
Efficient Algorithms for Reachability

and Path-Selection Problems

John S. Latsis

Public Benefit Foundation

Research Projects 2010

http://www.icte.uowm.gr/lgeorg/RPS/

http://www.icte.uowm.gr/lgeorg/RPS/

Research Team

University of Western Macedonia

Department of Informatics and

Telecommunications Engineering

University of Ioannina

Department of Computer Science

Loukas Georgiadis (Coordinator)

Alexandra Galani Stavros Nikolopoulos

Leonidas Palios

Reachability

(Is there a path in from to ?)

Is vertex reachable from vertex ?

Reachability Query :

Goal: Construct a Data Structure that answers reachability queries efficiently

Reachability

(Is there a path in from to ?)

Is vertex reachable from vertex ?

Reachability Query :

Goal: Construct a Data Structure that answers reachability queries efficiently

Efficiency of a Data Structure:

storage space

query time

Easy : Efficiency or

Hard : Efficiency close to
So far achieved only for

restricted graph classes

(e.g., planar graphs)

Join-Reachability

Collection of graphs

(Vertices such that there is a path in all)

Report all vertices that reach in all graphs

Join-Reachability Query :

Efficiency of a Data Structure:

storage space

time to report vertices

Join-Reachability

Collection of graphs

(Vertices such that there is a path in all)

Report all vertices that reach in all graphs

Join-Reachability Query :

Ranking 1

1. Item A

2. Item B

3. Item C

...

Ranking λ

1. Item B

2. Item D

3. Item A

...

Applications: Graph Algorithms, Data Bases

Example: Rank Aggregation

Given a collection of rankings of some items, we would like to report fast all

items ranked higher than a query item in all rankings.

Join-Reachability

Main Idea: Geometric mapping of simple graphs

Join-Reachability

Join-Reachability

Collection of graphs

(Vertices such that there is a path in all)

Report all vertices that reach in all graphs

Join-Reachability Query :

Join-Reachability Graph

in all

in

(in terms of the number of arcs

plus vertices) is NP-hard

Computing the smallest

Join-Reachability

Collection of graphs

Construction of a compact join-reachability graph

Join-Reachability

Path-Selection

Compute paths in a graph so that

certain requirements are satisfied

Avoid a forbidden part of

E.g.

Disjoint paths

Applications: Communications, Scheduling, VLSI design

Vertex Connectivity

Strongly connected digraph

k-vertex connected digraph

contains an path for any pair

the removal of any subset

leaves the graph strongly connected

• Compute vertex connectivity (largest such that is vertex connected)

• Test if the given digraph is vertex connected

Basic problems :

Vertex Connectivity

• Compute vertex connectivity largest such that is vertex connected

• Test if the given digraph is vertex connected

Basic problems :

[Gabow 2006]

[Henzinger, Rao and Gabow 2000]

with error probability

= matrix multiplication time

with error probability

expected

[Cheriyan and Reif 1994]

Vertex Connectivity

Undirected graphs: algorithms for testing

[Tarjan 1972]

[Hopcroft and Tarjan 1973]

Directed graphs: algorithm for testing ?

Results

time algorithm for testing vertex connectivity

space data structure :

compute two vertex-disjoint paths in time

report the two paths, and , in time

Vertex Connectivity

vertex connected digraph

the removal of any subset

leaves the graph strongly connected

is vertex connected
contains vertex-disjoint paths

for any

From Menger‟s theorem :

2-Vertex Connectivity

vertex connected digraph

the removal of at most one vertex

leaves the graph strongly connected

If is strongly connected but not vertex connected :

paths contain a common vertex

There are such that all

2-Vertex Connectivity

vertex connected digraph

the removal of at most one vertex

leaves the graph strongly connected

If is strongly connected but not vertex connected :

paths contain a common vertex

There are such that all

2-Vertex Connectivity

vertex connected digraph

the removal of at most one vertex

leaves the graph strongly connected

If is strongly connected but not vertex connected :

paths contain a common vertex

There are such that all

dominates if every path from to includes

Flowgraphs and Dominators

set of vertices that dominate

Application areas : Program optimization, VLSI testing, theoretical biology,

Flowgraph : all vertices are reachable from start vertex

Trivial dominators :

distributed systems, constraint programming

Flowgraphs and Dominators

dominator tree of

dominates if every path from to includes

Flowgraph : all vertices are reachable from start vertex

algorithm: [Lengauer and Tarjan ‟79]

algorithms:

