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Vertex Connectivity

Strongly connected digraph

k-vertex connected digraph

contains an        path for any pair

the removal of any subset 

leaves the graph strongly connected

• Compute vertex connectivity (largest     such that       is     vertex connected)

• Test if the given digraph is     vertex connected

Basic problems :



Vertex Connectivity

• Compute vertex connectivity         largest     such that       is     vertex connected

• Test if the given digraph is     vertex connected

Basic problems :

[Gabow 2006]

[Henzinger, Rao and Gabow 2000]

with error probability

= matrix multiplication time

with error probability

expected

[Cheriyan and Reif 1994]



Vertex Connectivity

Undirected graphs:                     algorithms for testing 

[Tarjan 1972]

[Hopcroft and Tarjan 1973]

Directed graphs:                    algorithm for testing              ?



Results

time algorithm for testing     vertex connectivity

space data structure :     

compute two vertex-disjoint        paths in                    time 

report the two paths,      and     , in                         time 



Vertex Connectivity

vertex connected digraph

the removal of any subset 

leaves the graph strongly connected

is vertex connected
contains      vertex-disjoint         paths

for any 

From Menger‟s theorem : 



2-Vertex Connectivity

vertex connected digraph

the removal of at most one vertex

leaves the graph strongly connected

If        is strongly connected but not vertex connected : 

paths contain a common vertex

There are                 such that all
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dominates if every path from    to  includes   

Flowgraphs and Dominators

set of vertices that dominate

Application areas : Program optimization, VLSI testing, theoretical biology,

Flowgraph :  all vertices are reachable from start vertex

Trivial dominators :

distributed systems, constraint programming



Flowgraphs and Dominators

dominator tree of

dominates if every path from    to  includes   

Flowgraph :  all vertices are reachable from start vertex

algorithm:  [Lengauer and Tarjan ‟79]

algorithms:

[Buchsbaum, Kaplan, Rogers, and Westbrook „04]

[G., and Tarjan „04]

[Alstrup, Harel, Lauridsen, and Thorup „97]
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2-Vertex Connectivity

Verification of trivial dominators:                     time  [G. and Tarjan 2005] 

Total running time:
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Vertex-Disjoint s-t Paths

Given a digraph                      how fast can we compute a pair of

vertex-disjoint        paths?

time : “vertex-splitting” + “flow augmentation” 

We can get a more efficient solution when      is vertex connected

• Use a vertex connected spanning subgraph of       with            arcs

[Cheriyan and Thurimella 2000] :                approximation of the minimum 

• Use pairs of independent trees

vertex connected spanning subgraph in

time



Vertex-Disjoint s-t Paths
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Vertex-Disjoint s-t Paths

independent

trees

the two trees can be computed in linear time 



Vertex-Disjoint s-t Paths

Implies a linear-time algorithm for computing a     vertex connected

spanning subgraph with            arcs approximation



Vertex-Disjoint s-t Paths

Main Idea :  Use pairs of independent trees rooted at      and     .



Vertex-Disjoint s-t Paths

We use a pair of independent spanning trees for each of the flowgraphs



2-Vertex Connectivity

vertex-disjoint         paths
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2-Vertex Connectivity

vertex-disjoint         paths

vertex-disjoint         paths

Suppose

Let       be the first vertex on                such that

Consider

and are vertex-disjoint        paths



2-Vertex Connectivity

Data Structure :  Given rooted trees       and        on the same nodes

(i)  Test if                     contains      .

(ii)  Return the topmost vertex in                  .

support the operations:

(iii)  Test if                     and                    contain a common vertex.

(iv)  Find the lowest ancestor of        in                     that is contained in                  .

(v)  Find the highest ancestor of        in                    that is contained in                  .



2-Vertex Connectivity

Data Structure :  Given rooted trees       and        on the same nodes

(i)  Test if                     contains      .

(ii)  Return the topmost vertex in                  .

support the operations:

(iii)  Test if                     and                    contain a common vertex.

(iv)  Find the lowest ancestor of        in                     that is contained in                  .

(v)  Find the highest ancestor of        in                    that is contained in                  .

• A query uses a constant number of these operations.

• We give an            space data structure with                     time per operation.
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2-Vertex Connectivity
point enclosure problem



2-Vertex Connectivity
point enclosure problem

Operation (v) : find the rectangle        such that

and is the farthest from                 in the vertical direction



Extensions

• Data structure for edge-disjoint paths

• Compute more than 2 disjoint paths


