Join-Reachability Problems in Directed Graphs

Loukas Georgiadis University of Western Macedonia, Greece Stavros Nikolopoulos, Leonidas Palios University of Ioannina, Greece

Graph Reachability

(Directed) Graph G = (V, A)

Reachability Query : $a \rightsquigarrow b$?

Is vertex b reachable from vertex a?

(Is there a path in G from a to b?)

Goal: Construct a Data Structure that answers reachability queries efficiently

Graph Reachability

Reachability Query : $a \rightsquigarrow b$?

Is vertex b reachable from vertex a ?

(Is there a path in G from a to b?)

Goal: Construct a Data Structure that answers reachability queries efficiently

```
Efficiency of a Data Structure: \langle s(n), q(n) \rangle

O(s(n)) storage space

O(q(n)) query time
```

Easy : Efficiency $\langle n^2,1\rangle$ or $\langle m+n,m+n\rangle$

Hard : Efficiency close to $\langle m+n,1 \rangle$

So far achieved only for restricted graph classes (e.g., trees, planar graphs [Thorup, JACM 2004])

$$n = |V|, m = |A|$$

Collection of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_\lambda\}$

Join-Reachability Graph

Join-Reachability Query : Report all vertices that reach b in all graphs $G_i \in \mathcal{G}$

Collection of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_\lambda\}$

- small space

Collection of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_\lambda\}$

Join-Reachability Query :

Report all vertices that reach b in all graphs $G_i \in \mathcal{G}$

Applications: Graph Algorithms, Data Bases, Natural Language Processing,... Example: Rank Aggregation

Given a collection of rankings of some items, we would like to report fast all items ranked higher than a query item in all rankings.

Motivation

Computing frequency dominators [Lee, Resnick, Bond, and McKinley '07, G. '08]

 $x \in H(\hat{h}(y)) \ \land \ x \in dom(y)$

Motivation

Applications of Independent Spanning Trees [G. and Tarjan 2005, 2011]

Any flow graph G(s)=(V,A,s) has two spanning trees, B and R, such that for any $v\in V$

 $B[s,v] \cap R[s,v] = dom(v)$

Motivation

Computing Pairs of Disjoint *s*-*t* Paths [G. 2010]

Data Structure : Given rooted trees S_1 and S_2 on the same nodes support the operations:

(i) Test if $S_1[x_1, y_1]$ contains x_2 .

- (ii) Return the topmost vertex in $S_1(x_1, y_1]$.
- (iii) Test if $S_1[x_1, y_1]$ and $S_2[x_2, y_2]$ contain a common vertex.
- (iv) Find the lowest ancestor of y_2 in $S_2[x_2, y_2]$ that is contained in $S_1[x_1, y_1]$.
- (v) Find the highest ancestor of y_2 in $S_2[x_2, y_2]$ that is contained in $S_1[x_1, y_1]$.

Computational Morphological Analysis

Morphological patterns as graph reachability problems

We consider the case of two digraphs: $\mathcal{G} = \{G_1, G_2\}$

Outline

- Graph Reachability
- Join-Reachability Problems
 - Motivation
 - Preprocessing
 - Layer Decomposition
 - Removing Cycles
 - Join-Reachability Graph
 - Computational Complexity
 - Combinatorial Complexity
 - Join-Reachability Data Structures
- Concluding Remarks

Reduces digraph reachability to reachability in **2-layered** digraphs G^0, G^1, G^2, \ldots

2-layered digraph : Has a 2-layered spanning tree, i.e. every undirected root-to-leaf path consists of 2 directed paths

Reduces digraph reachability to reachability in **2-layered** digraphs G^0, G^1, G^2, \ldots

 \circ^{v_0}

arbitrary vertex chosen as root

Reduces digraph reachability to reachability in **2-layered** digraphs G^0, G^1, G^2, \ldots

vertices reachable from v_0

Reduces digraph reachability to reachability in **2-layered** digraphs G^0, G^1, G^2, \ldots

 $G^{i} \text{ is induced by } L_{i} \text{ and } L_{i+1}$ $\iota(v) = \text{ index of layer containing } v$ $u \rightsquigarrow_{G} v$ $\Rightarrow u \in \left(L_{\iota(v)-1} \cup L_{\iota(v)} \cup L_{\iota(v)+1}\right)$ $\Rightarrow u \rightsquigarrow_{G^{\iota(v)-1}} v \text{ or } u \rightsquigarrow_{G^{\iota(v)}} v$

We can use this method to reduce general join-reachabiliy to join-reachability in 2-layered digraphs

