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Abstract—In object-based video representation, video scenes
are composed of several arbitrarily shaped video objects (VOs),
defined by their texture, shape and motion. In error-prone com-
munications, packet loss results in missing information at the
decoder. The impact of transmission errors is minimized through
error concealment. In this paper, we propose a spatial error con-
cealment technique for recovering lost shape data. We consider a
geometric shape representation consisting of the object boundary,
which can be extracted from the -plane. Missing macroblocks
result in a broken boundary. A B-spline curve is constructed to
replace a missing boundary segment, based on a T-spline rep-
resentation of the received boundary. We use T-splines because
they produce shape-preserving approximations and do not change
the characteristics of the original boundary. The representation
ensures a good estimation of the first derivatives at the points
touching the missing segment. Applying smoothing conditions,
we manage to construct a new spline that joins smoothly with
the received boundary, leading to successful concealment results.
Experimental results on object shapes with different concealment
difficulty demonstrate the performance of the proposed method.
Comparisons with prior proposed methods are also presented.

Index Terms—COM-ERC, error concealment, shape coding,
T-splines.

I. INTRODUCTION

I N WIRELESS networks and the Internet, transmitted in-
formation is subject to losses. As retransmission of lost

or damaged packets may incur delay, error resiliency methods
have been developed to detect and correct transmission errors
[1]–[3]. Post processing error concealment includes estimation
of the lost information by making use of the inherent correlation
among spatially and temporarily adjacent samples.
In MPEG-4 Part-2, a video coder is composed of two parts:

the shape coder and the motion and texture coder. Shape, mo-
tion, and texture information can be encoded and transmitted
separately. Due to the encoding of arbitrary shape video objects
(VOs), shape information is critical for the representation of a
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Fig. 1. (a) Binary and (b) contour representation of an object shape (a) hammer
-plane and (b) hammer boundary.

VO. If only texture is lost, shape and motion can be tapped to
conceal texture, while if shape/motion is lost, the whole packet
is discarded. For these reasons shape error concealment tech-
niques are of great importance.
Shape error concealment can be achieved by exploiting

shape information from the current or previous video frames.
Three categories of techniques have been developed. Temporal
techniques [4]–[6], which are based on motion compensation
and exploit inter-frame correlation; they perform poorly when
objects appear/disappear or are deformed. Spatial techniques,
which use information from the neighboring to the lost part
area and, besides video frames, they can also be applied to still
images. They rely on object shape statistics [7], combination
of image and shape data [8], or employ a geometric shape rep-
resentation [9]–[13]. Techniques combining both temporal and
spatial methods are referred to as spatio-temporal techniques
[14], [15].
In this paper, we propose a spatial error concealment tech-

nique based on a contour representation of the object shape. Let
us consider a binary shape representation like the one presented
in Fig. 1(a), which represents the -plane of the object hammer.
From it we can extract a contour corresponding to the border of
the object, i.e., the boundary of its texture, as shown in Fig. 1(b).
Channel errors may result in a corrupted -plane, where one or
more blocks of binary information are missing [see Fig. 2(a)],
yielding a broken boundary [see Fig. 2(b)]. Error concealment
includes the construction of a new curve that successfully re-
places the missing boundary parts and joins smoothly with the
received parts. The existing geometric concealment approaches
build a polynomial concealment curve based on conditions that
arise from smoothness requirements between the new curve and
the curve representing the received boundary points, i.e., the
boundary modeling curve [see Fig. 2(c)].

1057-7149/$31.00 © 2012 IEEE
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Fig. 2. Error concealment for a broken boundary. (a) A corrupted -plane. (b)
A broken boundary. (c) Boundary modeling and error concealment.

