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Abstract— In this paper, we propose a resolution enhancement
algorithm based on the Expectation Maximization (EM) frame-
work. The objective of resolution enhancement (super-resolution)
is to reconstruct a high-resolution image from a sequence of low-
resolution (LR) images, under the assumption that there exists
subpixel motion between the low-resolution frames.

EM based image restoration has been studied in previous work,
while its results can not be directly applied to the resolution
enhancement scenario because of the subsampling (decimation)
process in the acquisition model. This leads to a non-square
degradation matrix which is not circulant as in the restoration
case and hence cannot be diagonalized and operated on by the
EM algorithm in the frequency domain.

To overcome this difficulty, we propose to reorganize and
interlace the low-resolution frames to construct an interlaced
image using the registration parameters. This interlaced image
is equivalent to a uniform blur process of the PSF blurred image.
Now the resolution enhancement problem reduces to a restoration
problem with two low-pass filters to deblur: one is the blur
due to the point spread function (PSF) of the optical lens, and
the other the uniform blur due to the decimation matrix. EM
based restoration algorithm is thus computed efficiently in the
frequency domain, considering the inaccurate estimate of the PSF
and unknown power spectrum of both the high-resolution image
and noise. Simulations using synthetic images are implemented
to verify the proposed algorithm and conclusions are drawn.

I. I NTRODUCTION

The goal of resolution enhancement (super-resolution) is
to estimate a high-resolution image from a sequence of low-
resolution images while also compensating for blurring due to
the point spread function of the camera lens and the effect of
the finite size of the photo-detectors, as well as additive noise
introduced by the capturing process. Resolution enhancement
using multiple frames is possible when there exists subpixel
motion between the captured frames. Thus, each of the frames
provides a unique look into the scene.

In many practical applications, the blurring process is
unknown or only partially known. Deblur, or deconvolution,
is an important step to reconstruct a high-resolution image
from the degraded low-resolution image sequence. There has
been extensive work on deblur with partially known blur or
totally unknown blur (blind deconvolution) [1]. The deconvo-
lution process can be categorized into two classes: methods
with separate blur identification as a disjoint procedure from
restoration/super-resolution, and methods which combines blur
identification and restoration/super-resolution in one process.
The methods in the first class tend to be computationally
simpler.

In this paper, we concentrate on a special super-resolution
case. We assume that the blur is space invariant and partially
known for the low-resolution image sequence; the subpixel
motion of each low-resolution frame is pure global translation
on the high-resolution grid. These assumptions are limiting
but quite practical in some real applications. For this special
case, we propose a super-resolution algorithm using a first
class EM based deconvolution. The rest of the paper is
presented as follows: in section II, we propose to construct a
squared and semiblock circulant (SBC) matrix from the low-
resolution frames; the obtained data are interlaced to the high-
resolution grid; in section III, EM based restoration algorithm
is implemented in the high resolution grid with two blurring
processes to deconvolve. In section IV, experimental results
are presented to verify the proposed algorithm and finally
conclusion and future work are discussed in section V.

II. I NTERLACED HIGH-RESOLUTION IMAGE FROM

LOW-RESOLUTIONFRAMES

The image degradation process is modeled by a motion,
linear blur, subsampling by pixel averaging and an additive
Gaussian noise process [2], [3], [4]. All vectors are ordered
lexicographically. Assume thatp low-resolution frames are
observed, each of sizeN1 ×N2. The desired high-resolution
image z is of size N = L1N1 × L2N2 where L1 and L2

represent the down-sampling factors in the horizontal and ver-
tical directions, respectively. Thus, the observed low-resolution
images are related to the high-resolution (HR) image through
motion shift, blurring and subsampling. Let thekth low-
resolution frame be denoted asyk = [yk,1, yk,2, . . . , yk,M ]T

for k = 1, 2, . . . , p where M = N1N2. The full set of p
observed low-resolution images can be denoted as

y = [yT
1 ,yT

2 , . . . ,yT
p ]T = [y1, y2, . . . , ypM ]T . (1)

The observed low-resolution frames are related to the high-
resolution image through the following model:

yk,m =
N∑

r=1

wk,m,r(sk)zr + ηk,m, (2)

for m = 1, 2, . . . , M and k = 1, 2, . . . , p. The weight
wk,m,r(sk) represents the “contribution” of therth high-
resolution pixel to themth low-resolution observed pixel of
the kth frame. The vectorsk = [sk,1, sk,2, . . . , sk,K ]T , is the
K registration parameters for framek, measured in reference



to a fixed high resolution grid. The termηk,m represents
additive noise samples that is assumed to be independent
and identically distributed (i.i.d.) Gaussian noise samples with
varianceσ2

