Testing 2-Vertex-Connectivity
and
Computing Pairs of Vertex-Disjoint Paths

N

Loukas Georgiadis
University of Western Macedonia, Greece

Vertex Connectivity

Strongly connected digraph G = (V, A)
contains an s-t path for any pair s,t € V'

k-vertex connected digraph G = (V, A)
the removal of any subset X C V| X| <k —1
leaves the graph strongly connected

Basic problems :
« Compute vertex connectivity (largest £ such that G is k-vertex connected)
» Test if the given digraph is k-vertex connected

Vertex Connectivity

Basic problems :

« Compute vertex connectivity xk = largest k such that (G is k-vertex connected

O((n + min{x"/2, kn®>*})m) [Gabow 2006]

* Test if the given digraph is k-vertex connected

(1.3
el L }[Henzinger, Rao and Gabow 2000]
O(mmn) with error probability 1/2

(
O((M(n) +nM(k))logn) with error probability 1/n
((

} [Cheriyan and Reif 1994]
O((M(n) +nM(k))k) expected

n = |V],m = |A] M (n) = matrix multiplication time (= O(n?37%))

Vertex Connectivity

Undirected graphs: O(m + n) algorithms for testing
k=2 [Tarjan 1972]

k =3 [Hopcroft and Tarjan 1973]

Directed graphs: O(m + n) algorithm for testing k=2 ?

n=|V|,m=|A

Results

O(m + n)-time algorithm for testing 2-vertex connectivity

i

compute two vertex-disjoint s-t paths in O(log2 n) time
report the two paths, P and @, in O(|P| + |Q]) time

O(n)-space data structure :

n=|V|,m=|A

Vertex Connectivity

k-vertex connected digraph G = (V, A)
the removal of any subset X C V| X| <k —1

leaves the graph strongly connected

From Menger’s theorem :

: (G contains k£ vertex-disjoint s-t paths
G is k-vertex connected < J P

forany s,t € V

2-Vertex Connectivity

2-vertex connected digraph G = (V, A)

the removal of at most one vertex

leaves the graph strongly connected

If G is strongly connected but not 2-vertex connected :

S

There are s,t € V such that all
s-t paths contain a common vertex

WSt

2-Vertex Connectivity

2-vertex connected digraph G = (V, A)

the removal of at most one vertex

leaves the graph strongly connected

If G is strongly connected but not 2-vertex connected :

S

There are s,t € V such that all
s-t paths contain a common vertex

WSt

2-Vertex Connectivity

2-vertex connected digraph G = (V, A)

the removal of at most one vertex

leaves the graph strongly connected

If G is strongly connected but not 2-vertex connected :

There are s,t € V such that all
s-t paths contain a common vertex

WSt

Flowgraphs and Dominators

Flowgraph G(s) = (V, A, s) : all vertices are reachable from start vertex s

v dominates w if every path from s to w includes v

dom(w) : set of vertices that dominate w

Trivial dominators : s,w € dom(w)

Application areas : Program optimization, VLSI testing, theoretical biology,
distributed systems, constraint programming

Flowgraphs and Dominators

Flowgraph G(s) = (V, A, s) : all vertices are reachable from start vertex s

v dominates w if every path from s to w includes v

dominator tree of (7(s)

O(m()a(m, ?’L)) algorithm: [Lengauer and Tarjan ’79]

O(m 4+ n) algorithms:
[Alstrup, Harel, Lauridsen, and Thorup ‘97]

[Buchsbaum, Kaplan, Rogers, and Westbrook ‘04]
[G., and Tarjan ‘04]

2-Vertex Connectivity

Main Idea : Compute dominators in G(s) and G'(s) for arbitrary s € V

G" : has reversed arcs

dominator tree of G(a)

a

2-Vertex Connectivity

Main Idea : Compute dominators in G(s) and G'(s) for arbitrary s € V

G" : has reversed arcs

dominator tree of G(a)

2-Vertex Connectivity

Main Idea : Compute dominators in G(s) and G'(s) for arbitrary s € V

G" : has reversed arcs

dominator tree of G(a)

2-Vertex Connectivity

Main Idea : Compute dominators in G(s) and G'(s) for arbitrary s € V

G" : has reversed arcs

dominator tree of G(a)

2-Vertex Connectivity

Main Idea : Compute dominators in G(s) and G'(s) for arbitrary s € V

G" : has reversed arcs

dominator tree of (G" (a)