Removing Cycles

Reduces digraph (join-)reachabiliy to (join-)reachability in acyclic digraphs

Removing Cycles

Reduces digraph (join-)reachabiliy to (join-)reachability in acyclic digraphs

 $\{b,g\}$

Removing Cycles

Reduces digraph (join-)reachabiliy to (join-)reachability in acyclic digraphs

Outline

- Graph Reachability
- Join-Reachability Problems
 - Motivation
 - Preprocessing
 - Layer Decomposition
 - Removing Cycles
 - Join-Reachability Graph
 - Computational Complexity
 - Combinatorial Complexity
 - Join-Reachability Data Structures
- Concluding Remarks

Join-Reachability Graph

Collection of graphs $\mathcal{G} = \{G_1, G_2\}$

Join-Reachability Graph

 $a \rightsquigarrow b$ in $\mathcal{J}(\mathcal{G})$ $a \rightsquigarrow b$ in G_1 and G_2

Join-Reachability Graph: Computational Complexity Collection of graphs $\mathcal{G} = \{G_1, G_2\}$

Join-Reachability Graph

Two cases: $V(\mathcal{J}(\mathcal{G})) = V$ (Steiner vertices not allowed) smallest $\mathcal{J}(\mathcal{G})$ is polynomial-time computable $V(\mathcal{J}(\mathcal{G})) \supseteq V$ (Steiner vertices allowed) smallest $\mathcal{J}(\mathcal{G})$ is NP-hard to compute

Join-Reachability Graph

Steiner vertices $V(\mathcal{J})\setminus V$ can significantly reduce the size of \mathcal{J}

 $V(\mathcal{J}) = V$

 $V(\mathcal{J}) \supset V$

Collection of graphs $\mathcal{G} = \{G_1, G_2\}$

We bound the size of $\mathcal{J}(\mathcal{G})$ when Steiner vertices are allowed

Main Idea: Geometric representation of join-reachability for paths and trees

Construction of a compact join-reachability graph $\mathcal{J}(\mathcal{G})$ for paths Each vertex $v \in V$ is mapped to a point $(x_1(v), x_2(v))$ $x_i(v) =$ number of vertices reachable from v in G_i

Construction of a compact join-reachability graph $\mathcal{J}(\mathcal{G})$ for paths Each vertex $v \in V$ is mapped to a point $(x_1(v), x_2(v))$ $x_i(v) =$ number of vertices reachable from v in G_i

 $u \rightsquigarrow_{\mathcal{J}} v \Leftrightarrow (x_1(u), x_2(u)) \le (x_1(v), x_2(v))$

Construction of a compact join-reachability graph $\mathcal{J}(\mathcal{G})$ for paths Each vertex $v \in V$ is mapped to a point $(x_1(v), x_2(v))$ $x_i(v) =$ number of vertices reachable from v in G_i

 $u \rightsquigarrow_{\mathcal{J}} v \Leftrightarrow (x_1(u), x_2(u)) \le (x_1(v), x_2(v))$

For each $v \in V$, such that $x_1(v) \ge \lfloor n/2 \rfloor$ add Steiner vertex s with coordinates $(\lfloor n/2 \rfloor, x_2(v))$ and arc (s, v)

Construction of a compact join-reachability graph $\mathcal{J}(\mathcal{G})$ for paths Each vertex $v \in V$ is mapped to a point $(x_1(v), x_2(v))$ $x_i(v) =$ number of vertices reachable from v in G_i

 $\rightarrow h$ 7 d 6 5 b 3 $\rightarrow 0$ c2 e 1 0 $a \bigcirc$

4 5 6

7

4

0

1 2 3

 $u \rightsquigarrow_{\mathcal{T}} v \Leftrightarrow (x_1(u), x_2(u)) \leq (x_1(v), x_2(v))$

For each $v \in V$, such that $x_1(v) \ge \lfloor n/2 \rfloor$ add Steiner vertex s with coordinates $(\lfloor n/2 \rfloor, x_2(v))$ and arc (s, v)Connect Steiner vertices in a bottom-up path

Construction of a compact join-reachability graph $\mathcal{J}(\mathcal{G})$ for paths Each vertex $v \in V$ is mapped to a point $(x_1(v), x_2(v))$ $x_i(v) =$ number of vertices reachable from v in G_i

 $u \rightsquigarrow_{\mathcal{J}} v \Leftrightarrow (x_1(u), x_2(u)) \le (x_1(v), x_2(v))$

For each $v \in V$, such that $x_1(v) \ge \lfloor n/2 \rfloor$ add Steiner vertex s with coordinates $(\lfloor n/2 \rfloor, x_2(v))$ and arc (s, v)Connect Steiner vertices in a bottom-up path For each $v \in V$, such that $x_1(v) < \lfloor n/2 \rfloor$ add arc (v, s)s = nearest Steiner neighbor with $x_2(s) \le x_2(v)$

