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Construction of Incoherent Unit Norm Tight Frames
With Application to Compressed Sensing
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Abstract— Despite the important properties of unit norm tight
frames (UNTFs) and equiangular tight frames (ETFs), their
construction has been proven extremely difficult. The few known
techniques produce only a small number of such frames while
imposing certain restrictions on frame dimensions. Motivated
by the application of incoherent tight frames in compressed
sensing (CS), we propose a methodology to construct incoherent
UNTFs. When frame redundancy is not very high, the achieved
maximal column correlation becomes close to the lowest possible
bound. The proposed methodology may construct frames of any
dimensions. The obtained frames are employed in CS to produce
optimized projection matrices. Experimental results show that the
proposed optimization technique improves CS signal recovery,
increasing the reconstruction accuracy. Considering that the
UNTFs and ETFs are important in sparse representations,
channel coding, and communications, we expect that the proposed
construction will be useful in other applications, besides the CS.

Index Terms— Unit norm tight frames, Grassmannian frames,
compressed sensing.

I. INTRODUCTION

WHEN abandoning orthonormal bases for overcomplete
spanning systems, we are led to frames [1]. In signal

processing, frames are a decomposition tool that adds more
flexibility to signal expansions, facilitating various signal
processing tasks [2], [3]. Although their existence has been
known for over half a century [4], frames have been introduced
in the signal processing community only in the recent decades,
offering the advantage of redundancy in signal representations
and providing numerical stability of reconstruction, resilience
to additive noise and resilience to quantization. Frames have
mainly become popular due to wavelets [5]; however, many
other frame families have been employed in numerous applica-
tions including source coding, robust transmission, code divi-
sion multiple access (CDMA) systems, operator theory, coding
theory, quantum theory and quantum computing [2], [6].
Certain frame categories such as Grassmannian frames have
connections to Grassmannian packings, spherical codes and
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graph theory [7]. Therefore, frame theory and its applications
have experienced a growing interest among mathematicians,
engineers, computer scientists, and others.

To introduce some notation, a finite frame F N
m in a real or

complex m-dimensional Hilbert space H
m is a sequence of

N ≥ m vectors { fk}N
k=1, fk ∈ H

m , satisfying the following
condition

α ‖ f ‖2
2 ≤

N∑

k=1

|〈 f, fk〉|2 ≤ β ‖ f ‖2
2 , ∀ f ∈ H

m, (1)

where α, β are positive constants, called the lower and upper
frame bounds respectively [1]. Viewing H

m as R
m or C

m ,
the m × N matrix F = [ f1 f2 . . . fN ] with columns the
frame vectors fk , is known as the frame synthesis operator. We
usually identify the synthesis operator with the frame itself.
The redundancy of the frame is defined by ρ = N/m and is
a “measure of overcompleteness” of the frame [7].

When designing a frame for a specific application, certain
requirements are imposed. The orthogonality of frame rows
is a common one; frames exhibiting equal-norm orthogonal
rows are known as tight frames or Welch-bound sequences
[8], [9] and have been employed in sparse approximation
[10], [11]. Equality of column norms is also important. Unit
norm tight frames (UNTFs), that is, tight frames with unit
norm column vectors, have been used in the construction
of signature sequences in CDMA systems [8], [12], [13].
Moreover, they are robust against additive noise and era-
sures, and allow for stable reconstruction in communications
[14]–[18]. Equiangularity is a property related to the depen-
dency between frame columns; column vectors forming equal
angles exhibit minimal dependency. Equiangular tight frames
(ETFs) have been popular due to their use in sparse approx-
imation [19], robust transmission [17], [18] and quantum
computing [20].

Frames are employed in signal processing when there is
a need for redundancy. Redundancy provides representations
resilient to coding noise, enabling signal recovery even when
some coefficients are lost. Moreover, a redundant dictionary
can be chosen to fit its content to the data, yielding highly
sparse representations that would not be easily achieved using
an orthonormal basis. However, a significant drawback when
working with frames is that the frame elements may be linearly
dependent. Therefore, the advantages provided by the frame
redundancy come at the cost that the signal representation may
not be unique.
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Mutual coherence is a simple numerical way to characterize
the degree of similarity between the columns of a frame and
is defined as the largest absolute normalized inner product
between different frame columns [10], [21],

μ{F} = max
1≤i, j≤N

i 	= j

∣∣〈 fi , f j
〉∣∣

‖ fi‖2

∥∥ f j
∥∥

2

. (2)

Frames with small mutual coherence are known as incoherent.
Equiangular tight frames are the unit norm ensembles that
achieve equality in the Welch bound [see eq. (12)]. However,
the construction of equiangular tight frames has been proven
extremely difficult.

In this paper, we rely on frame theory to construct incoher-
ent unit norm tight frames. Based on recent theoretical results,
we employ these frames in compressed sensing to improve
reconstruction of sparse signals. Sparse signal recovery was
introduced in signal processing in the context of sparse and
redundant representations as the problem of finding a signal
representation under an overcomplete basis or redundant dic-
tionary. An overcomplete representation is described by an
underdetermined linear system of the form

x = Dα, (3)

where x ∈ R
K is the treated signal, D ∈ R

K×N , K ≤ N , is a
redundant dictionary, and α ∈ R

N is the vector of the unknown
coefficients. Assuming that D is full rank, we need additional
criteria to find a unique signal satisfying (3). Thus, we employ
a penalty function J (α), defining the general optimization
problem

min
α

J (α) subject to x = Dα. (4)

In sparse representations, we are interested in a solution
of (4) with a few nonzero coefficients, that is, ‖α‖0 = T ,
T 
 K , where ‖·‖0 is the so-called �0 norm (which is actually
not a norm) counting the nonzero coefficients of the respective
signal. According to well-known results [10], uniqueness of a
sparse solution is guaranteed if the sparsity level ‖α‖0 satisfies

‖α‖0 <
1

2

(
1 + 1

μ{D}
)

. (5)

It is obvious that in order to obtain a unique sparse representa-
tion, we need a sufficiently incoherent dictionary. In addition,
mutual coherence plays an important role in the performance
of the algorithms deployed to find sparse solutions in problems
of the form (4) [11]. More recent results [22] concerning the
algorithms’ performance highlight the role of tightness, requir-
ing D to be an incoherent tight frame (see also Section IV).