η. The system can be modeled in matrix notation as

y = Wzz + n. (3)

In equation (3), the degradation matrix

Wz = [Wz,1,Wz,2, · · · ,Wz,k]T (4)

performs the operation of motion, blur and subsampling.
ThereforeWz for framek can be written as:

Wz,k = SBkMk, (5)

where S is the N1N2 × N subsampling matrix,Bk is the
N×N blurring matrix, andMk is the motion matrix. The PSF
of blurring is assumed to be space-invariant, normalized and
having non-negative elements within a 2-D rectangular support
l1× l2. In this paper, for the special case under consideration,
we have same space invariant blur for each frame and global
translation shift of the subpixel motion among them. Under
these assumptions,Bk is a Tikhonov matrix and approximately
semiblock circulant (SBC). Also, we can exchange the order
of the motion and blur in (5) such thatWz,k = SMkBk Thus,
each frame can be modeled as

yk = Wz,kz + nk = SMkBz + nk. (6)

We drop the subindexk from Bk from above equation. MAP
based super-resolutions have studied in our previous work [2],
[3], with the assumption that the PSF is well known. However,
in many applications, the blur due to the PSF is only partially
known. In this paper, for the over-determined system which
has enough low-resolution frames available,p ≥ L1 × L1,
we propose to first reorganize and interlace the low-resolution
frames to construct an interlaced image using the registration
parameters. This process can be summarized as:

(i) stabilize the low-resolution frames. One frame, usually
the first frame, is used as the reference frame, which has
motion [0, 0] on the high-resolution grid. Other frames are
stabilized to have motion vector within the Cartesian product
set {0, 1, . . . , L1 − 1} × {0, 1, . . . , L2 − 1} on the high-
resolution grid, which is equivalent to subpixel motion on the
low-resolution grid with resolution1

L1
and 1

L2
on the two axes.

(ii) If enough frames exist and all the combinations in the
above Cartesian product set exist, we can select thoseL1×L2

stabilized frames bearing unique motion from the Cartesian
product set. These frames all together bear the information
of the PSF blurred original high-resolution image,Bz, with
different translation shift among them.

(iii) Motion compensate and interlace the aboveL1 × L2

stabilized frames into the high-resolution grid. The result, an
interlaced high-resolution image, can be formed from the PSF
blurred original high-resolution image,Bz, via subpixel shift
and averaging, which is also equivalent to the uniform blur
convolution with support sizeL1×L2. Note here we also use
the symmetric property of the uniform blur: 2-D flip of the
uniform blur remain unchanged.

(iv) Now we can rewrite the system model as

ȳ = BuBz + n̄. (7)

Here Bu stands for the uniform blur matrix with sizeN ×
N , which is squared and approximately semiblock circulant
(SBC). The multiplication of two SBC matrices,BuB, is also
a SBC matrix [5]. The interlacing process will not change
the variance of the interlaced AWGN noise,n̄. The interlaced
imageȳ now has sizeN ×1, same size as the high-resolution
imagez. In case there are notL1×L2 stabilized frames formed
in step (ii) available, a local interpolation can be used in step
(iii) for a smoothed solution. Now the resolution enhancement
problem reduces to a restoration problem with two low-pass
filters to deblur: one is the blur due to the point spread function
(PSF) of the optical lens, and the other is the uniform blur due
to the decimation (subsampling by pixel averaging).

III. EM B ASED SUPER-RESOLUTION

Expectation Maximization (EM) based image restoration
has been studied in previous work [6], [7]. The EM algorithm
is an iterative approach for computing maximum-likelihood
(ML) estimates of the unknown parameters. Restoration from
partially known blur using the EM algorithm was proposed in
[7]. For a system modeled as

y = Hz + n, (8)

the conditional mean of the restored image is updated in the
frequency domain in a LMMSE fashion E-step as [7], [8]:

Mz|ȳ =
H̄∗(i)Sz(i)Y (i)

|H̄(i)|2Sz(i) + NS∆h(i)Sz(i) + S∆y(i)
, (9)

for i = 1, . . . , N . Here Sz, S∆h and S∆y are the DFT of
the covariance matricesRz, R∆h andR∆y, respectively. The
EM algorithm is useful for its capability to identify these
unknown covariance matrices, while simultaneously restoring
the degraded image.

