
Testing 2-Vertex-Connectivity

and

Computing Pairs of Vertex-Disjoint Paths

Loukas Georgiadis
University of Western Macedonia, Greece

Vertex Connectivity

Strongly connected digraph

k-vertex connected digraph

contains an path for any pair

the removal of any subset

leaves the graph strongly connected

• Compute vertex connectivity (largest such that is vertex connected)

• Test if the given digraph is vertex connected

Basic problems :

Vertex Connectivity

• Compute vertex connectivity largest such that is vertex connected

• Test if the given digraph is vertex connected

Basic problems :

[Gabow 2006]

[Henzinger, Rao and Gabow 2000]

with error probability

= matrix multiplication time

with error probability

expected

[Cheriyan and Reif 1994]

Vertex Connectivity

Undirected graphs: algorithms for testing

[Tarjan 1972]

[Hopcroft and Tarjan 1973]

Directed graphs: algorithm for testing ?

Results

time algorithm for testing vertex connectivity

space data structure :

compute two vertex-disjoint paths in time

report the two paths, and , in time

Vertex Connectivity

vertex connected digraph

the removal of any subset

leaves the graph strongly connected

is vertex connected
contains vertex-disjoint paths

for any

From Menger‟s theorem :

2-Vertex Connectivity

vertex connected digraph

the removal of at most one vertex

leaves the graph strongly connected

If is strongly connected but not vertex connected :

paths contain a common vertex

There are such that all

2-Vertex Connectivity

vertex connected digraph

the removal of at most one vertex

leaves the graph strongly connected

If is strongly connected but not vertex connected :

paths contain a common vertex

There are such that all

2-Vertex Connectivity

vertex connected digraph

the removal of at most one vertex

leaves the graph strongly connected

If is strongly connected but not vertex connected :

paths contain a common vertex

There are such that all

dominates if every path from to includes

Flowgraphs and Dominators

set of vertices that dominate

Application areas : Program optimization, VLSI testing, theoretical biology,

Flowgraph : all vertices are reachable from start vertex

Trivial dominators :

distributed systems, constraint programming

Flowgraphs and Dominators

dominator tree of

dominates if every path from to includes

Flowgraph : all vertices are reachable from start vertex

algorithm: [Lengauer and Tarjan ‟79]

algorithms:

[Buchsbaum, Kaplan, Rogers, and Westbrook „04]

[G., and Tarjan „04]

[Alstrup, Harel, Lauridsen, and Thorup „97]

2-Vertex Connectivity

Main Idea : Compute dominators in and for arbitrary

dominator tree of

has reversed arcs

2-Vertex Connectivity

Main Idea : Compute dominators in and for arbitrary

dominator tree of

has reversed arcs

2-Vertex Connectivity

Main Idea : Compute dominators in and for arbitrary

has reversed arcs

dominator tree of

2-Vertex Connectivity

Main Idea : Compute dominators in and for arbitrary

has reversed arcs

dominator tree of

2-Vertex Connectivity

Main Idea : Compute dominators in and for arbitrary

dominator tree of

has reversed arcs

2-Vertex Connectivity

2-Vertex Connectivity

2-Vertex Connectivity

Verification of trivial dominators: time [G. and Tarjan 2005]

Total running time:

Vertex-Disjoint s-t Paths

Given a digraph how fast can we compute a pair of

vertex-disjoint paths?

Vertex-Disjoint s-t Paths

Given a digraph how fast can we compute a pair of

vertex-disjoint paths?

time : “vertex-splitting” + “flow augmentation”

Vertex-Disjoint s-t Paths

Given a digraph how fast can we compute a pair of

vertex-disjoint paths?

time : “vertex-splitting” + “flow augmentation”

We can get a more efficient solution when is vertex connected

• Use a vertex connected spanning subgraph of with arcs

[Cheriyan and Thurimella 2000] : approximation of the minimum

vertex connected spanning subgraph in

time

Vertex-Disjoint s-t Paths

Given a digraph how fast can we compute a pair of

vertex-disjoint paths?

time : “vertex-splitting” + “flow augmentation”

We can get a more efficient solution when is vertex connected

• Use a vertex connected spanning subgraph of with arcs

[Cheriyan and Thurimella 2000] : approximation of the minimum

• Use pairs of independent trees

vertex connected spanning subgraph in

time

Vertex-Disjoint s-t Paths

the two trees can be computed in linear time

Vertex-Disjoint s-t Paths

independent

trees

the two trees can be computed in linear time

Vertex-Disjoint s-t Paths

Implies a linear-time algorithm for computing a vertex connected

spanning subgraph with arcs approximation

Vertex-Disjoint s-t Paths

Main Idea : Use pairs of independent trees rooted at and .

Vertex-Disjoint s-t Paths

We use a pair of independent spanning trees for each of the flowgraphs

2-Vertex Connectivity

vertex-disjoint paths

vertex-disjoint paths

Suppose

2-Vertex Connectivity

vertex-disjoint paths

vertex-disjoint paths

Suppose

Let be the first vertex on such that

2-Vertex Connectivity

vertex-disjoint paths

vertex-disjoint paths

Suppose

Let be the first vertex on such that

Consider

and are vertex-disjoint paths

2-Vertex Connectivity

Data Structure : Given rooted trees and on the same nodes

(i) Test if contains .

(ii) Return the topmost vertex in .

support the operations:

(iii) Test if and contain a common vertex.

(iv) Find the lowest ancestor of in that is contained in .

(v) Find the highest ancestor of in that is contained in .

2-Vertex Connectivity

Data Structure : Given rooted trees and on the same nodes

(i) Test if contains .

(ii) Return the topmost vertex in .

support the operations:

(iii) Test if and contain a common vertex.

(iv) Find the lowest ancestor of in that is contained in .

(v) Find the highest ancestor of in that is contained in .

• A query uses a constant number of these operations.

• We give an space data structure with time per operation.

2-Vertex Connectivity

2-Vertex Connectivity

2-Vertex Connectivity

2-Vertex Connectivity
point enclosure problem

2-Vertex Connectivity
point enclosure problem

Operation (v) : find the rectangle such that

and is the farthest from in the vertical direction

Extensions

• Data structure for edge-disjoint paths

• Compute more than 2 disjoint paths