Compressed sensing (CS) is a novel theory [23], [24] that
merges compression and acquisition, exploiting sparsity to
recover signals that have been sampled at a drastically smaller
rate than the conventional Shannon/Nyquist theorem imposes.
Undersampling implies that the number of measurements, m,
is much smaller than the dimension K of the signal. The sens-
ing mechanism employed by CS leads to an underdetermined
linear system, described by the following equation

y = Px, (6)

with y ∈ R
m and P ∈ R

m×K , m 
 K , a proper sensing or
projection matrix. Considering a sparse representation of x ,
we obtain

y = P Dα. (7)

Setting F = P D, F ∈ R
m×N , which is referred to as the

effective dictionary, we rewrite (7) in the form

y = Fα. (8)

Following the above discussion about finding sparse rep-
resentations satisfying underdetermined linear systems, we
require F to be an incoherent tight frame. Considering the
optimization of the sampling process, we note that, given the
dictionary D, in order to obtain a nearly optimal effective
dictionary F with respect to mutual coherence and tightness,
we need to find a projection matrix P such that F is as close
as possible to an incoherent UNTF.

The idea of optimizing the projection matrix such that it
leads to an effective dictionary with small mutual coherence
was introduced by Elad in [25]. Based on frame theory, we
proposed in [26] the construction of an effective dictionary
that forms an incoherent unit norm tight frame. In this paper,
we extend our technique to obtain unit norm tight frames that
exhibit a significantly improved incoherence level compared
to [25], [26], resulting in accurate signal reconstruction when
employed in CS. Moreover, for certain frame dimensions, i.e.,
when the frame redundancy is not very high, the achieved
mutual coherence becomes very close to the lowest possi-
ble bound. Considering that the construction of unit norm
tight frames and equiangular tight frames has been proven
notoriously difficult, whereas the few known design tech-
niques impose certain restrictions on the frame dimensions, we
expect that the proposed methodology will be useful to other
applications besides CS.

The rest of the paper is organized as follows: In Section II
we review basic definitions and concepts from frame theory,
while highlighting challenges and difficulties in frame design.
In Section III we present two algorithms for the construction of
incoherent UNTFs and discuss their convergence. Section IV
includes the application of the proposed construction to CS.
We also present previous work on projection matrix optimiza-
tion and recent theoretical results justifying our optimization
strategy. Experimental results can be found in Section V.
Finally, conclusions are drawn in Section VI.

II. BACKGROUND

Based on the discussion in the previous section about the
requirements in frame design, we conclude that even though
there are considerable reasons to abandon orthonormal bases
for frames, in most applications, we still want to use frames
that preserve as many properties of orthonormal bases as
possible [7].

When designing frames close to orthonormal bases, row
orthogonality is a potential such desirable property. Therefore,
we are led to tight frames. Let F N

m = { fk}N
k=1 be a finite

redundant frame in H
m . Then, if we set α = β in (1),
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we have

f = 1

α

N∑

k=1

〈 f, fk〉 fk , ∀ f ∈ H
m, (9)

thus obtaining an α-tight frame. The rows of α−1/2 F N
m form

an orthonormal family [1]. Constructing a tight frame is
straightforward; we take an orthonormal basis and select the
desired number of rows. For example, m × N harmonic tight
frames are obtained by deleting (N − m) rows of an N × N
DFT matrix.

However, in many problems tightness is not sufficient.
Most applications require some additional structure, such as,
specific column norms or small column correlation. Given an
α-tight frame, we obtain a unit norm tight frame (UNTF), if,
‖ fk‖2 = 1, for all k. For α-tight frames, the following relation
holds

N∑

k=1

‖ fk‖2
2 = αm. (10)

It is clear that we cannot design a UNTF with an arbitrary
tightness parameter; a UNTF F N

m exists only for α = N/m,
or α = ρ, the redundancy of the frame.

Orthonormal bases provide unique representations as their
elements are perfectly uncorrelated. Requiring unique sparse
representations in overcomplete dictionaries, it would be con-
venient to employ frames whose columns give identical inner
products, that is,

|〈 fk, f�〉| = cμ, for k 	= �, (11)

where cμ is a constant. For a unit norm frame, the absolute
value of the inner product between two frame vectors equals
the cosine of the acute angle between the lines spanned by the
two vectors. For this reason, frames satisfying (11) are called
equiangular.

The maximal correlation between frame elements depends
on the frame dimensions m, N . The lowest bound on the
minimal achievable correlation for equiangular frames, also
known as Welch bound is given by [7]

μ{F} ≥
√

N − m

m(N − 1)
. (12)

Among all unit norm frames with the same redundancy,
the equiangular ones that are characterized by the property
of minimal correlation between their elements are called
Grassmannian frames [7]. If minimal correlation is the low-
est achievable, as (12) implies, then we obtain an optimal
Grassmannian frame. According to [7], an equiangular unit
norm tight frame is an optimal Grassmannian frame. As unit
norm tight frames with dimensions m, N exist for a specific
tightness parameter (α = N/m), an optimal Grassmannian
frame is an equiangular N/m-tight frame (ETF).

