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Abstract. We show that the minmax regret median of a tree can be
found in O(n log n) time. This is obtained by a modification of Averbakh
and Berman’s O(n log2 n)-time algorithm: We design a dynamic solution
to their bottleneck subproblem of finding the middle of every root-leaf
path in a tree.
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1 Introduction

Facility location problems deal with the question of deciding where to construct
one or more facilities so as to minimize the communication (or travel) costs while
providing service to customers. One of the most basic forms of this problem is
that of selecting the median of a tree: The input is an n-node tree T = (V, E)
with a weight wv for each node and a positive length (distance) de for each edge
e ∈ E. The nodes represent the customers, their weights are their demands for
service and the distance between two locations on the tree represents the travel
or communication cost between them. By a location on the tree, we mean either
a node or a position along an edge, specified by its distances from the edge’s
endpoints. The median of the tree is the location x that minimizes the weighted
sum of the distances from the nodes to x, i.e., the value

∑
v∈V wvd(x, v), where

d(x, v) is the distance between x and v in T . Finding the median can be done in
linear time [6].

In the minmax regret version of this problem, there is uncertainty in the
weights of the nodes. That is, the weight of v is only known to lie within an
interval [w−

v , w+
v ]. The input is then a collection of many possible scenarios

and the problem is to find a solution that minimizes the maximum (over the
scenarios) of the difference between the value of the solution on a scenario and
the value of the optimal solution for the same scenario. In other words, the goal
is to minimize the amount by which we will regret our choice of median once the
actual input is known. Several researches have studied the problem of selecting
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the minmax regret median in this setting, beginning with Kouvelis et al. [8]
who introduced the problem and suggested an O(n4) solution, through Chen
and Lin [4] who obtained an O(n3) upper bound to Averbakh and Berman who
found a simple O(n2) algorithm [2] and later improved upon it and achieved
an O(n log2 n) upper bound [3]. We will show that it is possible to implement
Averbakh and Berman’s algorithm in O(n log n) time. Our improvement is based
on a dynamic version of their bottleneck sub-problem. Recently, Yu et al. [10]
have independently achieved the O(n log n) bound by a different approach, which
we believe leads to a significantly more complex solution. It remains open to
bridge the gap between this upper bound and the (trivial) linear lower bound.

2 Problem Statement and Preliminaries

Let T = (V, E) be a tree with |V | = n nodes. We also use T to denote the set
of all locations (nodes or locations along an edge) in T . Each node v ∈ V is
associated with an interval of weights W (v) = [w−

v , w+
v ], and each edge e ∈ E is

associated with a positive length de. We let d denote the (symmetric) distance
function on T : For any x, y ∈ T , d(x, y) is the distance between x and y in T ;
for an edge e = {u, v}, d(u, v) = d(v, u) = de and for two locations x and y on
the tree, d(x, y) is the sum of the lengths of edges on the simple path between x
and y on the tree. If x (y) lies along an edge e, the first (last) term in this sum
is the appropriate fraction of de.

Now let S be the Cartesian product of all W (v), v ∈ V . A scenario s ∈ S
assigns to each node v a particular weight wv ∈ W (v). For a given point x ∈ T
and scenario s ∈ S, define F (s, x) =

∑
v∈V wvd(v, x). For a given point x ∈ T ,

the worst-case regret for x is defined by the equation

Z(x) = max
s∈S

max
y∈T

{F (s, x) − F (s, y)}. (1)

Let (ŝ(x), ŷ(x)) ∈ S × T be a pair that maximizes the right hand side of (1).
Then, ŝ(x) is a worst-case scenario for x and ŷ(x) is a worst-case alternative

for x.
The Minmax Regret Median problem on T is to find a point x ∈ T that

minimizes Z(x).

3 The Averbakh-Berman Algorithm

In this section we sketch the O(n log2 n) solution by Averbakh and Berman [3].
The algorithm consists of two main parts. The first identifies the edge on which
the solution lies and the second identifies the precise location along this edge.
The second part takes linear time, hence we will not refer to it any further (see
[3], Section 4).

The first part performs a recursive search on the tree ([3], Section 3). At the
i’th recursive level, a pivot node xi is selected and used to determine the part
of the tree in which the solution lies. Before giving the details of this search we



need to establish some notation. For a node x ∈ V the branches of x in T are
the subtrees Bj of T which are formed as follows: First remove x from T ; this
partitions T \ {x} into connected subtrees Cj , where each Cj contains a node yj

such that {x, yj} ∈ E. Then, Bj is formed by including x and {x, yj} in Cj . For
any point y ∈ T , we let B(x, y) denote the branch of x containing y.