A boundary error concealment method based on first degree
line segments appeared in [9]. Higher order curves are utilized in
[10], [11] and [12]. In [12], quadratic Bezier curves are used for
concealment. However, these curves can only represent convex
or concave boundaries. In [10] and [11], the authors use second
and third degree polynomials to model the received and the
lost boundary, respectively, yielding better results. The missing
boundary is concealed by a Hermite cubic polynomial that joins
smoothly with the original boundary. The polynomial coeffi-
cients are specified by requiring first-order continuity be-
tween the concealment curve and a quadratic polynomial ap-
proximation representing the original boundary. The approxi-
mation is obtained using least squares in a boundary part con-
sisting of 20 boundary points on each side of the missing seg-
ment. The estimation of the first derivative at the joining points
is based on this quadratic approximation. A similar reconstruc-
tion based on cubic Bezier curves is proposed in [13]. A cubic
polynomial approximation is used for the representation of the
received parts. The approximation algorithm uses an iterative
process in order to select an appropriate boundary part leading
to a minimum approximation error. For concealment, a cubic
polynomial is constructed using the form of Bezier curves, re-
quiring the tangent vectors at the joining points to coincide.
The existing solutions basically differ in the degree of the

polynomials proposed to represent the received and the lost
part of the boundary. The above methods fail when either the
received or the missing boundary part is not characterized by
quadratic or cubic behavior, which is common in natural bound-
aries. Moreover, their success mainly depends on the estimation
of the first derivatives at the points where the received boundary
joins with the new curve. As the estimation is derived from the
received boundary approximation, the concealment result is de-
termined by the quality of the approximation. However, even a
small approximation error of the modeling curve may result in

large estimation errors if the approximation fails to capture the
shape of the original boundary.
In this paper, we overcome these limitations using splines.

Spline curves can represent complex boundaries better than
simple polynomial functions. Due to their simplicity of
construction and accuracy of evaluation, they have been
extensively used for shape representation in various fields
such as shape based image retrieval, image processing and
computer-aided design (CAD) [16]–[20]. Here, our goal is to
construct a shape-preserving modeling curve that can provide a
good estimation of the first derivative, which is crucial for the
error concealment. An appropriate representation should not
introduce changes in the boundary slope. If the modeling curve
preserves the monotonicity of the original boundary, changes
in the boundary slope can be avoided. For this reason, we use
monotone least squares splines to model the received boundary.
Thus, we get a reliable first derivative estimation enabling us to
construct a natural concealment spline that joins smoothly with
the original boundary. An early version of our work appears in
[21].
The rest of this paper is organized as follows. In Section II,

the shape error concealment problem is defined. The proposed
boundary modeling and concealment methods are described
in Sections III and IV, respectively. In Section V, error con-
cealment is applied to a boundary encoded with B-splines.
In Section VI, we discuss error concealment for the case of
more than one missing segments and we summarize the error
concealment process. In Section VII, experimental results are
presented. Finally, in Section VIII, conclusions are drawn.

II. PROBLEM FORMULATION

In this paper, we use a geometric description of the object
shape, that is, its boundary. Depending on the shape coding
technique, the object boundary can be represented either in a
binary form (bitmap-based coding) or in a contour form (con-
tour-based coding). In this section, we present the binary shape
coding scheme used in theMPEG-4 video standard.We will dis-
cuss a contour-based encoding scheme in Section V.
The basic unit of coding in MPEG-4 is the video object plane

(VOP) [22], [23]. A binary shape is described by the binary
-plane (see Fig. 1). Pixels of a VOP belonging to the object
are assigned an -value equal to 1, whereas pixels belonging to
the background an -value equal to 0. We define the boundary
of an -plane as the collection of points belonging to the back-
ground, which have at least one four-connect neighbor (that is,
with pixels above, below, to the left and to the right) that belongs
to the object (that is, their value is 1 in the -plane). Fig. 1(b)
shows the boundary as defined for the -plane of Fig. 1(a). The
-plane is divided into small blocks of information, namely the
macroblocks consisting of 16 16 pixels. Depending on the
packetization scheme, one packet contains information corre-
sponding to one or more macroblocks. A packet loss can result
to one or more missing boundary segments (see Fig. 2).We refer
to the points on the received boundary that touch a missing seg-
ment as “connecting points”.We also refer to the boundary slope
at each connecting point as “boundary direction”. An example
is shown in Fig. 2(b) where missing segments are represented
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by a dotted line. The received boundary is represented by a solid
line, while the connecting points as open circles.
In shape error concealment, a missing segment of a broken