Despite their important properties, neither UNTFs nor
Grassmannian frames are easy to construct. Tightness implies
certain restrictions on singular values and singular vectors;
the m nonzero singular values of an m × N α-tight frame
equal

√
α. This property combats either column normaliza-

tion or the requirement for constant inner products between

columns [27]. Two techniques are known to provide general
UNTF constructions; the work of [28], where the authors start
from a tight frame and by solving a differential equation they
approach a UNTF, and the work of [29], where the authors
start from a unit norm frame and increase the degree of tight-
ness using a gradient-descent-based algorithm. Relative prime-
ness of m and N is a condition assumed by both techniques,
though in [29] in a weaker sense. Regarding the construction of
equiangular tight frames, it is known that these frames exist for
certain frame dimensions. When H

m = R
m the frame dimen-

sions should satisfy m ≤ N(N + 1)/2, while for H
m = C

m ,
there must hold m ≤ N2. Moreover, even if we know the exis-
tence of such frames, there is no explicit way of constructing
them. The only general construction techniques are reported in
[30]–[32] and they impose additional restrictions on the frame
dimensions.

III. CONSTRUCTING INCOHERENT UNIT

NORM TIGHT FRAMES

The role of incoherence in sparse signal recovery, both
in redundant representations and compressed sensing, makes
optimal Grassmannian frames ideal candidates for these
problems. Considering the design difficulties discussed is
Section II, we aim at the construction of frames that are as
close as possible to optimal Grassmannian frames. Based on
the observation that optimal Grassmannian frames not only
exhibit minimal mutual coherence, but N/m-tightness as well,
we propose the following design methodology: Suppose we
compute a matrix with small mutual coherence. Then, the
problem of approximating a Grassmannian frame reduces to
finding a UNTF that is nearest to the computed incoherent
matrix in Frobenius norm. This is a matrix nearness problem,
which can be solved algebraically by employing the following
theorem [27], [33].

Theorem 1. Given a matrix F ∈ R
m×N , N ≥ m, suppose F

has singular value decomposition (SVD) UΣV ∗. With respect
to the Frobenius norm, a nearest α-tight frame F ′ to F is
given by

√
α · U V ∗. Assume in addition that F has full row-

rank. Then
√

α · U V ∗ is the unique α-tight frame closest
to F. Moreover, one may compute U V ∗ using the formula
(F F∗)−1/2 F.
Therefore, the main idea of the proposed design methodol-
ogy is alternating between tightness and incoherence. Next,
we present two algorithms implementing this construction
strategy.

A. Algorithm 1

The first algorithm starts from an arbitrary m×N matrix that
has full rank and sequentially applies a “shrinkage” process
and Theorem 1. The “shrinkage” process reduces the matrix
mutual coherence, while Theorem 1 finds an N/m-tight frame
that is nearest to the incoherent matrix. In order to minimize
the correlation between the columns of a given matrix, it is a
common strategy to work with the Gram matrix [25], [27].
Given a matrix F ∈ R

m×N , formed by the frame vectors
{ fk}N

k=1 as its columns, the Gram matrix is the Hermitian
matrix of the column inner products, that is G = F∗F .
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For unit norm frame vectors, the maximal correlation is
obtained as the largest absolute value of the off-diagonal
entries of G.

In [25], Elad proposes a “shrinkage” operation on the off-
diagonal Gram matrix entries (see eq. (19), Section IV). In this
work, we bound the off-diagonal entries according to

ĝi j =
{

sgn(gi j ) · (1/
√

m), if 1/
√

m <
∣∣gi j

∣∣ < 1,

gi j , otherwise,
(13)

where gi j is the (i, j) entry of the Gram matrix. The selected
bound 1/

√
m is approximately equal to the lowest bound [see

eq. (12)] for large values of N . Other choices of the bound
might work better depending on the frame dimensions. Com-
bined with Theorem 1, the proposed Gram matrix processing
yields highly incoherent UNTFs.

The algorithm we propose is iterative. Our initial matrix F0
is a tight frame nearest to a random Gaussian matrix. As the
process that reduces the mutual coherence involves “shrink-
age” operations on the Gram matrix Gq , a column normal-
ization step precedes the main steps of our method. After
applying (13), the modified Gram matrix G̃q may have rank
larger than m; thus, we use SVD to reduce the rank back
to m. Decomposing the new Gram matrix Ǧq , we obtain the
incoherent matrix Sq such that S∗

q Sq = Ǧq . Next, Theorem 1
is applied to Sq to obtain an incoherent tight frame. Therefore,
the q-th iteration of Algorihtm 1 involves the following.

1) Obtain the matrix F̂q , after column normalization of Fq .
2) Calculate the Gram matrix Ĝq = F̂∗

q F̂q and apply (13)
to bound the absolute values of the off-diagonal entries,
producing G̃q .

3) Apply SVD to G̃q to force the matrix rank to be
equal to m, obtaining Ǧq .

4) A matrix Sq ∈ R
m×N is obtained such that S∗

q Sq = Ǧq .
5) Find S′

q , the nearest N/m-tight frame to Sq , according
to S′

q = √
N/m · (Sq S∗

q )−1/2Sq . Set Fq+1 = Sq .