Averbakh and Berman prove the following key lemma:

Lemma 1 ([3], Lemma 1). Let x be a node of the tree and let (ŝ(x), ŷ(x)) be a

pair that maximizes the right hand side of (1). If x = ŷ(x) then x is the optimal

solution, i.e., x minimizes Z(x). Otherwise, the solution belongs to B(x, ŷ(x)).

This lemma suggests a recursive search procedure. Let T1 = T . In the i’th
recursive step, a node xi is selected and used to restrict the search for a solution
to the tree Ti+1 = Ti ∩ B(xi, ŷ(xi)). The recursion terminates when xi = ŷ(xi)
or Ti consists of a single edge (in which case the optimal location along this edge
is found by the second part of the algorithm). By selecting xi to be the centroid

of Ti, we have that the depth of the recursion is O(log n). The centroid of an
n-node tree T is a node x ∈ T such that any branch of x contains at most δn
nodes, where δ = 3/4; it easy to find such a node in linear time [7].

Finally, Averbakh and Berman describe how the worst-case alternative ŷ(xi)
of the pivot xi can be found in O(n log n) time. Note that even when we know
that the solution to our original problem is guaranteed to be contained in Ti,
the worst-case alternative ŷ(xi) of the pivot xi ∈ Ti may be located in T \ Ti.
This means that the search for ŷ(xi) must consider all nodes of T , i.e., this part
of the problem does not reduce in size as the recursion proceeds.

Their algorithm for computing the worst-case alternative of xi is based on the
follow idea. Instead of iterating over the scenarios, they iterate over the nodes
of the tree. For each node y ∈ V , they compute ρ(xi, y) = maxs∈S{F (s, y) −
F (s, xi)}. The scenario sy that maximizes ρ(xi, y) is easy to specify: the weight
of a node v is w−

v if d(xi, v) ≤ d(y, v) and w+
v otherwise.

The bottleneck of a single worst-case alternative computation is in solving
the problem Middle(T, r), which is defined as follows:

Input: A tree T rooted at a node r with a distance de for each edge e.
Output: For each node v of T , the middle node of v, denoted by mid(v), which

is the highest ancestor u of v that satisfies d(r, u) > d(u, v).

I.e., for every node we need to identify the middle of the path from this node
to the root. For a node y, scenario sy switches at mid(y) between the w+

v and
w−

v values. Averbakh and Berman use the following method for computing the
middle nodes: Perform a DFS traversal of the tree, and whenever a node is
visited for the first time, find its middle node by a binary search on the current
search path. This process spends O(log n) time per node, hence O(n log n) per
recursive level and O(n log2 n) for the whole algorithm.

Given the middle points with respect to xi, Averbakh and Berman show how
to determine the ρ(xi, y) values for all y ∈ V in O(n) time ([3], Lemma 2). To



that end, they use the following auxiliary values

W+(B) =
∑

v∈B

w+
v , W−(B) =

∑

v∈B

w−

v ,

D+(B, x) =
∑

v∈B

w+
v d(v, x), D−(B, x) =

∑

v∈B

w−

v d(v, x),

for each node x and each branch B of x. These values can be pre-computed
in linear time via dynamic programming. Once computed, they can be used to
determine all ρ(xi, y) values by a single, linear-time traversal of the tree. The
node y which maximizes ρ(xi, y) is the worst-case alternative of xi.

4 Our Improvements

In order to eliminate a logarithmic factor from the running time of the Averbakh-
Berman algorithm, we will show that the middle nodes can be updated dynami-
cally in linear time, for all but a constant fraction of Ti. We begin by describing
an alternative method for computing the middle nodes. The advantage of this
method is that the middle nodes can be updated fast when we choose a different
node to root T .

4.1 Finding the middle nodes from scratch

We reduce the problem of finding the middle nodes to a disjoint set union (DSU)
problem [1], after a sorting phase. The algorithm traverses the nodes by decreas-
ing order of their distance from the root r, and computes the middle node for
each of them in turn:

1. Compute the distance of each node of T from the root r by a DFS traversal
starting at r.

2. Sort the nodes of T by non-increasing distance from the root. Let the sorted
list of distances be U = (d1, d2, . . . , dn), where di ≥ di+1. Each record ui in
U has a pointer to its corresponding node vi in T . (This list represents union
operations on the DSU data structure.)

