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Graph Reachability

(Directed) Graph G = (V, A)
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Goal: Construct a Data Structure that answers reachability queries efficiently



Graph Reachability

Reachability Query : a ~~ b ?
Is vertex b reachable from vertex a ?

(Is there a path in G from a to b ?)

Goal: Construct a Data Structure that answers reachability queries efficiently

Efficiency of a Data Structure: (s(n), g(n))
O(s(n)) storage space

O(q(n)) query time

Easy : Efficiency (n*,1) or (m+mn,m+n)

So far achieved only for restricted
Hard : Efficiency close to (m + n,1) graph classes (e.g., trees, planar
graphs [Thorup, JACM 2004])

n=|V],m=|A



Join-Reachability

Collection of graphs G = {G,G>,..., Gy}

Join-Reachability Graph

a~>bin J(G)
0

a~b inal G; € G

Join-Reachability Query :
Report all vertices that reach 6 in all graphs G; € G



Join-Reachability
Collection of graphs G = {G,Ga,...,Gy}

Join-Reachability Graph

a~>bin J(G)
0

a~b inal G; € G

Join-Reachability Query :
Report all vertices that reach 6 in all graphs G; € G

Combinatorial Problem : « Compute a 7(G) of small size |V (7(G))| + |A(J(G))]
- Compute/approximate smallest 7 (G)

Data Structure Problem : « Compute an efficient data structure for 7 (G)
- report all vertices g s.t. a ~~ b for a query vertex b
- small space



Join-Reachability
Collection of graphs G = {G,Ga,...,Gy}

Join-Reachability Query :

Report all vertices that reach b in all graphs G; € G

Applications: Graph Algorithms, Data Bases, Natural Language Processing,...

Example: Rank Aggregation

A Ranking 1 Ranking A B
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Given a collection of rankings of some items, we would like to report fast all
items ranked higher than a query item in all rankings.



Motivation

Computing frequency dominators [Lee, Resnick, Bond, and McKinley ‘07, G. ‘08]




Motivation

Applications of Independent Spanning Trees [G. and Tarjan 2005, 2011]

Any flowgraph G(s) = (V, A, s) has two spanning trees, B and R, such that
for any v € V
Bls,v] N R[s,v] = dom(v)




Motivation
Computing Pairs of Disjoint s-t Paths [G. 2010]

Data Structure : Given rooted trees S; and S5 on the same nodes
support the operations:

(i) Testif Si|[z1,y1] contains xs.

(i) Return the topmost vertex in Sy(z1, y1].

(iii)y Testif Si[xy1,y1] and Sa|xs2,ys] contain a common vertex.

(iv) Find the lowest ancestor of %2 in Sy[xs,ys] thatis contained in Si|z1, 1]

(v) Find the highest ancestor of %2 in Ss[zs,y-]| thatis contained in Sy[x1,y1].
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Computational Morphological Analysis

Morphological patterns as graph reachability problems

ATTOAUp-

-av*-




Join-Reachability

We consider the case of two digraphs: G = {G1, G2}

a~>bin J(G)
0

a~b in G; and Gs
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Thorup’s Layer Decomposition

Reduces digraph reachabiliy to reachability in 2-layered digraphs AT s g




Thorup’s Layer Decomposition

Reduces digraph reachabiliy to reachability in 2-layered digraphs AT s g

2-layered digraph : Has a 2-layered spanning tree, i.e. every undirected
root-to-leaf path consists of 2 directed paths



Thorup’s Layer Decomposition

Reduces digraph reachabiliy to reachability in 2-layered digraphs AT s g

Vo arbitrary vertex

O
chosen as root



Thorup’s Layer Decomposition

Reduces digraph reachabiliy to reachability in 2-layered digraphs AT s g

e TR 7 vertices reachable
v from Vo



Thorup’s Layer Decomposition

Reduces digraph reachabiliy to reachability in 2-layered digraphs AT s g
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Thorup’s Layer Decomposition