B. Convergence of Algorithm 1

The proposed algorithm is actually an alternating projec-
tions algorithm. In alternating projections we find a point in
the intersection of two or more sets by iteratively projecting a
point sequentially onto every set [34]. More particularly, the
proposed algorithm projects onto the following sets.

i. The set Y of N × N Gram matrices of m × N unit norm
frames,

Y =
{

G ∈ R
N×N : G = G∗, gii = 1, i = 1, . . . , N

}
.

ii. The set Z of N × N symmetric matrices with bounded
off diagonal entries,

Z = {G ∈ R
N×N : G = G∗,

∣∣gi j
∣∣ ≤ 1/

√
m, i 	= j,

i, j = 1, . . . , N}.
iii. The set W of rank-m, N × N symmetric matrices,

W =
{

G ∈ R
N×N : G = G∗, rank(G) = m

}
.

Fig. 1. Convergence of Algorithm 1 for a 60×120 matrix. The mean squared
distance between the current iteration and the sets we project on reduces in
a linear rate.

iv. The set S of N × N Gram matrices of m × N α-tight
frames,

S = {G ∈ R
N×N : G = G∗, with only

m nonzero eigenvalues, all equal to α}.
Alternating projections is a popular method and has been

well-studied for closed convex sets. However, from the above
sets only Y and Z are convex, whereas W and S are smooth
manifolds [35]. Therefore, well known convergence results for
alternating projections on convex sets [34] cannot be applied
to the proposed method.

Only a few recent extensions of alternating projections
consider the case of nonconvex sets [35], [36]. In [35] the
authors study alternating projections on manifolds and prove
convergence when two smooth manifolds intersect transver-
sally. A more recent publication [36] considers alternating
projections on two nonconvex sets, one of which is assumed
to be suitably “regular”; the term refers to convex sets, smooth
manifolds or feasible regions satisfying the Mangasarian-
Fromovitz constraint qualification. The authors show that the
method converges locally to a point in the intersection at a
linear rate. The convergence of alternating projections on more
than two sets some of which are nonconvex is still an open
problem.

Therefore, our discussion regarding convergence of
Algorithm 1 is mainly based on numerical results. To illustrate
convergence, we need to define the mean squared distance of
the current iteration from the sets involved in the projections,
that is

D(q)= 1

8
(d2(Gq , Y )+d2(Gq , Z)+d2(Gq , W )+d2(Gq , S)),

where the distance d(Gq , F) between the current iteration Gq

and the set F we project on is defined as d(Gq , F) = dF =
inf{∥∥Gq − X

∥∥F : X ∈ F}, denoting by ‖·‖F the Frobenius
norm.

Figs. 1 and 2 show log10 D(q) when Algorithm 1 is applied
to a 60 × 120 and a 25 × 120 matrix, respectively. Fig. 1
shows that the proposed algorithm converges at a linear rate,
constructing a frame that belongs to the intersection of the
involved sets. The zeroing of the mean squared distance
implies that the produced frame is indeed an incoherent UNTF.
When the frame redundancy increases, the numerical results
become a little different. Fig. 2(a) shows that the convergence
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Fig. 2. Convergence of Algorithm 1 (alternating projections) for a
25×120 matrix. The convergence rate depends on the bound used in eq. (13).
In (a) we observe a sub-linear convergence rate when the bound equals 1/

√
m.

In (b) the convergence rate becomes linear as the bound is relaxed to 3/2
√

m.

rate for a 25 × 120 frame is sub-linear and the produced
frame does not belong to the intersection of the involved
sets. Considering the increased difficulties of constructing
incoherent frames of high redundancy, this result is not sur-
prising; it is possible that either the intersection is empty or
it has properties that bring on difficulties to the proposed
algorithm. Experiments performed with a relaxed incoherence
level, which is determined by the bound 1/

√
m in eq. (13)

confirm our conjecture. A relaxed bound yields a broader set Z
and increases the probability that the intersection has good
properties. Fig. 2(b) illustrates convergence of Algorithm 1
when the bound 1/

√
m in eq. (13) is replaced by 3/2

√
m.

We can see that the convergence rate becomes linear and the
produced matrix belongs to the intersection of the involved
sets.

C. Algorithm 2

Similar to alternating projections is the method of averaged
projections. At every step of averaged projections, we project
the current iteration onto every set and average the results
to obtain the value for the next iteration. Considering our
problem, if Gq is the Gram matrix calculated in the q-th
iteration and PY (Gq) represents the projection of Gq on Y ,
then a modified version of Algorithm 1 would consider as
input in the (q + 1)-st iteration the average

Gq+1 = 1

4
(PY (Gq) + PZ (Gq) + PW (Gq) + PS(Gq)). (14)

The projections can be calculated in the same way as in the
algorithm presented at the beginning of this section, assuming

an additional calculation of the Gram matrix in the first and
last steps.

Again we start from a random Gaussian matrix and apply
Theorem 1 to obtain a nearest tight frame F0; then we calculate
the Gram matrix G0 = F∗

0 F0. In the q-th iteration we execute
the following steps.

1. Obtain the matrix F̂q , after column normalization of
Fq and calculate the Gram matrix F̂∗

q F̂q , which is the
projection PY (Gq).

2. Apply (13) on Gq to bound the absolute values of the
off-diagonal entries, producing PZ (Gq).

3. Apply SVD to Gq to force the matrix rank to be equal
to m, obtaining PW (Gq ).

4. Find F ′
q , the nearest N/m-tight frame to Fq , according

to F ′
q = √

N/m · (Fq F∗
q )−1/2 Fq . Obtain the Gram

matrix S∗
q Sq , which is the projection PS(Gq).