Construction of a compact join-reachability graph $\mathcal{J}(\mathcal{G})$ for paths Each vertex $v \in V$ is mapped to a point $(x_1(v), x_2(v))$ $x_i(v) =$ number of vertices reachable from v in G_i

 $u \rightsquigarrow_{\mathcal{J}} v \Leftrightarrow (x_1(u), x_2(u)) \le (x_1(v), x_2(v))$

For each $v \in V$, such that $x_1(v) \ge \lfloor n/2 \rfloor$ add Steiner vertex s with coordinates $(\lfloor n/2 \rfloor, x_2(v))$ and arc (s, v)Connect Steiner vertices in a bottom-up path For each $v \in V$, such that $x_1(v) < \lfloor n/2 \rfloor$ add arc (v, s)s = nearest Steiner neighbor with $x_2(s) \le x_2(v)$ Use recursion for the sets $L = \{v \in V \mid x_1(v) < n/2\}$ and $R = \{v \in V \mid x_1(v) > n/2\}$

Upper Bound: O(n) arcs + vertices per recursion level $\Rightarrow |\mathcal{J}(G)| = O(n \log n)$

Construction of a compact join-reachability graph $\mathcal{J}(\mathcal{G})$ for paths Each vertex $v \in V$ is mapped to a point $(x_1(v), x_2(v))$ $x_i(v) =$ number of vertices reachable from v in G_i

 $u \rightsquigarrow_{\mathcal{J}} v \Leftrightarrow (x_1(u), x_2(u)) \le (x_1(v), x_2(v))$

For each $v \in V$, such that $x_1(v) \ge \lfloor n/2 \rfloor$ add Steiner vertex s with coordinates $(\lfloor n/2 \rfloor, x_2(v))$ and arc (s, v)Connect Steiner vertices in a bottom-up path For each $v \in V$, such that $x_1(v) < \lfloor n/2 \rfloor$ add arc (v, s)s = nearest Steiner neighbor with $x_2(s) \le x_2(v)$ Use recursion for the sets $L = \{v \in V \mid x_1(v) < n/2\}$ and $R = \{v \in V \mid x_1(v) > n/2\}$

Upper Bound: O(n) arcs + vertices per recursion level $\Rightarrow |\mathcal{J}(G)| = O(n \log n)$ **Lower Bound :** There are instances for which $|\mathcal{J}(G)| = \Omega(n \log n)$

Construction of a compact join-reachability graph $\mathcal{J}(\mathcal{G})$ for trees Each vertex $v \in V$ is mapped to a rectangle $R(v) = I_1(v) \times I_2(v)$ $I_i(v) = [s_i(v), t_i(v)] = \text{depth-first search interval of } v \text{ in } G_i$

Construction of a compact join-reachability graph $\mathcal{J}(\mathcal{G})$ for trees Each vertex $v \in V$ is mapped to a rectangle $R(v) = I_1(v) \times I_2(v)$ $I_i(v) = [s_i(v), t_i(v)] = \text{depth-first search interval of } v \text{ in } G_i$

 $G_1 = \text{out-tree}, \quad G_2 = \text{out-tree} : \quad u \rightsquigarrow_{\mathcal{J}} v \Leftrightarrow R(u) \supseteq R(v)$

Construction of a compact join-reachability graph $\mathcal{J}(\mathcal{G})$ for trees Each vertex $v \in V$ is mapped to a rectangle $R(v) = I_1(v) \times I_2(v)$ $I_i(v) = [s_i(v), t_i(v)] = \text{depth-first search interval of } v \text{ in } G_i$

 $G_1 =$ in-tree, $G_2 =$ in-tree : $u \rightsquigarrow_{\mathcal{J}} v \Leftrightarrow R(u) \subseteq R(v)$

Construction of a compact join-reachability graph $\mathcal{J}(\mathcal{G})$ for trees Each vertex $v \in V$ is mapped to a rectangle $R(v) = I_1(v) \times I_2(v)$ $I_i(v) = [s_i(v), t_i(v)] = \text{depth-first search interval of } v \text{ in } G_i$

 $G_1 = \text{out-tree}, \quad G_2 = \text{in-tree} : u \rightsquigarrow_{\mathcal{J}} v \Leftrightarrow (I_1(u) \times t_1(u)) \cap (s_1(v) \times I_2(v)) \neq \emptyset$