[Buchsbaum, Kaplan, Rogers, and Westbrook „04]

[G., and Tarjan „04]

[Alstrup, Harel, Lauridsen, and Thorup „97]

2-Vertex Connectivity

Main Idea : Compute dominators in and for arbitrary

dominator tree of

has reversed arcs

2-Vertex Connectivity

Main Idea : Compute dominators in and for arbitrary

dominator tree of

has reversed arcs

2-Vertex Connectivity

Main Idea : Compute dominators in and for arbitrary

has reversed arcs

dominator tree of

2-Vertex Connectivity

Main Idea : Compute dominators in and for arbitrary

has reversed arcs

dominator tree of

2-Vertex Connectivity

Main Idea : Compute dominators in and for arbitrary

dominator tree of

has reversed arcs

Vertex-Disjoint s-t Paths

Given a digraph how fast can we compute a pair of

vertex-disjoint paths?

Vertex-Disjoint s-t Paths

Given a digraph how fast can we compute a pair of

vertex-disjoint paths?

time : “vertex-splitting” + “flow augmentation”

Vertex-Disjoint s-t Paths

Given a digraph how fast can we compute a pair of

vertex-disjoint paths?

time : “vertex-splitting” + “flow augmentation”

We can get a more efficient solution when is vertex connected

• Use a vertex connected spanning subgraph of with arcs

[Cheriyan and Thurimella 2000] : approximation of the minimum

vertex connected spanning subgraph in

time

Vertex-Disjoint s-t Paths

Given a digraph how fast can we compute a pair of

vertex-disjoint paths?

time : “vertex-splitting” + “flow augmentation”

We can get a more efficient solution when is vertex connected

• Use a vertex connected spanning subgraph of with arcs

[Cheriyan and Thurimella 2000] : approximation of the minimum

• Use pairs of independent trees

vertex connected spanning subgraph in

time

Vertex-Disjoint s-t Paths

the two trees can be computed in linear time

Vertex-Disjoint s-t Paths

independent

trees

the two trees can be computed in linear time

Vertex-Disjoint s-t Paths

We use a pair of independent spanning trees for each of the flowgraphs

2-Vertex Connectivity

vertex-disjoint paths

vertex-disjoint paths

Suppose

2-Vertex Connectivity

vertex-disjoint paths

vertex-disjoint paths

Suppose

Let be the first vertex on such that

2-Vertex Connectivity

vertex-disjoint paths

vertex-disjoint paths

Suppose

Let be the first vertex on such that

Consider

and are vertex-disjoint paths

2-Vertex Connectivity

Data Structure : Given rooted trees and on the same nodes

(i) Test if contains .

(ii) Return the topmost vertex in .

support the operations:

(iii) Test if and contain a common vertex.

(iv) Find the lowest ancestor of in that is contained in .

(v) Find the highest ancestor of in that is contained in .

2-Vertex Connectivity

Data Structure : Given rooted trees and on the same nodes

(i) Test if contains .

(ii) Return the topmost vertex in .

support the operations:

(iii) Test if and contain a common vertex.

(iv) Find the lowest ancestor of in that is contained in .

(v) Find the highest ancestor of in that is contained in .

• A query uses a constant number of these operations.

• We give an space data structure with time per operation.

Example : Pairs of Disjoint Paths in the New York Area

Example : Pairs of Disjoint Paths in the New York Area

Example : Pairs of Disjoint Paths in the New York Area

Example : Pairs of Disjoint Paths in the New York Area

Computational Morphological Analysis

play

play-ed

play-ing

play-er

play-er-s

read

read-ing

read-er

read-er-s

read-able

kind

kind-ness

Fundamental Aim :

Morphological Analysis : the study of the internal structure of words

identification of the constituents of words and the

properties they express.

e.g.

Issues: • What morphological units languages consist of?

• What features are represented in each morpheme?

• How do morphemes and features interact with one another?

• Are there any constraints in the selection of morphemes in

specific environments?

Computational Morphological Analysis

Απολσμ-

-αιν-
-αν*-

-θηκ- -θ-

-*σμεν-

-τικ-

-τήριο
-ος -η -ο

-ω -α -ομαι-ομοσν -οντας

-της

Computational Approach: Morphological patterns as graph reachability and path

selection problems