5. Calculate the average Gram matrix according to (14).
6. Find a matrix Fq+1 s.t. F∗

q+1 Fq+1 = Gq+1.

D. Convergence of Algorithm 2

According to recent results [36] concerning averaged pro-
jections, when several prox-regular sets have strongly regular
intersection at some point, the method converges locally at a
linear rate to a point in the intersection. Let us provide some
definitions before proceeding. Prox-regular sets is a large class
of sets that admits unique projections locally. It is known in
[35] that convex sets and smooth manifolds belong to this
category. Strongly regular intersection is important to prevent
the algorithm from projecting near a locally extremal point.
The notion of a locally extremal point in the intersection of
some sets is the following: if we restrict to a neighborhood
of such a point and then translate the sets by small distances,
their intersection may render empty. Therefore, not choosing a
locally extremal point as initial point in a projections algorithm
is a critical hypothesis for convergence. In order to make clear
that strong regularity implies local extremality, we cite here
the related definitions for the case of two sets. For more details
the reader is referred to [36].

Definition 1 (Locally extremal point). Denoting by E the
Euclidean space, consider the sets F, G ⊂ E. A point
x̄ ∈ F ∩ G is locally extremal for this pair of sets if there
exists ρ > 0 and a sequence of vectors zr → 0 in E such that

(F + zr ) ∩ G ∩ Bρ(x̄) = ∅, for all r = 1, 2, . . .

where Bρ(x̄) is the closed ball of radius ρ centered at x̄ .
Clearly x̄ is not locally extremal if and only if

0 ∈ int
(
((F − x̄) ∩ ρB) − (G − x̄) ∩ ρB)

)
, for all ρ > 0,

where B is the closed unit ball in E.
Definition 2 (Strongly regular intersection). Two sets

F, G ⊂ E have strongly regular intersection at a point x̄ ∈
F ∩ G if there exists a constant α > 0 such that

αρB ⊂ ((F − x) ∩ ρB) − ((G − z) ∩ ρB)

for all x ∈ F near x̄ and z ∈ G near x̄ .
By considering the case x = z = x̄ , we see that strongly
regular intersection at a point x̄ implies that x̄ is not
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Fig. 3. Convergence of Algorithm 2 (averaged projections) for a
60 × 120 matrix. The mean squared distance between the current iteration
and the sets we project on reduces in a linear rate.

locally extremal. Conversely, finding a point in the intersection
of the involved sets that is not locally extremal, implies that
the sets have strongly regular intersection at this point.

Now, we can summarize the results of [36] regarding
averaged projections.

Theorem 2. Consider prox-regular sets F1, F2, . . . , FL ⊂ E

having strongly regular intersection at a point x̄ ∈ ∩Fi , and
any constant k > cond(F1, F2, . . . , FL |x̄). Then, starting from
any point near x̄, one iteration of the method of averaged
projections reduces the mean squared distance

D = 1

2L

L∑

i=1

d2
Fi

by a factor of at least 1 − 1
k2 L

.
The condition modulus cond(F1, F2, . . . , FL |x̄) is a positive
constant that quantifies strong regularity [36].

The sets Y, Z , W and S involved in Algorithm 2 are prox-
regular (Y, Z are convex and W, S are smooth manifolds) and
their intersection is very likely to be strongly regular; the fact
that our initial matrix is a random Gaussian matrix minimizes
the probability of choosing an initial point that is near to a
locally extremal point. Though we cannot guarantee strong
regularity for the above sets, randomness seems to prevent
us from irregular solutions. Therefore, we expect that the
averaged projections algorithm converges linearly to a point
in the intersection of the above sets.

Let us see what experimental results show. Figs. 3 and 4
show mean squared distance for the averaged projections
algorithm. Indeed, in Fig. 3 the results for a matrix of
redundancy equal to 2 confirm a linear convergence rate and
are in agreement with our theoretical expectations. Moreover,
the zero mean squared distance implies that the obtained frame
belongs to the intersection of the involved sets, that is, it is an
incoherent UNTF. The results are a little different for a matrix
with higher redundancy. As we can see in Fig. 4(a), the rate of
convergence becomes sub-linear, indicating that the intersec-
tion of the involved sets is either empty or does not have the
desired properties. Relaxing the imposed incoherence level,
i.e., using a larger bound than 1/

√
m in eq. (13), we obtain a

broader set Z , increasing the probability that the intersection of
the involved sets satisfies the necessary conditions formulated
in Theorem 2. The experiments performed with the new set

Fig. 4. Convergence of Algorithm 2 (averaged projections) for a
25×120 matrix. The convergence rate depends on the bound used in eq. (13).
In (a) we observe a sub-linear convergence rate when the bound equals 1/

√
m.

In (b) the convergence rate becomes linear as the bound is relaxed to 3/2
√

m.

Z yield a linear convergence rate [Fig. 4(b)], confirming our
conjecture.

Comparing the convergence of the two proposed algorithms,
an important note is that the presented experiments show that
the results of the proposed averaged projections algorithm are
similar to the alternating projections. Of course, there is a
significant difference regarding the slope of the convergence
curve; alternating projections is faster than averaged projec-
tions. However, the shapes of the curves are identical in all
the examples employed in our experiments. Therefore, even
though the theoretical justification of the proposed alternat-
ing projections needs further investigation, the experimental
results encourage its use for the proposed constructions. In the
next subsection, we present some experiments demonstrating
the desired properties of the obtained frames, showing that
both algorithms give similar results.