Given two digraphs G_1 and G_2 with *n* vertices, the following bounds on the size of the join-reachability graph $\mathcal{J}(\{G_1, G_2\})$ hold:

- (a) $\Theta(n \log n)$ in the worst case when G_1 is an unoriented tree and G_2 is an unoriented dipath.
- (b) $O(n \log^2 n)$ when both G_1 and G_2 are unoriented trees.
- (c) $O(n \log^2 n)$ when G_1 is a planar digraph and G_2 is an unoriented dipath.
- (d) $O(n \log^3 n)$ when both G_1 and G_2 are planar digraphs.
- (e) $O(\kappa_1 n \log n)$ when G_1 is a digraph that can be covered with κ_1 vertexdisjoint dipaths and G_2 is an unoriented dipath.
- (f) $O(\kappa_1 n \log^2 n)$ when G_1 is a digraph that can be covered with κ_1 vertexdisjoint dipaths and G_2 is a planar graph.
- (g) $O(\kappa_1 \kappa_2 n \log n)$ when each G_i , i = 1, 2, is a digraph that can be covered with κ_i vertex-disjoint dipaths.

Outline

- Graph Reachability
- Join-Reachability Problems
 - Motivation
 - Preprocessing
 - Layer Decomposition
 - Removing Cycles
 - Join-Reachability Graph
 - Computational Complexity
 - Combinatorial Complexity
 - Join-Reachability Data Structures
- Concluding Remarks

Collection of graphs $\mathcal{G} = \{G_1, G_2, \dots, G_\lambda\}$

Join-Reachability Query :

Report all vertices that reach b in all graphs $G_i \in \mathcal{G}$ (Vertices a such that there is a $a \rightsquigarrow b$ path in all $G_i \in \mathcal{G}$) Efficiency of a Data Structure: $\langle s(n), q(n, k) \rangle$ s(n) storage space q(n, k) time to report k vertices

Construction for paths

Each vertex $v \in V$ is mapped to a point $(x_1(v), x_2(v))$ $x_i(v) =$ number of vertices reachable from v in G_i

 $u \rightsquigarrow_{\mathcal{J}} v \Leftrightarrow (x_1(u), x_2(u)) \le (x_1(v), x_2(v))$

point-dominance problem

Construction for paths

Each vertex $v \in V$ is mapped to a point $(x_1(v), x_2(v))$ $x_i(v) =$ number of vertices reachable from v in G_i

 $u \rightsquigarrow_{\mathcal{J}} v \Leftrightarrow (x_1(u), x_2(u)) \le (x_1(v), x_2(v))$

point-dominance problem $\Rightarrow \langle n, k \rangle$ structure

(e.g., Cartesian trees [Gabow, Bentley and Tarjan '84])

Given two digraphs G_1 and G_2 with *n* vertices we can construct join-reachability data structures with the following efficiency:

- (a) $\langle n, k \rangle$ when G_1 is an unoriented tree and G_2 is an unoriented dipath.
- (b) $\langle n, \log n + k \rangle$ when G_1 is an out-tree and G_2 is an unoriented tree.
- (c) $\langle n \log^{\varepsilon} n, \log \log n + k \rangle$ (for any constant $\varepsilon > 0$), when G_1 and G_2 are unoriented trees.
- (d) $\langle n \log n, k \log n \rangle$ when G_1 is planar digraph and G_2 is an unoriented tree.
- (e) $\langle n \log^2 n, k \log^2 n \rangle$ when both G_1 and G_2 are planar digraphs.
- (f) $\langle n\kappa_1, k \rangle$ when G_1 is a general digraph that can be covered with κ_1 vertexdisjoint dipaths and G_2 is an unoriented tree.
- (g) $\langle n(\kappa_1 + \log n), k\kappa_1 \log n \rangle$ or $\langle n\kappa_1 \log n, k \log n \rangle$ when G_1 is a general digraph that can be covered with κ_1 vertex-disjoint dipaths and G_2 is planar digraph.
- (h) $\langle n(\kappa_1 + \kappa_2), \kappa_1 \kappa_2 + k \rangle$ or $\langle n\kappa_1 \kappa_2, k \rangle$ when each G_i , i = 1, 2, is a digraph that can be covered with κ_i vertex-disjoint dipaths.

Concluding Remarks

More Problems:

- Complexity of computing smallest $\mathcal{J}(\mathcal{G})$ for simple graph classes
- Approximate smallest $\mathcal{J}(\mathcal{G})$ for simple graph classes
- Data structures supporting more general join-reachability queries e.g., report all a such that $a \rightsquigarrow_{G_1} b$ and $a \rightsquigarrow_{G_2} c$

Thank You!