2-Vertex Connectivity

Algorithm
pick any vertex a € V' of the input digraph G = (V, A)
if G(a) has nontrivial dominators then return FALSE
if G"(a) has nontrivial dominators then return FALSE

if G — a is strongly connected then return TRUE

2-Vertex Connectivity

Algorithm
pick any vertex a € V' of the input digraph G = (V, A)
if G(a) has nontrivial dominators then return FALSE
if G"(a) has nontrivial dominators then return FALSE

if G — a is strongly connected then return TRUE

b a C
A

pl
Gt femrs)

2-Vertex Connectivity

Algorithm
pick any vertex a € V' of the input digraph G = (V, A)
if G(a) has nontrivial dominators then return FALSE
if G"(a) has nontrivial dominators then return FALSE

if G — a is strongly connected then return TRUE

Verification of trivial dominators: O(m + n) time [G. and Tarjan 2005]

Total running time: O(m + n)

Vertex-Disjoint s-t Paths

Given a digraph G = (V, A) how fast can we compute a pair of

vertex-disjoint s-t paths?

Vertex-Disjoint s-t Paths

Given a digraph G = (V, A) how fast can we compute a pair of

vertex-disjoint s-t paths?

O(m + n) time : “vertex-splitting” + “flow augmentation”

Vertex-Disjoint s-t Paths

Given a digraph G = (V, A) how fast can we compute a pair of

vertex-disjoint s-t paths?

O(m + n) time : “vertex-splitting” + “flow augmentation”

We can get a more efficient solution when G is 2-vertex connected

- Use a 2-vertex connected spanning subgraph of G with O(n) arcs

[Cheriyan and Thurimella 2000] : 1 + 1/k approximation of the minimum

k-vertex connected spanning subgraph in

O(km?) time

Vertex-Disjoint s-t Paths

Given a digraph G = (V, A) how fast can we compute a pair of

vertex-disjoint s-t paths?

O(m + n) time : “vertex-splitting” + “flow augmentation”

We can get a more efficient solution when G is 2-vertex connected

- Use a 2-vertex connected spanning subgraph of G with O(n) arcs

[Cheriyan and Thurimella 2000] : 1 + 1/k approximation of the minimum

k-vertex connected spanning subgraph in
O(km?) time

« Use pairs of independent trees

Vertex-Disjoint s-t Paths

Theorem [G. and Tarjan 2005] : Any flowgraph G(s) = (V, A,s) has two
spanning trees, B and R, such that for any v € V

Bls,v] N R[s,v] = dom(v)

the two trees can be computed in linear time

Vertex-Disjoint s-t Paths

Corollary : If G(s) has trivial dominators only then for any v € V

B(s,v) N R(s,v) =0

R
Qs
independent
trees Qa
Ob

the two trees can be computed in linear time

Vertex-Disjoint s-t Paths

2-Vertex Connectivity Algorithm
pick any vertex a € V' of the input digraph G = (V, A)
if G(a) has nontrivial dominators then return FALSE
if G"(a) has nontrivial dominators then return FALSE

if G — a is strongly connected then return TRUE

Implies a linear-time algorithm for computing a 2-vertex connected

spanning subgraph with < 6n arcs = 3-approximation

Vertex-Disjoint s-t Paths

2-Vertex Connectivity Algorithm
pick any vertex a € V of the input digraph G = (V, A)
if G(a) has nontrivial dominators then return FALSE
if G"(a) has nontrivial dominators then return FALSE

if G — a is strongly connected then return TRUE

Corollary : A digraph G = (V, A) is 2-vertex connected if and only if for
two arbitrary vertices a,b € V (a # b) the flowgraphs G(a), G"(a), G(b) and
G"(b) have trivial dominators only.

Main ldea : Use pairs of independent trees rooted at a and b .

Vertex-Disjoint s-t Paths

Corollary : A digraph G = (V, A) is 2-vertex connected if and only if for
two arbitrary vertices a,b € V (a # b) the flowgraphs G(a), G"(a), G(b) and
G"(b) have trivial dominators only.