Before proceeding to more experiments and applications, we
would like to clarify a point concerning the incoherence level
constraint. One might wonder what is the effect of the imposed
incoherence level on the proposed construction. Do we obtain
frames with similar properties, regardless of the bound used in
eq. (13)? The answer is that the frame properties are similar
but not identical. Depending on the frame redundancy, there
is a lower incoherence bound that should not be exceeded;
otherwise, the smaller the incoherence bound we impose,
the worse the incoherence level we finally obtain is. Thus,
the selected bound needs fine tuning. However, the proposed
bound 1/

√
m works well for the constructions considered in

this paper.



TSILIGIANNI et al.: CONSTRUCTION OF INCOHERENT UNTFs WITH APPLICATION TO CS 2325

Fig. 5. Mutual coherence as a function of the number of iterations. The
experiments involve (a) a 15 × 120 frame and (b) a 25 × 120 frame.

E. Preliminary Experimental Results

Before we see the application of the proposed methodology
in CS, we discuss some experimental results regarding the
main properties of our constructions. As our goal is to use the
proposed frame in CS, we compare the proposed algorithms
to [25], [26], [37], [38], which also produce incoherent frames
for CS. We briefly present these methods in Section IV.

Fig. 5 illustrates two snapshots of execution including
1000 iterations, depicting the achieved mutual coherence at
every iteration. The examples involve a 15 × 120 and a
25 ×120 matrix showing that the proposed algorithms behave
well as the mutual coherence improves significantly after a
few iterations. Even though the averaged projections algorithm
is slower, both algorithms finally converge to similar values
regarding the mutual coherence. Moreover, the improvement is
smooth even when applied to matrices with high redundancy.
Regarding the other methods under testing, Fig. 5 shows
that, in general, all of them have a stable behaviour and
converge to low mutual coherence values. Only [37] seems
to be inaccurate for very redundant matrices. Comparing the
proposed algorithms to the other methods presented here,
it is obvious that the incoherence level achieved by our
methodology outperforms all the existing methods. Average
results for mutual coherence confirm these observations (see
Section V).

Fig. 6. Frame potential as a function of the number of iterations. The
experiments involve (a) a 15 × 120 frame and (b) a 25 × 120 frame. The
curves corresponding to the proposed algorithms and [26] coincide, meeting
the minimal bound after a few iterations.

A metric used to evaluate how close the obtained frame is
to a UNTF is the frame potential; it was defined in [39] as

F P(F) =
∑

1≤i, j≤N
i 	= j

∣∣〈 fi , f j
〉∣∣2

. (15)

Benedetto and Fickus [39] discovered that the frame potential
is bounded below by N2/m, with equality if and only if F
is a UNTF for R

m . The frames obtained with the proposed
methodology, employed in the present algorithms and in [26],
exhibit frame potentials that coincide with this bound after
very few iterations. Therefore, the proposed methodology
produces UNTFs. This is an important advantage over existing
techniques, as is demonstrated experimentally by the results
shown in Fig. 6.

IV. OPTIMIZED COMPRESSED SENSING

In sparse representations and compressed sensing we seek
a solution of a sparse representation problem of the form

min
α

J (α) subject to y = Fα, (16)

where J (α) is a function that imposes sparsity constraints
on α. One way to promote a sparse solution is the �0-norm.
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Choosing J (α) ≡ ‖α‖0, we are led to the following
�0-minimization problem,

min
α∈RN

‖α‖0 subject to y = Fα. (17)

As this problem is intractable [40], requiring combinatorial
search, approximate numerical methods have been adopted for
its solution. The main techniques include greedy methods and
convex relaxation. The former generate a sequence of locally
optimal choices in hope of determining a globally optimal
solution. Orthogonal Matching Pursuit (OMP) [41] and its
variations belong to this category. Instead of (17), convex
relaxation methods solve a related convex program in hope
that solutions coincide. Smoothing the penalty function with
the �1-norm, we obtain the problem

min
α∈RN

‖α‖1 subject to y = Fα. (18)

Many algorithms have been proposed to solve (18); Basis
Pursuit (BP) [42] is a typical one.

Performance guarantees for the aforementioned algorithms
underline that F should have certain properties. According to
well known results, OMP and BP can find the solution of
the �0 and �1 minimization problems with high probability
provided that the system matrix F has small enough mutual
coherence [11]. Besides F having small enough mutual coher-
ence, the true solution must also be sufficiently sparse.

In compressed sensing, F comes from the product of a
given representation dictionary D and the projection matrix P .
CS theory asserts that the projection matrix and the rep-
resentation dictionary should be incoherent, that is, highly
uncorrelated. D is designated by the characteristics of the
treated signals, as its role is to provide a high level of
sparsity. As far as the choice of P is concerned, a matrix
satisfying the restricted isometry property (RIP) is known
to be incoherent with any orthonormal basis [43]. We can
loosely say that when a matrix obeys RIP of order s, then
all subsets of s columns are nearly orthogonal. Unfortunately,
constructing RIP matrices has been proven extremely difficult.
Most theoretical results in CS are based on the assumption that
the projection matrix is drawn at random; random Gaussian
or Bernoulli matrices are known to satisfy RIP with high
probability, provided that the number of measurements m is in
the order of T log(N/T ) [44]. Recall that N is the dimension
of the T -sparse representation of the treated signal.

The improvement of performance guarantees on one hand,
and the need to design sensing operators corresponding to the
application of interest on the other, have produced several new
theoretical and practical results regarding projection matrices,
while research still goes on [45]. Deterministic constructions
is one working direction [46], [47], providing the convenience
to verify RIP without checking up all s-column submatrices.
However, when employing deterministic matrices for CS, the
sparsity level must be in the order of

√
m, a limitation known

as the “square root bottleneck.” A construction that managed
to go beyond this bottleneck [48] provided only a slight
improvement. A more optimistic result concerning a specific
deterministic construction can be found in [49]; the authors

conjecture that ETFs corresponding to Paley graphs of prime
order are RIP in a manner similar to random matrices.

