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Abstract—In this paper, we propose a resolution enhancement  In this paper, we concentrate on a special super-resolution
algorithm based on the Expectation Maximization (EM) frame- case. We assume that the blur is space invariant and partially
work. The objective of resolution enhancement (super-resolution) \own for the low-resolution image sequence; the subpixel
is to reconstruct a high-resolution image from a sequence of low- . . . ' .
resolution (LR) images, under the assumption that there exists motion Of, each Iow—resolu_tlon frame is pure global trangla.u-on
Subpixe| motion between the low-resolution frames. on the h|gh'resolut|0n gl’ld. These aSSUmptlonS are I|m|t|ng

EM based image restoration has been studied in previous work, but quite practical in some real applications. For this special
while its results can not be directly applied to the resolution case, we propose a super-resolution algorithm using a first
enhancement scenario because of the subsampling (decimation);|a3ss EM based deconvolution. The rest of the paper is

process in the acquisition model. This leads to a non-square resented as follows: in section |l we propose to construct a
degradation matrix which is not circulant as in the restoration P WS- 1 : , We prop u

case and hence cannot be diagonalized and operated on by thesquared and semiblock circulant (SBC) matrix from the low-
EM algorithm in the frequency domain. resolution frames; the obtained data are interlaced to the high-
~ To overcome this difficulty, we propose to reorganize and resolution grid; in section Ill, EM based restoration algorithm
interlace the low-resolution frames to construct an interlaced g implemented in the high resolution grid with two blurring

image using the registration parameters. This interlaced image . .
is equivalent to a uniform blur process of the PSF blurred image. processes to deconvolve. In section IV, experimental results

Now the resolution enhancement problem reduces to a restoration are presented to verify the proposed algorithm and finally

problem with two low-pass filters to deblur: one is the blur conclusion and future work are discussed in section V.

due to the point spread function (PSF) of the optical lens, and

the other the uniform blur due to the decimation matrix. EM Il. INTERLACED HIGH-RESOLUTIONIMAGE FROM

based restoration algorithm is thus computed efficiently in the LOW-RESOLUTION FRAMES

frequency domain, considering the inaccurate estimate of the PSF ) . . .

and unknown power spectrum of both the high-resolution image ~ The image degradation process is modeled by a motion,

and noise. Simulations using synthetic images are implemented linear blur, subsampling by pixel averaging and an additive

to verify the proposed algorithm and conclusions are drawn.  Gaussian noise process [2], [3], [4]. All vectors are ordered

lexicographically. Assume thagt low-resolution frames are

observed, each of siz&; x N,. The desired high-resolution
The goal of resolution enhancement (super-resolution) jffage z is of size N = L;N; x LyN, where L; and L,

to estimate a high-resolution image from a sequence of lovepresent the down-sampling factors in the horizontal and ver-

resolution images while also compensating for blurring due tigal directions, respectively. Thus, the observed low-resolution

the point spread function of the camera lens and the effectiafages are related to the high-resolution (HR) image through

the finite size of the photo-detectors, as well as additive noigetion shift, blurring and subsampling. Let thah low-

introduced by the capturing process. Resolution enhancemesiolution frame be denoted &% = [yk.1,Yk.2s-- -, Yk.nr]”

using multiple frames is possible when there exists subpiXer ©t = 1,2,...,p where M = N;N,. The full set ofp

motion between the captured frames. Thus, each of the frana@served low-resolution images can be denoted as

provides a unique look into the scene. o7 -
In many practical applications, the blurring process is y=[yiy2, ¥,

unknown or only partially known. Deblur, or deconvolution, e ghserved low-resolution frames are related to the high-

is an important step to reconstruct a high-resolution imaggsolution image through the following model:
from the degraded low-resolution image sequence. There has '

