-
struct a tree I(l), which we call line dominators tree of l.
We denote by parentI(l)(v) the parent of v in I(l). The
construction goes as follows. Initially I(l) consists of
the vertices v1 and root = sdom(v1) where sdom(v1) =
parentI(l)(v1) and is the current root of the tree. When
we process vi we first check whether sdom(vi) < root.
If this is true we set parentI(l)(root) = sdom(vi) and
make sdom(vi) the new root of I(l). Otherwise we tra-
verse the path in I(l) from vi−1 to root until we get
to a vertex x such that x ≤ sdom(w). Then we set
parentI(l)(root) = x. An example is shown in Figure 4.
Note that unless v1 = r, I(l) contains vertices outside

l and in particular root
+
→ v1. I(l) can be constructed

in the same top-down pass of l in which the up values
are computed and requires O(k) time. The next Lemma
describes the properties of I(l).

Lemma 5.2. Let I(l) be the line dominators tree of
l = (v1, . . . , vk). For any vi ∈ l, if parentI(l)(vi) ∈ l
then parentI(l)(vi) = idom(vi). Otherwise, let z be

a vertex that satisfies parentI(l)(vi)
+
→ z

+
→ v1 and

sdom(z) = min({sdom(w) | parentI(l)(vi)
+
→ w

+
→

v1}). If sdom(z) ≥ parentI(l)(vi) then idom(vi) =
parentI(l)(vi); otherwise idom(vi) = idom(z).

We also note that the previous lemma implies that all
the vertices that point to the same vertex w /∈ l have the
same dominators. So it suffices to locate the immediate
dominator of u = childI(l)(w) and set idom(v) =
idom(u) for all v ∈ l such that parentI(l)(v) = w.

5.2 Processing the nontrivial microtrees We
process a vertex in a nontrivial microtree as in Section
4.4, but we evaluate paths using procedure MV Eval()
which is a modified version of V Eval(). The difference
between these two version is that in case (a) of Figure
2, MV Eval() uses the result of NCA(I(l), a, b) instead
of RMQ(c, a). Also in cases (c) and (d), MV Eval()
returns the minimum label itself of any vertex z that

satisfies rootF (b)
+
→ z

∗
→ b instead of a vertex with the

u

v
1

[u]

w

v
2

[v
1
]

v
3

[v
2
]

v
4

[w]

v
5

[v
4
]

v
6

[v
3
]

v
7

[v
6
]

v
8

[v
2
]

u

v
1

v
2

v
3

w

v
4

v
5

v
6

v
7

v
8

(a) (b)

Figure 4: (a) l = (v1, . . . , v8) is a line of the core.
w and u are semidominators of v4 and v1 respectively
that lie outside l. The dashed arcs connect sdom(vi) 6=
parent(vi) to v and the values inside the brackets corre-
spond to semidominators. (b) The line dominators tree
I(l). A solid arc (vi, z) indicates that parentI(l)(vi) = z.
A dashed arc (z, vi) indicates that childI(l)(z) = vi,
which means that during the process of constructing
I(l), z was once the root of the tree and vi was the first
child of z in I(l).

minimum label in the same path, as done in V Eval().
The consequence of replacing the range minimum query
by a nearest common ancestors calculation is that may
get label(v) 6= pxdom(v), for v ∈ T ′(l). Nevertheless,
the labels we compute using our modified procedure give
sufficient information to find the external dominators of
vertices outside l ∪T (l)∪T ′(l) and the immediate dom-
inators of vertices in T ′(l). This fact is stated in the
next theorem.

Theorem 5.1. Let τ be a microtree in M and a =
parent(root(τ)). After processing all the vertices v ∈ τ
we have

min({label(v), label(up(a))}) =

min({pxdom(v), label(up(a))}).

Moreover, if τ is not a left microtree then label(v) =
pxdom(v). Otherwise, if idom(v) /∈ τ then at least one
of the following statements is true:

(a) label(v) = pxdom(v);

(b) label(v) = idom(v);

(c) label(v) = w /∈ τ , where w is such that idom(v) =

idom(z) and z satisfies w
+
→ z

+
→ v1 and sdom(z) =

min({sdom(u) | w
+
→ u

+
→ v1}).

Theorem 5.1 implies that the algorithm of Section 4.5
will still be correct, so for any v ∈ C we get label(v) =
sdom(v). Since our goal is to eliminate the need for
range minimum queries we need a way to compute
idom(v) when pxdom(v) ∈ line(a). The next result,
which is derived from Lemma 2.2, Lemma 5.1, and
Lemma 5.2 gives such an alternative solution.

Lemma 5.3. Let l = (v1, v2, . . . , vk) be a line at the
core of the DFS tree and v 6= vi be any vertex in
either Ti or T ′

i . If idom(v) is not in micro(v) then
idom(v) = NCA(I, vi, pxdom(v)). Moreover, let y =
NCA(I(l), vi, pxdom(v)). Then one of the following
statements is true:

(a) y = idom(v) ∈ l;

(b) y /∈ l and either idom(v) = y or idom(v) = idom(z)

where z is such that y
+
→ z

+
→ v1 and sdom(z) =

min({sdom(u) | y
+
→ u

+
→ v1}).