The approach adopted in this paper toward the design
of the projection matrix involves its optimization. Recent
publications [25], [26], [37], [38], [50], [51] have shown that
reconstruction accuracy may be improved if the projection
matrix is in a sense optimized for a certain signal class as this
is determined by the representation dictionary. Following con-
ditions set in sparse representations, the optimization process
introduced in [25] involves the construction of an effective
dictionary that exhibits small mutual coherence. Given the
representation dictionary D, the optimization of the projection
matrix reduces to finding a matrix P that yields an incoherent
effective dictionary F = P D.

Aiming at the minimization of the average correlation
between the columns of F , Elad in [25] proposes an iterative
“shrinkage” operation on the off-diagonal Gram matrix entries
according to

ĝi j =

⎧
⎪⎨

⎪⎩

γ gi j ,
∣∣gi j

∣∣ ≥ t,

γ t · sgn(gi j ), t >
∣∣gi j

∣∣ ≥ γ t,

gi j , γ t >
∣∣gi j

∣∣ ,
(19)

where γ , t are appropriate parameters (0 < γ, t < 1)
determining the convergence speed. In the same spirit, similar
“shrinkage” operations are proposed in [37] and [38].

In [50], the authors’ goal is to produce a Gram matrix that
is close to the identity matrix, by introducing the minimization
problem

min
F

∥∥F∗F − I
∥∥F . (20)

Their solution, based on SVD, can work for either the single
optimization of the projection matrix given the dictionary or
the joint design and optimization of the dictionary and the
projection matrix, from a set of training images. In the latter
case the authors combine their method with K-SVD [52]. The
problem of (20) is also treated in [51], proposing a solution
based on gradient descent.

While working with the mutual coherence is simpler than
working with the complex restricted isometry property, the
analysis from the point of view of the mutual coherence leads
to pessimistic results regarding CS measurements. Recovering
T components from a sparse signal requires an order T 2

measurements [25]. However, it has been demonstrated that
the mutual coherence expresses worst case results for signal
recovery. In addition, recent theoretical results provide a more
optimistic perspective for incoherent matrices provided that
they also form tight frames. A theorem that relates an incoher-
ent tight frame with performance guarantees for the algorithms
deployed to solve (17) and (18) has been formulated by
Tropp [22].

Theorem 3. Let F be an m × N incoherent tight frame,
and α a sparse vector observed by y = Fα. If α has
T ≤ cm/ log N nonzero entries drawn at random (c is some
positive constant), then it is the unique solution for �0 and �1
minimization problems with probability greater than 99.44%.
The author characterizes as incoherent the frames with mutual
coherence equal to or smaller than 1/

√
m. According to
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Theorem 3, using an incoherent tight frame, the number
of necessary measurements to recover a T -sparse signal of
length N , is in the order of T log N .

The goal of the optimization technique proposed in this
paper is the construction of an effective dictionary that satisfies
the constraints introduced by Theorem 3, that is, small mutual
coherence and tightness. Starting with a random Gaussian pro-
jection matrix P and a matrix D that yields sparse signal rep-
resentations, we obtain an initial effective dictionary F = P D.
Based on the algorithm presented in Section III, we produce an
effective dictionary FCS that forms an incoherent UNTF. Then
solving a least squares problem, we compute a matrix Popt
satisfying FCS = Popt D to obtain an optimized projection
matrix for CS.

Following this optimization strategy, we present experimen-
tal results for CS signal recovery in the next section.

V. EXPERIMENTAL RESULTS

The algorithms proposed in this paper build incoherent
UNTFs, which can be used for compressed sensing and other
applications as well. As we have already seen in Section III,
both algorithms yield similar constructions, therefore, we have
decided to employ only one of the proposed algorithms in the
experiments presented in this section. We choose the proposed
alternating projections, as it exhibits higher convergence speed.
We first present significant properties of the obtained frames,
that is, their mutual coherence and frame potential. Then, we
present reconstruction results when the proposed construction
is applied to CS.

In CS, we may consider either naturally sparse signals
or signals that are sparse with respect to a representation
matrix D. For sparse signals, we use an incoherent UNTF, F ,
as a projection matrix; the proposed methodology is applied to
an initial random Gaussian matrix and the resulting frame is
used to take measurements according to y = Fα. Otherwise,
we consider the product F = P D, where D is a fixed
dictionary, take an initial random Gaussian P , and optimize
F over P . Here, we follow the latter consideration.

The proposed method is compared to [25], our previous
work [26] and the methods of [37] and [38]. Although our
experiments included the methods of [50] and [51] as well,
we only report results with the methods of [37] and [38] since
they seem to perform better.

A. Incoherent UNTFs

Our first experiments investigate the properties of the
obtained incoherent UNTFs. In the following experiments, we
take the initial F to be an m × N random Gaussian matrix
with m ∈ [15 : 5 : 60] and N = 120. For every value of m,
we carry out 10000 experiments and compute average results.
As our work aims at improving CS reconstruction accuracy,
we compare the proposed construction to incoherent matrices
produced by other methods used for optimized CS.

The mutual coherence is presented in Fig. 7. We can see
that the proposed method leads to a significant reduction of
the mutual coherence of the initial random matrix starting
by a factor of approximately 45% for very redundant frames

Fig. 7. Mutual coherence as a function of the number of measurements.
The bottom brown dash-dotted line represents the lowest possible bound [see
eq. (12)].