boundary is concealed by a new curve that joins smoothly with
the received part. As splines have been used to represent nat-
ural boundaries efficiently [19], they are expected to provide
accurate results as concealment curves. Smoothness plays an
important role in the visual outcome of the concealment and
can be achieved by requiring some degree of continuity between
the concealment spline and a curve representing the received
boundary. Hence, before proceeding to the construction of a
concealment spline, it is necessary to find a representation of
the received boundary.
The proposed shape error concealment technique consists of

two steps. First, we solve the problem of modeling the received
boundary. Second, we exploit the information given by themod-
eling curve to construct a curve representing the missing seg-
ment [see Fig. 2(c)]. In order to achieve a smooth transition
between the two curves, restrictions must be applied. We re-
quire the new curve to pass through the connecting points and
the new curve direction to coincide with the received boundary
direction. The first derivative of the concealment curve and the
estimated first derivative of the received boundary at each con-
necting point must be equal so as continuity is achieved.
Thus, the received boundary direction estimation is crucial for
a successful solution to our problem.
In the rest of this paper we assume that the boundary is a

closed non-intersecting curve. Considering a video frame, this
assumption results in one concealing boundary out of several
possible ones and in non-intersecting concealing curves. If the
above assumption is not valid, we must know howmany bound-
aries we have to conceal and how many points they have in
common. Then the proposed method can be applied to every
boundary separately.

III. RECEIVED BOUNDARY MODELING

Assuming that a boundary consists of an ordered set of points,
we can obtain a suitable representation of the known boundary
by solving a curve fitting problem. The existing methods pro-
pose a polynomial boundary representation using least squares.
Second order polynomials have been used in [12] for the re-
ceived and the missing segment representation. As these curves
are either convex or concave, they do not lead to an appropriate
representation, if the boundary is neither. In [10], a piecewise
polynomial curve is constructed by smoothly joining a quadratic
polynomial curve, used for the received boundary modeling,
with a cubic polynomial curve, used for the missing segment
representation. While this method results in a more appropriate
concealment curve compared to [12], the modeling curve is still
convex or concave. Considering that a natural boundary may
have a complex form, we propose piecewise polynomial curves
to represent the received boundary and the missing segment as
well.
Regarding the received boundary representation, least

squares splines could produce an acceptable model. However,
splines’ ability to represent complex forms is not sufficient for
a successful approximation. We need a solution that can capture

the original shape and preserve fundamental characteristics of
the original boundary. Traditional B-splines cannot produce
a shape-preserving approximation and may introduce major
changes in the boundary direction. As the concealment curve
must satisfy at least a continuity condition, an erroneous
estimation of the boundary direction at a connecting point may
lead to concealment failure.
In the existing error concealment methods, an erroneous

direction estimation is frequently related to changes in the
boundary monotonicity introduced by the approximation.
Given a set of boundary points ,

, , we define boundary mono-
tonicity as

(i) increasing, if implies

(ii) decreasing, if implies

Considering the importance of the direction estimation to error
concealment results, we employ monotone least squares splines
to model the received boundary, so as the modeling curve pre-
serves original monotonicity and provides successful estimation
of the boundary direction.

A. Least Squares Spline Approximation

Let be an ordered set of points representing a nat-
ural boundary, , ,

. A least squares spline approximation is a
piecewise polynomial

(1)

which forms a solution to the problem

(2)

where are appropriate basis functions, ,
are the unknown spline coefficients or approximation

control points and , are parametric values
affecting the form of the curve.
The quality of a spline approximation depends on the type

and the degree of the basis functions, the number of the spline
segments and the parameterization of the curve. If continuity
is required then should satisfy

The parameterization of the curve is related to the values of ,
, and the position of the approximation knots.