Reduces digraph reachabiliy to reachability in 2-layered digraphs AT s g
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Thorup’s Layer Decomposition
Reduces digraph reachabiliy to reachability in 2-layered digraphs AT s g
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Thorup’s Layer Decomposition

Reduces digraph reachabiliy to reachability in 2-layered digraphs G s

G" isinduced by L; and L;
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We can use this method to reduce general join-reachabiliy to
join-reachability in 2-layered digraphs



Removing Cycles

Reduces digraph (join-)reachabiliy to (join-)reachability in acyclic digraphs




Removing Cycles

Reduces digraph (join-)reachabiliy to (join-)reachability in acyclic digraphs

b {a,b,c,d}

{e, [, g}
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strong components
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Removing Cycles

Reduces digraph (join-)reachabiliy to (join-)reachability in acyclic digraphs
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Join-Reachability Graph

Collection of graphs G = {G1, G5}

a~>bin J(G)
0

a~b in G; and G>




Join-Reachability Graph: Computational Complexity
Collection of graphs G = {G, G5}

a~>bin J(G)
0

a~b in G; and G>

Two cases: « V(J(G)) =V (Steiner vertices not allowed)

smallest J(G) is polynomial-time computable

- V(J(G)) DV (Steiner vertices allowed)
smallest J(G) is NP-hard to compute



Join-Reachability Graph

Steiner vertices V' (J) \ V can significantly reduce the size of 7

VAV~ V(J)oV



Join-Reachability Graph: Combinatorial Complexity

Collection of graphs G = {G1, G5}

Join-Reachability Graph

a~>bin J(G)
0

a~b in G; and Gs

We bound the size of 7(G) when Steiner vertices are allowed

Main Idea: Geometric representation of join-reachability for paths and trees



Join-Reachability Graph: Combinatorial Complexity

Construction of a compact join-reachability graph 7(G) for paths
Each vertex v € V' is mapped to a point (z1(v), z2(v))

z;(v) =number of vertices reachable from v in G;

0l a O 0 a
116 O 1] e 7 Oh

6 d O
26() 26 5 Qf
340 [y 4 —h@

’ 3 O g

4 e O 4] b 5 @
5/ f @ 5] f 1 o€

0 a
6 g &  [6]d b

et 4 7

1hd [k : SR



Join-Reachability Graph: Combinatorial Complexity

Construction of a compact join-reachability graph 7(G) for paths
Each vertex v € V' is mapped to a point (z1(v), z2(v))

z;(v) =number of vertices reachable from v in G;

u~g v (21(u),22(u)) < (21(v), 22(v))
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Join-Reachability Graph: Combinatorial Complexity

Construction of a compact join-reachability graph 7(G) for paths
Each vertex v € V' is mapped to a point (z1(v), z2(v))

z;(v) = number of vertices reachable from v in G
U~ g v (z1(u),z2(u) < (21(v), 22(V))

j, Foreach v € V, such that z1(v) > |n/2| add Steiner

>0
d o vertex s with coordinates (|n2/2], z2(v)) and arc (s, v)
>0/
b O
O—>04¢g
O
O e
a O

0 123 456 7
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Join-Reachability Graph: Combinatorial Complexity

Construction of a compact join-reachability graph 7(G) for paths
Each vertex v € V' is mapped to a point (z1(v), z2(v))

z;(v) = number of vertices reachable from v in G
U~ g v (z1(u),z2(u) < (21(v), 22(V))

j, Foreach v € V, such that z1(v) > |n/2| add Steiner

—=0
d o vertex s with coordinates (|n2/2], z2(v)) and arc (s, v)
>0 f Connect Steiner vertices in a bottom-up path
bO
)
O
(4
a O

0 123 456 7
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Join-Reachability Graph: Combinatorial Complexity

Construction of a compact join-reachability graph 7(G) for paths

Each vertex v € V' is mapped to a point (z1(v), z2(v))
z;(v) = number of vertices reachable from v in G;

u~g v (21(u),22(u)) < (21(v), 22(v))

j, Foreach v € V, such that z1(v) > |n/2| add Steiner

d O/’7 vertex s with coordinates (|n2/2], z2(v)) and arc (s, v)
O/<>>Of Connect Steiner vertices in a bottom-up path
b
g For each v € V, such that z1(v) < [n/2] SRl (v, s)
c s = nearest Steiner neighbor with x5(s) < z5(v)
€