Fig. 8. Frame potential as a function of the number of measurements. The
black and red dotted lines corresponding to our methodology coincide with
the lowest possible bound N2/m.

and becoming closer to the lowest possible bound when
redundancy (ρ = N/m) decreases (the brown dash-dotted
line, in Fig. 7, stands for the lowest possible bound [see
eq. (12)]. This is a very significant improvement compared
to the results of our work in [26] and the other methods
presented here. The fact that the proposed method performs
well even for very redundant frames is an important advantage
over the other competing methods. In Fig. 8 we demonstrate
the frame potential [see eq. (15)] of the frames under testing,
answering the question “how close are the obtained construc-
tions to UNTFs?” The measurements corresponding to the
proposed method and [26] coincide with the lowest bound
N2/m, confirming that the proposed methodology leads to
UNTFs.

Another way to evaluate the obtained frames is to consider
the distribution of the inner products between distinct columns.
Fig. 9 illustrates a representative example of a 25×120 frame.
The histogram depicts the distribution of the absolute values
of the corresponding Gram matrix entries. The results concern
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Fig. 9. Changes in the distribution of the column correlation of a 25 × 120
frame.

the initial random matrix and all the matrices produced by the
employed iterative algorithms, after 50 iterations. The yellow
bar rises at the critical interval that includes the minimal
achievable correlation, corresponding to the distribution of an
optimal Grassmannian frame (the bar’s actual height is con-
strained for clear demonstration of the methods under testing).
The proposed method exhibits a significant concentration near
the critical interval, combined with a short tail after it, showing
that the number of the Gram entries that are closer to the ideal
Welch bound is larger than in any other method presented here.
Such a result is in agreement with the small mutual coherence
values depicted in Fig. 7.

B. CS Performance

The second group of experiments concerns the application
of the obtained incoherent UNTFs to compressed sensing.
The effective dictionary built with the proposed methodology
is used to acquire sparse synthetic signals. A recovery algo-
rithm is employed to reconstruct the original signal from the
obtained measurements.

For each experiment, we generate a T -sparse vector of
length N , α ∈ R

N , which constitutes a sparse representation
of the K -length synthetic signal x = Dα, x ∈ R

K , K ≤ N .
We choose the dictionary D ∈ R

K×N to be a random
Gaussian matrix. Experiments with DCT dictionaries lead to
similar results. The locations of the nonzero coefficients in the
sparse vector are chosen at random. Besides the effectiveness

Fig. 10. CS performance for random and optimized projection matrices.
Keeping the sparsity level fixed, reconstruction experiments are performed for
varying number of measurements. The proposed method clearly outperforms
the existing methods even when the number of measurements is small.

of the projection matrix P , the reconstruction results also
depend on the number of measurements m and the sparsity
level of the representation T . Thus, our experiments include
varying values of these two parameters. For a specified number
of measurements m 
 K , we create a random projection
matrix P ∈ R

m×K . After the optimization process, we obtain
m projections of the original signal according to (7). We recon-
struct the original sparse signal with OMP.

In all experiments presented here, the synthetic signals are
of length K = 80 and the respective sparse representations,
under the dictionary D, of length N = 120. The execution
of the optimization algorithm included up to 50 iterations.
Two sets of experiments have been considered; the first one
includes varying values of the number of measurements m and
the second one includes varying values of the sparsity level T
of the treated signals. For every value of the aforementioned
parameters we perform 10000 experiments and calculate the
relative error rate; if the mean squared error of a reconstruction
exceeds a threshold of order O(10−4), the reconstruction is
considered to be a failure.

Fig. 10 presents the relative errors as a function of the
number of measurements m, for a fixed sparsity level (T = 4)
of the treated signal. Fig. 11 presents the relative errors for a
fixed number of measurements (m = 25) and varying values
of the sparsity level of the signal. It is clear that the effective
dictionary obtained by the proposed algorithm leads to better
reconstruction results compared to random matrices and to
matrices produced by the other methods. This is due to the
improvement in the effective dictionary properties.

An important observation regarding CS performance, is that
although we achieved a high quality signal recovery, the fact
that for some values of measurements (e.g. 15) this improve-
ment is not of the same order as the improvement in the mutual
coherence, indicates that additional properties should be taken
into consideration to decide about the appropriateness of the
effective dictionary. This has been pointed out by other authors
[25], [50] as well and should be explored both theoretically
and experimentally.
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Fig. 11. CS performance for random and optimized projection matrices.
Keeping the number of measurements fixed, reconstruction experiments are
performed for varying sparsity levels. The proposed method clearly outper-
forms the existing methods even for high sparsity levels. A vanishing graph
implies a zero error rate.

VI. CONCLUSION AND FUTURE WORK

Based on new concepts of frame theory and recent results
in sparse representations, we developed a methodology for
optimizing the projection matrix that yields an incoherent
UNTF as effective dictionary. Employing the obtained pro-
jection matrix in CS, we recovered sparse signals with high
accuracy from a small number of measurements.

Considering that previous work on projections’ optimization
involves only the minimization of the mutual coherence, the
proposed method introduces a new parameter in the opti-
mization process, namely tightness. Requiring the effective
dictionary to be a tight frame results in additional reduction of
the mutual coherence and improves other properties such as
frame potential. The proposed methodology, combined with
more efficient techniques of coherence minimization, could
further improve the characteristics of the obtained dictionary.

Concluding, we expect that the construction of incoherent
UNTFs with the proposed methodology will be useful for other
applications as well, besides CS.
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