I. INTRODUCTION

"=y upmlt (D)

been extensive work on deblur with partially known blur or N
totally unknown blur (blind deconvolution) [1]. The deconvo- Yk,m = Zwk,mw(sk)'z?‘ + Nk,m 2)
lution process can be categorized into two classes: methods r=1
with separate blur identification as a disjoint procedure frofor m = 1,2,...,M and &k = 1,2,...,p. The weight

restoration/super-resolution, and methods which combines blu .., - (s;) represents the “contribution” of theth high-
identification and restoration/super-resolution in one processsolution pixel to thenth low-resolution observed pixel of
The methods in the first class tend to be computationalliye kth frame. The vectosy = [sk.1, Sk.2,- - -, 5k k|7, is the
simpler. K registration parameters for franke measured in reference



to a fixed high resolution grid. The termy,, represents (iv) Now we can rewrite the system model as
additive noise samples that is assumed to be independent - _ BB _ 7
and identically distributed (i.i.d.) Gaussian noise samples with y = Bubz + 1. (7)
variancea%. The system can be modeled in matrix notation ddere B,, stands for the uniform blur matrix with siz& x
v =W,z+n 3) N, which is squared and approximately semiblock circulant
z ' (SBC). The multiplication of two SBC matriceB,, B, is also
In equation (3), the degradation matrix a SBC matrix [5]. The interlacing process will not change
T the variance of the interlaced AWGN noisg, The interlaced
Wo = [Wot, Waz, o, Wi ) imagey now has sizeV x 1, same size as the high-resolution
performs the operation of motion, blur and subsamplingnagez. In case there are nét x L, stabilized frames formed
ThereforeW, for frame k can be written as: in step (ii) available, a local interpolation can be used in step
W. . — SB.M ®) (i) for a smoothed solution. Now the resolution enhancement
2,k RVR problem reduces to a restoration problem with two low-pass
where S is the Ny N, x N subsampling matrixBy is the filters to deblur: one is the blur due to the point spread function
N x N blurring matrix, andV, is the motion matrix. The PSF (PSF) of the optical lens, and the other is the uniform blur due
of blurring is assumed to be space-invariant, normalized atalthe decimation (subsampling by pixel averaging).
having non-negative elements within a 2-D rectangular support
. . . . I1l. EM BASED SUPER-RESOLUTION
l1 x ls. In this paper, for the special case under consideration, _ S ) )
we have same space invariant blur for each frame and globaFXpectation Maximization (EM) based image restoration
translation shift of the subpixel motion among them. Undd}as been studied in previous work [6], [7]. The EM algorithm
these assumptionB;, is a Tikhonov matrix and approximatelyis an iterative approach for computing maximum-likelihood
semiblock circulant (SBC). Also, we can exchange the orddylL) estimates of the unknown parameters. Restoration from
of the motion and blur in (5) such th&, , = SM, B, Thus, partially known blur using the EM algorithm was proposed in
each frame can be modeled as ' [7]. For a system modeled as

Y = Wy 1z +n, = SM;Bz + ny. (6) y =Hz+n, (8)

We drop the subindex from B;, from above equation. MAP the conditional mean of the restored image is updated in the
based super-resolutions have studied in our previous work [Fgduency domain in a LMMSE fashion E-step as [7], [8]:

[3], with the assumption that the PSF is well known. However, H*(i)S,(1)Y ()

in many applications, the blur due to the PSF is only partially Mgy = |H(7)[2S,(i) + NSan(i)Sa(i) + Say (i)’ @)
known. In this paper, for the over-determined system which

has enough low-resolution frames availaje> L, x L;, 1©° ¢ =1,....N. HereS;, Sx; and Say are the DFT of
we propose to first reorganize and interlace the |OW-I’ESO|utiH?F covariance matriceR,, Ran and Ray, respectively. The

frames to construct an interlaced image using the registrati'ép(I algorithm IS useful fpr Its cgpab!llty to identify thesg
parameters. This process can be summarized as: unknown covariance matrices, while simultaneously restoring

(i) stabilize the low-resolution frames. One frame, usuallgpe degraded image. , i i
owever, the results from image restoration can not be di-

the first frame, is used as the reference frame, which had? X . !
motion [0, 0] on the high-resolution grid. Other frames ar@ctly applied to the resolution enhancement scenario, because

stabilized to have motion vector within the Cartesian produef the supsampling (decimation) process in_ the acquisitipn
set {0,1,...,L; — 1} x {0,1,....Ly — 1} on the high- model. This leads to a non-square degradation matrix which

'@ not circulant as in the restoration case and hence cannot
be diagonalized and operated on by the EM algorithm in