0 123 456 7
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Join-Reachability Graph: Combinatorial Complexity

Construction of a compact join-reachability graph 7(G) for paths

Each vertex v € V' is mapped to a point (z1(v), z2(v))
z;(v) = number of vertices reachable from v in G;

u~g v (21(u),22(u)) < (21(v), 22(v))

j, Foreach v € V, such that z1(v) > |n/2| add Steiner

d O/’7 vertex s with coordinates (|n2/2], z2(v)) and arc (s, v)

Q/<>>Of Connect Steiner vertices in a bottom-up path
b

g For each v € V, such that z1(v) < |n/2] Bl (v, 5)
c s = nearest Steiner neighbor with x5(s) < z5(v)

B Use recursion forthesets L ={v eV | z:(v) < n/2}
and R={veV |z(v) >n/2}
0 12 3 4 5 6 7

Upper Bound: O(n) arcs + vertices per recursion level = |7 (G)| = O(nlogn)
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Join-Reachability Graph: Combinatorial Complexity

Construction of a compact join-reachability graph 7(G) for paths

Each vertex v € V' is mapped to a point (z1(v), z2(v))
z;(v) = number of vertices reachable from v in G;

u~g v (21(u),22(u)) < (21(v), 22(v))

j, Foreach v € V, such that z1(v) > |n/2| add Steiner

d O/’7 vertex s with coordinates (|n2/2], z2(v)) and arc (s, v)

Q/<>>Of Connect Steiner vertices in a bottom-up path
b

g  Foreach v € V,suchthat z1(v) < [n/2] addarc (v, s)
c s = nearest Steiner neighbor with x5(s) < z5(v)

B Use recursion forthesets L ={v eV | z:(v) < n/2}
and R={veV |z(v) >n/2}
0 123 4 5 6 7
Upper Bound: O(n) arcs + vertices per recursion level = |7 (G)| = O(nlogn)

Lower Bound : There are instances for which |7 (G)| = Q(nlogn)



Join-Reachability Graph: Combinatorial Complexity

Construction of a compact join-reachability graph 7 (G) for trees
Each vertex v € V' is mapped to a rectangle R(v) = I1(v) x I3(v)
I;(v) = [si(v), t;(v)] = depth-first search interval of v in G;
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Join-Reachability Graph: Combinatorial Complexity

Construction of a compact join-reachability graph 7 (G) for trees
Each vertex v € V' is mapped to a rectangle R(v) = I1(v) x I3(v)
I;(v) = [si(v), t;(v)] = depth-first search interval of v in G;

(G, =out-tree, G4 =outtree : u~7v< R(u) O R(v)

[17 16] a 16 C
2,11] b h[12,15] 15 a
14
3,10] ¢ g[13,14] 15 s
[4,7] d e [8,9] 12
11
2 W ey & d
(&
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3,10] d h[11,14] 5
4,9] ¢ 912,13
[5,8] b 2
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Join-Reachability Graph: Combinatorial Complexity

Construction of a compact join-reachability graph 7 (G) for trees
Each vertex v € V' is mapped to a rectangle R(v) = I1(v) x I3(v)
I;(v) = [si(v), t;(v)] = depth-first search interval of v in G;

G1 = in-tree, Gy =intree : wu~~7v< R(u) C R(v)

[1,16] a

16 C
2,11] b h[12,15] 15 a
14
[3,10] ¢ g[13,14] 14 4
g
[4,7] d e [8,9] 12
11
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[1,16] : b
[2,15] a Z i
3,10] d h[11,14] 5
4,9] ¢ 912,13
[5,8] b 2
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Join-Reachability Graph: Combinatorial Complexity