5.3 Immediate dominators In order to complete
the description of our modified algorithm we now give
the details of computing the immediate dominators.
Suppose that u is the parent of the last vertex that
was linked. We process the vertices v ∈ C such that
parentI(line(v))(v) = u, and the vertices v ∈ τ such that

τ ∈ M, idom(v) /∈ τ and NCA(I(line(a)), a, label(v)) =
u, where a = parent(root(τ)). First we consider the
case v ∈ C. If u ∈ line(v) then idom(v) = u by Lemma
5.2. Otherwise we compute a vertex z with minimum

label among the vertices that satisfy u
+
→ z

+
→ v1. This

is done using the appropriate call to V Eval(). We note

that since u ≤ min({sdom(z) | v1
∗
→ z

∗
→ v}) we get

the same result if we evaluate the minimum label of the
path u

+
→ v. In this case we know that line(v) 6= line(u)

therefore V Eval() will not make a range minimum
query. By applying Lemma 5.2 we conclude that the
result is either the immediate dominator of v or a
relative dominator of v. If v belongs to a nontrivial
microtree τ then we assume we have first computed
u = NCA(I(line(a)), a, label(v)). Again this calculation
is done on a fixed tree so we can use a linear-time
offline NCA algorithm. Now we consider the cases
listed in Theorem 5.1. If label(v) = pxdom(v) then
we apply Lemma 5.3 and process v the same way we
processed the vertices of the core. In the other cases we
have NCA(I(line(a)), a, label(v)) = label(v) and we can
apply Theorem 5.1. Therefore in any case we have either
idom(v) = u or we need an additional call to V Eval() in
order to compute the immediate or a relative dominator
of v.

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman. On finding
lowest common ancestors in trees. SIAM J. Comput. 5,
1, 1976, Pages 115-133, 2000.

[2] A. V. Aho, R. Sethi and J. D. Ullman. Compilers: Prin-
ciples, techniques and tools. Addison-Wesley, Reading,
Mass., 1986.

[3] S. Alstrup, D. Harel, P. W. Lauridsen and M. Thorup:
Dominators in Linear Time. SIAM J. Comput. 28(6),
Pages 2117-2132, 1999.

[4] A. Appel. Modern compiler implementation in ML.
Cambridge University Press, Cambridge, Cambridge
UK, 1998.

[5] M. A. Bender and M. Farach-Colton. The LCA prob-
lem revisited. LATIN, Pages 88-94, 2000.

[6] A. L. Buchsbaum, H. Kaplan, A. Rogers and J. R.
Westbrook. Linear-Time Pointer-Machine Algorithms
for Least Common Ancestors, MST Verification, and
Dominators. STOC 1998, Pages 279-288.

[7] A. L. Buchsbaum, H. Kaplan, A. Rogers and J. R.
Westbrook. A New, Simpler Linear-Time Dominators
Algorithm. ACM Transactions on Programming Lan-
guages and Systems 20, 6, November 1998, Pages 1265-
1296.

[8] M. L. Fredman and D. E. Willard. Trans-dichotomous
algorithms for minimum spanning trees and shortest
paths. Journal of Computer and System Sciences,
48(3), Pages 533–551, 1994.

[9] H. N. Gabow. Path-based depth-first search for strong
and biconnected components. Information Processing
Letters 74, 2000, Pages 107-114.

[10] H. N. Gabow, J. L. Bentley and R. E. Tarjan. Scaling
and related techniques for computational geometry.
STOC 1984, Pages 135-143.

[11] H. N. Gabow and R. E. Tarjan. A Linear-Time Algo-
rithm for a Special Case of Disjoint Set Union. JCSS
30(2), Pages 209-221, 1985.

[12] D. Harel. A linear time algorithm for finding domina-
tors in flow graphs and related problems. In Proceed-
ings of the Seventeenth Annual ACM Symposium on
Theory of Computing, Pages 185–194, May 1985.

[13] D. Harel and R. E. Tarjan. Fast Algorithms for Finding
Nearest Common Ancestors. SIAM J. Comput. 13(2),
Pages 338-355, 1984.

[14] T. Lengauer and R. E. Tarjan, A fast algorithm
for finding dominators in a flowgraph. ACM Trans.
Program. Lang. Syst. 1, 1, 1979, Pages 121-141.

[15] B. Schieber and U. Vishkin. On Finding Lowest Com-
mon Ancestors: Simplification and Parallelization.
SIAM J. Comput. 17(6), Pages 1253-1262, 1988.

[16] R. E. Tarjan, Depth-first search and linear graph
algorithms. SIAM J. Comput., 1,(2), Pages 146-160,
1972.

[17] R. E. Tarjan, Applications of path compression on
balanced trees. J. ACM 26, 4, 1979, Pages 690-715.