The knots form the knot vector and di-
vide the parameterization space into the knot spans. They are in-
volved in the computation of the basis functions and determine
the way the control points affect the curve. The curve continuity
depends on the knot multiplicity as well [16]. For a given type



3576 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 8, AUGUST 2012

and degree of basis functions, the number of the spline segments
is determined by the number of the control points.
In this paper we assume that and we use the “chord

length” method [16] to calculate the knot vector and the para-
metric values . Let be the “chord length” given by the data
points , , that is

(3)

where is the Euclidean distance between and
. Then we obtain the parametric values by

(4)

In order to get a -degree curve, we need knots.
knots are positioned at the edges of . We obtain the internal

ones according to

(5)

where

and denotes the integer part of the argument. As far as
the degree of the curve is concerned, a quadratic spline is a
choice that can meet our continuity requirements while keeping
the computational cost low. In the following, we present a dis-
cussion of the basis functions type and the number of spline seg-
ments constituting the approximation.

B. Boundary Approximation Using B-Splines

B-spline basis functions have the minimal support with re-
spect to a given degree and smoothness and can be evaluated
in a numerically stable way by the de Boor algorithm [24].
These reasons have made B-splines popular in shape modeling
[25]–[29] and shape coding [18]–[20], [30]–[34]. However, if
we use B-splines basis functions in (2), we obtain solutions that
cannot preserve essential boundary properties like monotonicity
and inflection points, yielding changes in the boundary direc-
tion.
Fig. 3 illustrates the approximation of a boundary part with

a least squares quadratic B-spline curve. Although it seems that
the approximation forms a good representation of the original
boundary, focusing at the connecting point, we detect a wrong
direction estimation. The curve is decreasing in contrast to the
original increasing monotonicity. The representation is com-
pared to a least squares quadratic T-spline approximation that
preserves monotonicity.

C. Monotone Boundary Approximation Using T-Splines

Changes in monotonicity imply changes in the boundary di-
rection. An approximation that can provide a good estimation
of the boundary direction must preserve the original boundary

Fig. 3. Spline approximation and estimation of the tangent vector at the con-
necting point, where the boundary slope is zero. T-spline approximation pro-
vides the right slope estimation as it preserves boundary monotonicity. B-spline
approximation results in a wrong (negative) slope estimation.

monotonicity. In [35], Beliakov proposed a simple way of pro-
ducing a monotone least squares spline by selecting T-splines
as basis functions and imposing linear inequality restrictions on
spline coefficients. The linear least squares problem becomes
a non-negative least squares problem; robust methods exist for
the effective solution of such problems.
Definition of T-Splines: Given a knot vector

, , trapezoidal or
T-splines functions, of degree , are defined as a sum of
B-splines basis functions

(6)

where is the th B-spline basis function, of degree
. Therefore, the T-splines are linearly inde-

pendent and form a basis of the space of -degree piecewise
polynomial functions [36]. A spline can be represented as

(7)

1) Monotone Spline Approximation: According to [35], if we
use second degree T-splines, we can construct an in-
creasing quadratic approximation. The necessary and sufficient
condition for monotonicity is , [see (7)].
The linear least squares problem (2) under monotonicity condi-
tion becomes a non-negative least squares problem.
Moreover, in our problem we need the approximation to pass

through the connecting points. Interpolating the first point is
achieved by setting . A practical way to force the ap-
proximation to pass through the last point, without making the
above problem more complicated, is to assign a weight to the
last term of the sum in (2). A very large value for may lead to
trivial solutions. A value that is a little greater than the number
of data points is an acceptable choice.
Under all restrictions above, (2) finally becomes

(8)
This is a weighted nonnegative least squares problem
(weighted-NNLS) and can be solved using MATLAB’s sub-
program lsqnonneg, which is a modification of Lawson and
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Hanson approach [37], [38]. For a survey of other methods
(Bro and Jong’s Fast NNLS, Projected Quasi-Newton NNLS)
the reader is referred to [39].
Having computed the control points , we can use (7) to ob-

tain the approximation curve . However, for stable and ef-
fective calculations, B-splines basis functions are more appro-
priate than T-splines. Beliakov [35] suggests obtaining the ap-
proximation curve using B-splines instead of T-splines by con-
verting the approximation T-spline coefficients to B-spline
coefficients according to

(9)

Then, using quadratic B-spline basis functions , we get
the approximation curve

(10)

We have concluded the description of the approximation
method proposed to represent an increasing boundary part with
an increasing spline. For monotonically decreasing splines the
results are analogous. The importance of preserving mono-
tonicity can be seen in Fig. 3, where the T-spline approximation
curve constructed with the above method leads to a good
estimation of the boundary direction at the connecting point,
which cannot be achieved by a B-spline approximation.