(i) If enough frames exist and all the ‘combinations in thE,he frequency domain [9]. In' preyious work by Woods et.
above Cartesian product set exist, we can select thsel, al. [9_], an_lnterla_ced observation is also fqrmed and the EM
stabilized frames bearing unique motion from the Cartesi@@orithm is applied, however, their model limits the unknown

product set. These frames all together bear the informatiBg@meters in the PSF and registration and the expression
of the PSF blurred original high-resolution imagd@z, with © these parameters doesn't have a closed form. Gradient
different translation shift among them. desecent is used to calculate these parameter, while it will

(iii) Motion compensate and interlace the abake x Lo bring some computation cost, and possibility of instability. In

stabilized frames into the high-resolution grid. The result, & @proach, after the process from above section, we have

interlaced high-resolution image, can be formed from the p&gercome this difficulty. Comparing equations (7) and (8), we

blurred original high-resolution imag®z, via subpixel shift aPPly transformH = B,B = B,B and get the E-step for
and averaging, which is also equivalent to the uniform bl Per-resolution as

convolution with support sizé; x L,. Note here we also use Mo — B (i)B*(1)S,(1)Y (i)

the_ symmetric property of the uniform blur: 2-D flip of the zly = B (i) B(1)|25,(i) + NSan(i)S5(i) + Say (i)’
uniform blur remain unchanged. (10)

resolution grid, which is equivalent to subpixel motion on th
low-resolution grid with resolutiop’- and ;- on the two axes.




TABLE | original high resolution image
THREE CASES OF SYNTHETIC TEST FORL ENA”".

I [o® [LiLe [ p [ sf=Iskuse2] |
Casel [ 15 1 1 {0} x {0}
Casell [ 1.5 2 4 {0,1} x {0,1}
Case T | 1.5 1 16 | {0,1,2,3} x {0,1,2,3}

TABLE Il
RESULTS OF“L ENA” USING THE THREE METHODS

PSNR (dB) | Bilinear interpolation EM LMMSE
Case | 26.4019 27.6598 | 29.0723
Case Il 25.5224 27.8427| 29.1170
Case Tl 23.4162 26.6088 | 27.4551
Similar transform can be made to other equations in the EM o s T
procedure in [7] to extend the application from restoration to
super-resolution. Fig. 1. Original image.

IV. EXPERIMENTAL RESULTS

A number of experiments were conducted, some of whidfage. In the next stage, the resolu'Fion enhancement' problem
are presented here. To test the performance of our algorithiiuces to a restoration problem with two low-pass filters to
we first use the 256x256 “Lena” test image for a synthetic te§ieblur: one is the blur due to the point spread function (PSF)
02 = 1.5. Three cases, Case I-lll, as listed in Table I, areM based restoration algorithm can be efficiently computed
tested, with Case | the EM based restoration. The PSF nof8ethe frequency domain to reduce the computational cost,
and the AWGN noise are both gaussian type with &R, with partially know PSF blur information and unknown power
and SN Ry, fixed at 30dB. The global shift!’ belongs to the SPectrum of the AWGN noise. Experimental results show that
vectors generated from the given Cartesian product listed in ¢ @lgorithm provides visually satisfying reconstructions. Fu-
table. The PSNR of the reconstructed images for “Lena” usitigf® Work will take the more complicated case with inaccurate
in Table 2. Here,PSN Ry is 10log10 31— where MSE REFERENCES
stands for the mean squared error between the original hl?h- _ I _ -
resolution imaae and the estimated hiah-resolution image 1] D_. Kundur, D. Hatzmakosz Blind image deconvolution revisitetEEE
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Table II. From the resu_lts, we C_an see that our algorithm Aﬁ R. C. Hardie, K. J. Barnard, E. E. Armstrong, “Joint MAP registration
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SNRy. The plot of the PSNR for the reconstructed imagg] V. Z. Mesarovic, N. P. Galatsanos, M. N. Wernick, “Restoration from
versus SN R;, is shown in Fig. 6. Also, we fixSNR;, at partially-known blur using an expectation-maximization algorithi®96
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frames to construct an interlaced image. This interlaced image

is equivalent to a uniform blur process of the PSF blurred
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Fig. 2. Interlaced image in high-resolution grid.
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Fig. 5. Reconstruction of Lena image using LMMSE with upsampling ratio
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Fig. 3. Bilinear interpolation of first low-resolution frame with upsampling=ig. 6. C
of the PSF noise.

ratio 2.

50 100 150 200

Fig. 4. Reconstruction of Lena image using EM with upsampling ratio
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Plot of PSNR of the reconstructed high-resolution image vs. SNR
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