3. Create another list F of the half-distances to r, i.e., F = (d1/2, d2/2, . . . , dn/2),
where each record has a pointer to its corresponding node vi. (This list rep-
resents find operations on the DSU data structure.)

4. Merge U and F to a list L of event points; in case of a tie between a u ∈ U
and an f ∈ F , we give priority to f (i.e., the find operation is performed
before the union). In order to distinguish between elements of different lists
we mark the items in F .

5. Initialize a DSU data structure on the tree rooted at r; each node v forms a
singleton set with v as the representative element.

6. Perform a sweep over the event points of L (in non-increasing order). Let d
be the current event point corresponding to node v. If d is unmarked then



unite the sets of the children of v with v; this forms a single set containing
all descendants of v, with v as the representative element. If, on the other
hand, d is marked, perform a find on v, which returns the representative
element w of the set containing v; assign mid(v) = w.

Lemma 2. For each node v, the find operation on v returns mid(v).

Proof. At the moment the find on v needs to be performed, v is contained in a
set Σ that includes all ancestors of v at distance strictly greater than d(r, v)/2
from r; let w be the highest such ancestor of v. Step 6 guarantees that w is the
representative of Σ and d(r, w) > d(w, v). Also, any proper ancestor u of w is
not in Σ and therefore satisfies d(r, u) ≤ d(u, v). Thus, w = mid(v). ⊓⊔

Excluding the sorting step, the running time of this procedure is dominated by
the time required for the DSU operations. With a standard DSU data structure
we get an O(nα(n)) running time [9] (where α is an extremely slow-growing
functional inverse of Ackermann’s function). However, since the structure of the
unite operations is given by the tree T , which is static, the DSU operations can
be performed in linear total time using the DSU data structure by Gabow and
Tarjan [5].

4.2 A dynamic version

Let T̂ be a subtree of T , rooted at a node r. Suppose that we already computed
the middle nodes for T̂ by the procedure described above and saved the sorted
list U . Now, assume that we modify T̂ by adding a new root r′ and a path from
r′ to r (see Figure 1). We wish to recompute the middle nodes with respect to
the new root. For the nodes that were in T̂ before, the relative distances from
the new root are unchanged. The new nodes are closer to r′ than all other nodes
and their relative distances are determined by their location along the path from
r′ to r (recall that the distances are all positive). Hence, we can update U and
create the new event list L in linear time. Thus, we skip the sorting phase in
Step 2 of the algorithm of Section 4.1, and simply perform the sweep over the
new list L to compute the new middle nodes in linear time.

In level i of the recursion we will use this dynamic version to recompute the
middle nodes for the nodes in T \Ti; the operation of adding a new root to a tree
corresponds to the selection of a new pivot in the Averbakh-Berman algorithm.

4.3 Speeding up the Averbakh-Berman algorithm

The search at the i’th level of recursion (1 ≤ i ≤ c log n, for some constant c)
divides the current tree Ti into a white subtree T w

i = Ti+1 where the solution
lies, and a black subtree T b

i . The two subtrees have a common root, which is the
current pivot xi, but are otherwise disjoint. (It is convenient to have the root
of the black subtree be a white node, since otherwise we would have to refer
to a collection of O(n) black trees.) Also, the sizes of the two subtrees satisfy
|T w

i | ≤ δin and |T b
i | ≤ |T w

i−1| ≤ δi−1n.
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Fig. 1. Left: A tree rooted at r with a dashed arrow from each node v to the middle
node mid(v) (omitted when v = mid(v)). Right: The middle nodes after adding a new
root r′ and a path from r′ to r.

Note that at the end of recursive level i, the tree T is divided into one white
subtree T w

i and i black subtrees T b
1 , . . . , T b

i , where T b
j is the set of nodes excluded

by the j’th level of the recursion. Any two of these trees may overlap at a single
node.