Construction of a compact join-reachability graph 7 (G) for trees

Each vertex v € V' is mapped to a rectangle R(v) = I1(v) x I3(v)

I;(v) = [si(v), t;(v)] = depth-first search interval of v in G;

G1 =out-tree, Gy =intree : u~7 v < (I[1(u) x t1(uw) N (s1(v) x Iy (v)) # 0
[1,16] a

16
C
2,11] b h[12,15] 15 a
14
[3,10] ¢ g[13,14] 3 4
g
[4,7]d o
11
5,6 10
| [e]
[1,16] c : : b
[2,15] a Z f
3,10] d h[11,14] 5
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Join-Reachability Graph: Combinatorial Complexity

Given two digraphs G; and G5 with n vertices, the following bounds on the size
of the join-reachability graph J({G1,G2}) hold:

(a) ©(nlogn) in the worst case when (G; is an unoriented tree and Gs is an
unoriented dipath.

(b) O(nlog®n) when both G; and G» are unoriented trees.
(¢) O(nlog®n) when G, is a planar digraph and G5 is an unoriented dipath.
(d) O(nlog®n) when both G and G are planar digraphs.
(e) O(kinlogn) when G, is a digraph that can be covered with ki vertex-

disjoint dipaths and (3 is an unoriented dipath.

(f) O(kinlog®n) when G, is a digraph that can be covered with k; vertex-
disjoint dipaths and G5 is a planar graph.

(g) O(k1kenlogn) when each G;, i = 1,2, is a digraph that can be covered
with k; vertex-disjoint dipaths.
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Join-Reachability Data Structures

Collection of graphs G = {G,G>,..., Gy}

Join-Reachability Query :

Report all vertices that reach b in all graphs G; € G

(Vertices a such thatthereisa a ~~ b pathinall G; € G )

Efficiency of a Data Structure: (s(n), ¢(n, k))
s(n) storage space

q(n,k) timetoreportk vertices



Join-Reachability Data Structures

Construction for paths
Each vertex v € V' is mapped to a point (z1(v), z2(v))

z;(v) = number of vertices reachable from v in G;

u~g v (21(u),22(u)) < (21(v), 22(v))
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Join-Reachability Data Structures

Construction for paths

Each vertex v € V' is mapped to a point (z1(v), z2(v))

z;(v) = number of vertices reachable from v in G;

u~g v (21(u),22(u)) < (21(v), 22(v))

aQ [0]ao0
b O Tlie '@ "7 Oh  Point-dominance problem
e d = (n, k) structure
c O 2fc @ g ’ o f . k)
o ; (e.g., Cartesian trees [Gabow,
@  1°219®. 4 O L Bentley and Tarjan ‘84])
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Join-Reachability Data Structures

Given two digraphs G; and G, with n vertices we can construct join-reachability
data structures with the following efficiency:

(a) (n,k) when GG; is an unoriented tree and G4 is an unoriented dipath.
(b) (n,logn + k) when G is an out-tree and G5 is an unoriented tree.

(¢) (nlog®n,loglogn + k) (for any constant € > 0), when G; and G5 are
unoriented trees.

(d) {
(e) (nlog®n,klog®n) when both G; and G5 are planar digraphs.
(

(f)

nlogn, klogn) when GG is planar digraph and G is an unoriented tree.

nki, k) when Gy is a general digraph that can be covered with x; vertex-
disjoint dipaths and G» is an unoriented tree.

(g) (n(ky + logn), krilogn) or (nkylogn,klogn) when (G is a general di-
graph that can be covered with x, vertex-disjoint dipaths and G- is planar
digraph.

(h) (n(k1 + K2),k1k2 + k) or (nk1Kke, k) when each G;, ¢ = 1,2, is a digraph
that can be covered with x; vertex-disjoint dipaths.



Concluding Remarks

More Problems:
« Complexity of computing smallest 7(G) for simple graph classes
- Approximate smallest 7(G) for simple graph classes

« Data structures supporting more general join-reachability queries

e.g., reportall @ suchthat a ~~g, b and a ~~q, c



Thank You!