However, the results from image restoration can not be di-
rectly applied to the resolution enhancement scenario, because
of the subsampling (decimation) process in the acquisition
model. This leads to a non-square degradation matrix which
is not circulant as in the restoration case and hence cannot
be diagonalized and operated on by the EM algorithm in
the frequency domain [9]. In previous work by Woods et.
al. [9], an interlaced observation is also formed and the EM
algorithm is applied, however, their model limits the unknown
parameters in the PSF and registration and the expression
of these parameters doesn’t have a closed form. Gradient
desecent is used to calculate these parameter, while it will
bring some computation cost, and possibility of instability. In
our approach, after the process from above section, we have
overcome this difficulty. Comparing equations (7) and (8), we
apply transformH̄ = BuB = BuB̄ and get the E-step for
super-resolution as

Mz|ȳ =
B∗

u(i)B̄∗(i)Sz(i)Y (i)
|Bu(i)B̄(i)|2Sz(i) + NS∆h(i)Sz(i) + S∆y(i)

,

(10)



TABLE I

THREE CASES OF SYNTHETIC TEST FOR“L ENA”.

σ2 L1, L2 p sT
k = [sk,1, sk,2]

Case I 1.5 1 1 {0} × {0}
Case II 1.5 2 4 {0, 1} × {0, 1}
Case III 1.5 4 16 {0, 1, 2, 3} × {0, 1, 2, 3}

TABLE II

RESULTS OF“L ENA” USING THE THREE METHODS.

PSNR (dB) Bilinear interpolation EM LMMSE
Case I 26.4019 27.6598 29.0723
Case II 25.5224 27.8427 29.1170
Case III 23.4162 26.6088 27.4551

Similar transform can be made to other equations in the EM
procedure in [7] to extend the application from restoration to
super-resolution.

IV. EXPERIMENTAL RESULTS

A number of experiments were conducted, some of which
are presented here. To test the performance of our algorithms,
we first use the 256x256 “Lena” test image for a synthetic test.
The PSF is a Gaussian PSF with support size7×7 and variance
σ2 = 1.5. Three cases, Case I-III, as listed in Table I, are
tested, with Case I the EM based restoration. The PSF noise
and the AWGN noise are both gaussian type with bothSNRy

andSNRh fixed at 30dB. The global shiftsT
k belongs to the

vectors generated from the given Cartesian product listed in the
table. The PSNR of the reconstructed images for “Lena” using
three methods (Bilinear interpolation, LMMSE, EM) are listed
in Table 2. Here,PSNRHR is 10log10

2552

MSEHR
, where MSE

stands for the mean squared error between the original high-
resolution image and the estimated high-resolution image.

The original frame and the interlaced image are shown in
Fig. 1, 2. The reconstructed “Lena” image from bilinear inter-
polation (BI) of the first low-resolution frame, EM, LMMSE
in case II are shown in Fig. 3, 4 and 5. The PSNRs of the
reconstructed images using these three methods are listed in
Table II. From the results, we can see that our algorithm is
better than the bilinear interpolation and close to the LMMSE
results. The advantage over LMMSE is that our algorithm does
not need the power spectrum information of the original image
and the additive noise.

Next, we use the same setup as above, with upsampling
ratio L1 = L2 = 2, but fix SNRy at SNR=30dB and vary
SNRh. The plot of the PSNR for the reconstructed image
versusSNRh is shown in Fig. 6. Also, we fixSNRh at
SNR=30dB and varySNRy. The plot of the PSNR for the
reconstructed image versusSNRy is shown in Fig. 7.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we propose a resolution enhancement algo-
rithm based on the EM framework. we propose a two-stage
process: first to reorganize and interlace the low-resolution
frames to construct an interlaced image. This interlaced image
is equivalent to a uniform blur process of the PSF blurred

original high resolution image
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Fig. 1. Original image.

image. In the next stage, the resolution enhancement problem
reduces to a restoration problem with two low-pass filters to
deblur: one is the blur due to the point spread function (PSF)
of the optical lens, and the other is the uniform blur. The
EM based restoration algorithm can be efficiently computed
in the frequency domain to reduce the computational cost,
with partially know PSF blur information and unknown power
spectrum of the AWGN noise. Experimental results show that
our algorithm provides visually satisfying reconstructions. Fu-
ture work will take the more complicated case with inaccurate
registration, i.e., registration noise into consideration.
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Fig. 2. Interlaced image in high-resolution grid.
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Fig. 3. Bilinear interpolation of first low-resolution frame with upsampling
ratio 2.
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Fig. 4. Reconstruction of Lena image using EM with upsampling ratio 2.
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Fig. 5. Reconstruction of Lena image using LMMSE with upsampling ratio
2.
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Fig. 6. Plot of PSNR of the reconstructed high-resolution image vs. SNR
of the PSF noise.
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Fig. 7. Plot of PSNR of the reconstructed high-resolution image vs. SNR
of the AWGN noise.