Our goal is to use the procedure of Section 4.1 to compute the middle nodes
in the white tree T w

i , and the method of Section 4.2 to update the middle nodes
for all T b

j , 1 ≤ j ≤ i. More precisely, we will create a single event list for all
nodes in T by merging the event lists corresponding to T w

i (that contains the
current pivot) and to each T b

j , but the sorting phase will be required only for the

list of T w
i . To that end, for each black subtree T b

j we keep an event list L(T b
j ),

where the distances in that list are relative to the root of T b
j . The important

observation here is that the order of the event points in such a list does not
change as we move the root of T to the new pivot, since the new pivot is always
in the white subtree. Hence, we can update L(T b

j ), with respect to the new pivot,

as described in Section 4.2. Next, we need to merge all L(T b
j ), and finally merge

the resulting list with the event list of T w
i . The last merging step takes O(n)

time, so it remains to show how to merge the lists of the black subtrees in linear
time. We describe two methods to achieve this; both give the same asymptotic
bound but the second maintains a simpler partition of T .

First method. As we already pointed out, in the original version of the Averbakh-
Berman algorithm, the black subtrees T b

j , 1 ≤ j ≤ i, may be unconnected (i.e.,
any path connecting them traverses at least one white node), while some of them
may overlap at previous pivot nodes. Fortunately, we can guarantee a linear
bound for merging the event lists L(T b

j ) because the size of each new black tree

is reduced by a factor of δ (at least), i.e., |T b
j | ≤ δ|T b

j−1|. Hence, if we merge the
event lists successively starting from the smallest black subtree to the largest
(i.e., by decreasing j), the total time to create a single event list for the union



of the black subtrees is bounded by

i∑

j=1

j|T b
j | ≤ n

∞∑

j=1

jδj−1 ≤ n
1

(1 − δ)2
= 16n ,

since δ = 3/4. It is not hard to implement this idea, but it requires some care so
that the merge operations are performed in the correct order. The next method
avoids this complication.

Second method. For our alternative method we make the observation that it is
possible to bound the number of black subtrees, at the end of each recursive
level, to be at most two. The tradeoff is increasing the number of computations
for worst-case alternatives, by a factor of at most two. This is done as follows.
Assume, without loss of generality, that the current partition of T consists of
two unconnected black subtrees T b

1 and T b
2 , and a white subtree T w. Let r1 be

the root of T b
1 and r2 the root of T b

2 (i.e., r1 and r2 are two past pivots). Let r3

be the next pivot node in T w. The search for ŷ(r3) first roots T at r3; let Tr3

denote this rooted tree, and let z be the nearest common ancestor in Tr3
of r1

and r2. Because we assumed that T b
1 and T b

2 are unconnected, z ∈ T w.
We consider the possible locations of ŷ(r3) relative to z. If ŷ(r3) /∈ B(r3, z)

then z belongs to the new black subtree T b
3 of T , and hence all three black

subtrees will become connected, forming a single black subtree T ′ rooted at r3.
On the other hand, if ŷ(r3) ∈ B(r3, z) then T b

1 , T b
2 and T b

3 are unconnected (see
Figure 2). We can now join at least two of them as follows. We select z as the
next pivot and compute ŷ(z). If ŷ(z) is not in any of B(z, ri) (for i = 1, 2, 3), then
again a single black subtree T ′ is formed. Otherwise, assume ŷ(z) ∈ B(z, ri), for
some i ∈ {1, 2, 3}, and let j and k be the indices of the other two black-subtree
roots. In this case T b

j and T b
k become connected in a black subtree T ′ rooted at

z. Whenever we connect two or three black subtrees we merge their event lists
creating a single list L(T ′), where the distances are relative to the current pivot
(either r3 or z) which is the root of T ′, as required.

Thus, the algorithm to compute a worst-case alternative for the pivot is
applied at most twice at each recursive call, once to decrease the size of the
white subtree by a factor of δ and the second time to ensure that at most two
black subtrees remain.

4.4 Running time

Putting everything together, we have that at each level i, the middle nodes of
only ni tree nodes need to be computed from scratch, where ni ≤ δi−1n; this
takes O(ni log ni) time. For the remaining n − ni nodes this computation takes
linear time. Hence, the total time spent on all mid(v) computations throughout
the recursion is bounded by

c log n∑

i=0

(n − ni + ni log ni) = O(n log n).
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Fig. 2. Reducing the number of black subtrees. There are three black subtrees rooted
at r1, r2 and r3. Node r3 is the current pivot and ŷ(r3) is in B(r3, z), where z is the
nearest common ancestor of r1 and r2 in Tr3

.
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