We use a pair of independent spanning trees for each of the flowgraphs

G(a),G" (), G(1), G"(0)

e

a Q Q@ b
\ M

B

2-Vertex Connectivity

P, P> : vertex-disjoint a-t paths

Ps, P, : vertex-disjoint s-a paths

Suppose
Ps[s,a) N (Pi(a,t|U Psy(a,t]) #

0
Py(s,a) N (Pi(a,t) U Py(a,t)) =0

2-Vertex Connectivity

P, P> : vertex-disjoint a-t paths

Ps, P, : vertex-disjoint s-a paths

Suppose
Ps[s,a) N (Pi(a,t]U Ps(a,t]) #0
Py(s,a) N (Pi(a,t) U Py(a,t)) =0

Let = be the first vertex on Ps[s, a] such that
z € (Pi(a,t]U Pa(a,t]).

2-Vertex Connectivity

P, P> : vertex-disjoint a-t paths

Ps, P, : vertex-disjoint s-a paths

Suppose

Ps[s,a) N (Pi(a,t]U Ps(a,t]) #0
Py(s,a) N (Pi(a,t) U Py(a,t)) =0

Let = be the first vertex on Ps[s, a] such that
z € (Pi(a,t]U Pa(a,t]).

Consider z € Py(a,t| =

Ps[s,x] - Pi|x,t] and Pyls,al- Psla,t] are vertex-disjoint s-t paths

2-Vertex Connectivity

Data Structure : Given rooted trees S; and S5 on the same nodes
support the operations:

(i) Testif Si|z1,y1] contains zs.

(i) Return the topmost vertex in S1(z1,y1].

(iiiy Testif Si[x1,y1] and Sa[xs2,y2] contain a common vertex.

(iv) Find the lowest ancestor of %2 in Ss[xs,ys] thatis contained in Si[z1, 1]

(v) Find the highest ancestor of y2 in S3[z2,y2]| thatis contained in Sq[x1,y1].

L4 L2

Y1
Y2

2-Vertex Connectivity

Data Structure : Given rooted trees S; and S5 on the same nodes
support the operations:

(i) Testif Si|z1,y1] contains zs.

(i) Return the topmost vertex in S1(z1,y1].

(iiiy Testif Si[x1,y1] and Sa[xs2,y2] contain a common vertex.
(iv) Find the lowest ancestor of %2 in Ss[xs,ys] thatis contained in Si[z1, 1]

(v) Find the highest ancestor of y2 in S3[z2,y2]| thatis contained in Sq[x1,y1].

« A query uses a constant number of these operations.

. We give an O(n)- space data structure with O(log”n) time per operation.

2-Vertex Connectivity

2-Vertex Connectivity

[1,16] a
[2,11] b h[12,15]
3,10] ¢ g[13, 14]
[4,7]d e [8,9]
[576]f Sl
1,16] a
2,15] g
3,10] d f 11, 14]
4,9] e c [12,13]
5,8] b
6,7 h

2-Vertex Connectivity

[1,16] a
[2,11] b h[12,15]
3,10] ¢ g[13, 14]
[4,7]d e [8,9]
[576]f Sl
1,16] a
2,15] g
3,10] d f 11, 14]
4,9] e c [12,13]
5,8] b
6,7 h

16
15
14
13
12
11

—
o

= NN W P 1O~ 0o WO

123 45 6 78 9 101112131415 16

2-Vertex Connectivity

[19 16] a
[2,11] b h[12,15]
3,10] ¢ g[13, 14]
4,7]d e [8,9]
[596]f Y1 Sl
1,16] a
2,15] g @ 22
3,10] d f (11, 14]
4,9] e a2 3]
5,8] b
:67 7 h Y2 5'2

—_ o = e e e
S = NN W s Ot O

= NN W P 1O~ 0o WO

point enclosure problem

L1 X Lo g

Y1 X yo h

123 45 6 78 9 101112131415 16

2-Vertex Connectivity

[19 16] a
[2,11] b h[12,15]
3,10] ¢ g[13, 14]
4,7]d e [8,9]
[5')6]f Y1 Sl
1,16] a
2,15] 9 Q x2
3,10] d f (11, 14]
4,9] e c [12,13]
5,8] b
:67 7 h Y2 5'2

—_ o = e e e
S = NN W s Ot O

= NN W P 1O~ 0o WO

point enclosure problem

L1 X Lo g

123 45 6 78 9 101112131415 16

Operation (v) : find the rectangle R suchthat y1 X y2 € R C x1 X T3
and is the farthest from Y1 X Y2 in the vertical direction

Extensions

« Data structure for edge-disjoint paths

« Compute more than 2 disjoint paths