D. Shape-Preserving Boundary Approximation

1) Selection of the Appropriate Boundary Part: In order to
apply the T-splines approximation method, we have to select
a suitable boundary part. Starting from a connecting point, we
search along the boundary to choose consecutive points.

should be equal to the estimated number of lost points.
We make a rough estimation of this number by calculating the
length of the diagonal of the lost block. This value may be re-
duced as the selected part must satisfy the following conditions.
First, we have to ensure that this part can be approximated by a
function, i.e., to select points that satisfy the con-
dition or , . Second, we
have to select a part of increasing or decreasing monotonicity.
However, a minor variation in monotonicity is allowed as it does
not affect the T-spline approximation results. Suppose we move
along the boundary collecting points that satisfy a certain mono-
tonicity condition (see Section III). If we meet a point that does
not satisfy this condition and the change is not bigger than a
threshold (e.g., 1% of the frame height), we “ignore” it and con-
tinue checking a fewmore of the following points. If they do not
satisfy the initial monotonicity condition either, then we stop.
Else, we keep collecting points ignoring the “minor” variation
we have detected. In Fig. 3, the change in monotonicity intro-
duced by the fourth point before the connecting point is ignored
while selecting the boundary points.
2) Approximation Algorithm: Because of the free form of

a natural boundary, it is difficult to predefine the complexity
of an appropriate approximation, which is determined by the
number of the spline segments or equivalently, by , the
number of the control points [see (1)]. Increasing complexity

Fig. 4. Least squares T-spline approximations for a given data set. The number
of the control points used to construct the first curve (Approximation I) is equal
to 3/4 of the number of data points. Although the large number of the con-
trol points results in a small approximation error, the approximation “wiggles”
through data points failing to capture the boundary direction. By reducing the
number of the approximation control points to 1/4 of the number of data points,
we get a relative coarse approximation (Approximation II) that provides a better
direction estimation.

may improve the accuracy of the representation, by means of
the approximation error. However, large values of produce
solutions that “wiggle” through boundary points, introducing
major changes in the boundary direction (see Fig. 4). Even
though preserving monotonicity reduces “wiggling” compared
to a B-spline approximation, experimental results show that
small values of lead to better modeling curves.
Considering that our approximation should capture the shape

of the data without lacking accuracy, we will try to specify ap-
propriate thresholds for the approximation error and the number
of the control points. We define the approximation error as the
maximum value of the smaller Euclidean distance between the
approximation curve and the boundary points. An acceptable
approximation should not exceed a specified error threshold. In
order to satisfy this condition wemay need to execute a few iter-
ations of the approximation method, in which we gradually in-
crease . Starting from a minimum value of , we propose
to keep the number of the approximation control points smaller
than half the number of the boundary points. If we still cannot
obtain an acceptable approximation, we gradually shorten the
selected boundary part. By removing boundary points we get a
simpler boundary form, easier to approximate.
The curve complexity should be treated with the specified

error threshold. Both parameters affect the approximation
quality in a similar way. For the proposed values of , experi-
ments have shown that 1 pixel is an appropriate error threshold.
Algorithm 1 summarizes the steps needed for boundary ap-
proximation.

Algorithm 1 Received boundary modeling

1: select an appropriate boundary part
2: initialize the number of the approximation control points

:
3: find an approximation curve using T-splines
4: calculate the approximation error
5: if approximation threshold then
6: if then
7: increase the number of control points:

and go to step 3
8: else
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Fig. 5. First step of the proposed error concealment method. We construct a
T-spline approximation of the received boundary, on each side of the missing
segment. (a) A broken fountain boundary. (b) Boundary modeling curves.

