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Reachability

(Is there a path in       from      to    ?)

Is vertex     reachable from vertex     ?

Reachability Query :

Goal:  Construct a Data Structure that answers reachability queries efficiently



Reachability

(Is there a path in       from      to    ?)

Is vertex     reachable from vertex     ?

Reachability Query :

Goal:  Construct a Data Structure that answers reachability queries efficiently

Efficiency of a Data Structure:

storage space

query time

Easy : Efficiency                or

Hard : Efficiency close to
So far achieved only for

restricted graph classes

(e.g., planar graphs)



Join-Reachability

Collection of graphs

(Vertices     such that there is a             path in all               )

Report all vertices that reach     in all graphs

Join-Reachability Query :

Efficiency of a Data Structure:

storage space

time to report     vertices



Join-Reachability

Collection of graphs

(Vertices     such that there is a             path in all               )

Report all vertices that reach     in all graphs

Join-Reachability Query :

Ranking 1

1. Item A

2. Item B

3. Item C

...

Ranking λ

1. Item B

2. Item D

3. Item A

...

Applications:  Graph Algorithms, Data Bases

Example: Rank Aggregation

Given a collection of rankings of some items, we would like to report fast all 

items ranked higher than a query item in all rankings. 



Join-Reachability

Main Idea: Geometric mapping of simple graphs



Join-Reachability



Join-Reachability

Collection of graphs

(Vertices     such that there is a             path in all               )

Report all vertices that reach     in all graphs

Join-Reachability Query :

Join-Reachability Graph

in all 

in

(in terms of the number of arcs

plus vertices) is NP-hard

Computing the smallest



Join-Reachability

Collection of graphs

Construction of a compact join-reachability graph



Join-Reachability



Path-Selection

Compute paths in a graph       so that

certain requirements are satisfied

Avoid a forbidden part of

E.g.

Disjoint paths

Applications:  Communications, Scheduling, VLSI design



Vertex Connectivity

Strongly connected digraph

k-vertex connected digraph

contains an             path for any pair

the removal of any subset 

leaves the graph strongly connected

• Compute vertex connectivity (largest     such that       is     vertex connected)

• Test if the given digraph is     vertex connected

Basic problems :



Vertex Connectivity

• Compute vertex connectivity         largest     such that       is     vertex connected

• Test if the given digraph is     vertex connected

Basic problems :

[Gabow 2006]

[Henzinger, Rao and Gabow 2000]

with error probability

= matrix multiplication time

with error probability

expected

[Cheriyan and Reif 1994]



Vertex Connectivity

Undirected graphs:                     algorithms for testing 

[Tarjan 1972]

[Hopcroft and Tarjan 1973]

Directed graphs:                    algorithm for testing              ?



Results

time algorithm for testing     vertex connectivity

space data structure :     

compute two vertex-disjoint        paths in                    time 

report the two paths,      and     , in                         time 



Vertex Connectivity

vertex connected digraph

the removal of any subset 

leaves the graph strongly connected

is vertex connected
contains      vertex-disjoint         paths

for any 

From Menger‟s theorem : 



2-Vertex Connectivity

vertex connected digraph

the removal of at most one vertex

leaves the graph strongly connected

If        is strongly connected but not vertex connected : 

paths contain a common vertex

There are                 such that all
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2-Vertex Connectivity

vertex connected digraph

the removal of at most one vertex

leaves the graph strongly connected

If        is strongly connected but not vertex connected : 

paths contain a common vertex

There are                 such that all



dominates if every path from    to  includes   

Flowgraphs and Dominators

set of vertices that dominate

Application areas : Program optimization, VLSI testing, theoretical biology,

Flowgraph :  all vertices are reachable from start vertex

Trivial dominators :

distributed systems, constraint programming



Flowgraphs and Dominators

dominator tree of

dominates if every path from    to  includes   

Flowgraph :  all vertices are reachable from start vertex

algorithm:  [Lengauer and Tarjan ‟79]

algorithms:

[Buchsbaum, Kaplan, Rogers, and Westbrook „04]

[G., and Tarjan „04]

[Alstrup, Harel, Lauridsen, and Thorup „97]



2-Vertex Connectivity

Main Idea :  Compute dominators in            and             for arbitrary 

dominator tree of

has reversed arcs
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Main Idea :  Compute dominators in            and             for arbitrary 

dominator tree of

has reversed arcs



Vertex-Disjoint s-t Paths

Given a digraph                      how fast can we compute a pair of

vertex-disjoint        paths?
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time : “vertex-splitting” + “flow augmentation” 



Vertex-Disjoint s-t Paths

Given a digraph                      how fast can we compute a pair of

vertex-disjoint        paths?

time : “vertex-splitting” + “flow augmentation” 

We can get a more efficient solution when      is vertex connected

• Use a vertex connected spanning subgraph of       with            arcs

[Cheriyan and Thurimella 2000] :                approximation of the minimum 

vertex connected spanning subgraph in

time



Vertex-Disjoint s-t Paths

Given a digraph                      how fast can we compute a pair of

vertex-disjoint        paths?

time : “vertex-splitting” + “flow augmentation” 

We can get a more efficient solution when      is vertex connected

• Use a vertex connected spanning subgraph of       with            arcs

[Cheriyan and Thurimella 2000] :                approximation of the minimum 

• Use pairs of independent trees

vertex connected spanning subgraph in

time



Vertex-Disjoint s-t Paths

the two trees can be computed in linear time 



Vertex-Disjoint s-t Paths

independent

trees

the two trees can be computed in linear time 



Vertex-Disjoint s-t Paths

We use a pair of independent spanning trees for each of the flowgraphs



2-Vertex Connectivity

vertex-disjoint         paths

vertex-disjoint         paths

Suppose
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2-Vertex Connectivity

vertex-disjoint         paths

vertex-disjoint         paths

Suppose

Let       be the first vertex on                such that

Consider

and are vertex-disjoint        paths



2-Vertex Connectivity

Data Structure :  Given rooted trees       and        on the same nodes

(i)  Test if                     contains      .

(ii)  Return the topmost vertex in                  .

support the operations:

(iii)  Test if                     and                    contain a common vertex.

(iv)  Find the lowest ancestor of        in                     that is contained in                  .

(v)  Find the highest ancestor of        in                    that is contained in                  .



2-Vertex Connectivity

Data Structure :  Given rooted trees       and        on the same nodes

(i)  Test if                     contains      .

(ii)  Return the topmost vertex in                  .

support the operations:

(iii)  Test if                     and                    contain a common vertex.

(iv)  Find the lowest ancestor of        in                     that is contained in                  .

(v)  Find the highest ancestor of        in                    that is contained in                  .

• A query uses a constant number of these operations.

• We give an            space data structure with                     time per operation.



Example :  Pairs of Disjoint Paths in the New York Area
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Example :  Pairs of Disjoint Paths in the New York Area



Computational Morphological Analysis

play

play-ed

play-ing

play-er

play-er-s

read

read-ing

read-er

read-er-s

read-able 

kind

kind-ness

Fundamental Aim :

Morphological Analysis : the study of the internal structure of words

identification of the constituents of words and the 

properties they express. 

e.g.

Issues: • What morphological units languages consist of?

• What features are represented in each morpheme?

• How do morphemes and features interact with one another?

• Are there any constraints in the selection of morphemes in

specific environments?



Computational Morphological Analysis

Απολσμ-

-αιν-
-αν*-

-θηκ- -θ-

-*σμεν-

-τικ-

-τήριο
-ος -η -ο

-ω -α -ομαι-ομοσν -οντας

-της

Computational Approach: Morphological patterns as graph reachability and path 

selection problems