9: reduce the length of the selected boundary part and
go to step 2

10: end if
11: else
12: return the approximation control points
13: end if

Fig. 5 illustrates the results of the boundary modeling step.
The broken boundary of the object fountain is illustrated in
Fig. 5(a). The T-spline approximation method is applied to an
appropriate set of boundary points, automatically selected, so as
the approximation curves preserve the original boundary char-
acteristics [see Fig. 5(b)].

IV. CONCEALMENT CURVE CONSTRUCTION

We will use the example of Fig. 5 to present the construction
of the proposed concealment curve. Suppose we have obtained
the left boundary approximation, , described by the control
points . We recall that passes through ,
the left connecting point. Similarly, the right boundary part is
approximated by , described by (see Fig. 6).
Due to smoothing restrictions that have already been discussed
in Section II, the concealment curve should pass through the
connecting points, and , and match the corresponding
boundary tangent lines. Therefore, the concealment curve
should satisfy four conditions, two at each connecting point.
This information could be used to produce various types
of curves such as polynomials of third degree [10], cubic
Bezier [13] or spline curves. As splines can represent natural
boundaries better than polynomials, we expect them to give
better concealment results. Four control points are sufficient to

Fig. 6. Determination of the new control points. Based on the T-spline approxi-
mation of the received boundary, we estimate the tangent lines at the connecting
points, on each side of the missing segment. We locate the new control points
on the estimated tangent lines.

construct a quadratic B-spline and will be obtained in the way
proposed in [13]. The experiments we performed to test our
choice against alternative solutions have shown that it yields
the best concealment.

A. New Control Points

As we have seen in Section III, a spline curve, , is deter-
mined by the control points and the knot vector

, . In [16] the first
derivatives at the end points of a B-spline curve are given by

(11)

(12)

with the degree of the spline. The above equations imply that
the tangent line at the end point, , passes through the
second control point, , and the tangent line at the end point,

, passes through the control point , that is the one
before the last control point of the curve.
Fig. 6 illustrates the tangent lines at the connecting points of

the fountain broken boundary. Assume that the left boundary
approximation, , is a B-spline curve determined by the con-
trol points . Then the tangent line at the left con-
necting point, , passes through the previous control point,

. Similarly, if the right boundary approximation, , is de-
scribed by the control points , the tangent line at
the right connecting point, , passes through the next control
point .
Let be the new concealment spline described by the control

points and the knot vector ,
, with and . Then (11)

gives the tangent of the new curve at the left connecting point
. We specify a new control point, , on the tangent

line of , which is symmetric to with respect to (see
Fig. 6). We consider as the second control point of , i.e.,

. Consequently, the tangents of the approximation and
the concealment curve at the left connecting point, , coincide
and continuity between the two curves is achieved.
Similarly, we obtain another control point, , at the right

boundary part. Using the new control points we can produce
a new spline having the same tangent with the approximation
curve at each connecting point. The actual value of the corre-
sponding first derivative is not needed.
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Fig. 7. New control points determined in Fig. 6 produce a B-spline conceal-
ment curve that joins smoothly with the boundary modeling curves. The broken
boundary is reconstructed successfully. (a) Boundary approximation and error
concealment curves. (b) Reconstructed fountain boundary.

B. Concealment Curve

The connecting points and the new control points constitute a
set of four control points .
Four control points can give a quadratic B-spline as the conceal-
ment curve according to

(13)

with the th quadratic B-spline basis function. The new
curve passes through the first and the last control points, i.e.,
the connecting points, and joins smoothly with the boundary
approximation curves. The proposed quadratic B-spline solu-
tion can represent more complex boundary forms compared to
a second order polynomial and has a more natural appearance
compared to a cubic polynomial. Besides smoothness, the
method used to find the new control points targets at preserving
the control polygon of the received boundary. A B-spline
passes closer to new control points compared to a cubic Bezier,
thus, it preserves the original boundary with greater success.
Fig. 7 illustrates the modeling and concealment curves and the
reconstructed boundary.
In Fig. 8 we present another example of the proposed method

and compare it to the method of [13]. A broken boundary (fork)
is concealed with B-splines and with cubic Bezier Fig. 8(b). The
details of the approximation and the determination of the new
control points are illustrated in Fig. 8(c) and (d). The length of
the received boundary selected to be modeled is determined by
the proposed approximation algorithm. In both cases, the spec-
ified error threshold is 1 pixel. Apparently, T-splines provide

an approximation that leads to a better direction estimation of
the received boundary. Smoothness is achieved by locating the
new control points on the estimated tangent lines. The number
and the position of the control points used from the proposed
method depend on the form of the received boundary, whereas
the method of [13] always uses four control points. However,
the number of the approximation control points affects the dis-
tance between them and, consequently, the distance between
each symmetric control point and the corresponding connecting
point. Thus, the proposed approximation curve reflects the orig-
inal boundary complexity by keeping the control points close
to each other, a property that is transferred to the new con-
trol points [see Fig. 8(c)]. On the other hand, the large dis-
tance between the four control points of the cubic Bezier curve
is unavoidable in order to represent a complex boundary [see
Fig. 8(d)]. The impact on the concealment curve is obvious.

V. ERROR CONCEALMENT FOR A BOUNDARY ENCODED
WITH B-SPLINES

The previous discussion applies to the error concealment of
any boundary, regardless of how it was encoded. In many shape
encoding schemes, the object boundary is represented by a
spline approximation [31]–[34]. The representation introduces
distortion; however, if the distortion is small, the approxima-
tion can be considered a shape-preserving representation of the
original boundary. In such a case, the boundary modeling step is
not necessary for error concealment. The received information
consisting of the approximation control points is sufficient to
apply the proposed concealment step.
In [31] a shape coding method is proposed, based on a

boundary approximation that uses quadratic B-splines. The
approximation lies inside a distortion band along the original
boundary. The control points describing the B-spline curve are
encoded and transmitted. The distortion band width defines the
approximation quality. If the width is kept small, the approxi-
mation curve does not introduce changes in boundary direction.
The example of Fig. 9 illustrates error concealment for a

B-spline encoded boundary. We assume that some control
points have been lost during transmission [see Fig. 9(a)]. As
we consider differential encoding the successful decoding of
every control point depends on the successful decoding of the
previous control points. If some of the control points are lost,
concealment is feasible only if some of the transmitted control
points are encoded directly.
In order to apply the proposed concealment method, we can

use the received control points, representing the boundary parts
on each side of themissing segment, to estimate the tangent lines
at each connecting point. Fig. 9(b) illustrates the new control
points determined in the way described in Section IV-A and the
quadratic B-spline concealment curve constructed according to
(13). The reconstructed boundary is shown in Fig. 9(c).

VI. MULTIPLE MISSING SEGMENTS

A packet loss during transmission may result in one or more
lost macroblocks. Moreover, a lost block of shape information,
regardless its size, may yield more than one missing boundary
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Fig. 8. Error concealment with the proposed method and with cubic Bezier
curves [13] for fork. The corrupted boundary shown in (a) is concealed in (b)
using the proposed method and the method proposed in [13]. In (c) and (d)
detailed results of the approximation of the received boundary and the deter-
mination of the new control points are shown for every method. At each con-
necting point the tangents of the received boundary are estimated. The new
control points, located on the tangents, determine the form of the concealment
curve. Thus, the proposed method leads to better concealment results in (b), due
to successful tangent estimation and location of the new control points in (c), a
goal that is not achieved with great success by the cubic Bezier curves in (d). (a)
Corrupted fork. (b) Approximation and concealment comparison. (c) Proposed
method. (d) Cubic Bezier curves [13].

segments (see Fig. 10). Before we apply the proposed error con-
cealment method, we should take into consideration that wemay
need to conceal more than one missing boundary segment.

Fig. 9. Proposed error concealment method for a boundary encoded with
B-splines according to [31]. Given the received control points, we estimate
the tangent lines at the connecting points. We locate the new control points
on the estimated tangent lines and use them to construct the B-spline con-
cealment curve. (a) Corrupted encoded fountain. (b) Error concealment. (c)
Reconstructed encoded fountain.

Fig. 10. Multiple missing segments for fork.

First, if more than one macroblock are lost, we need to group
lost macroblocks together. Four-connected macroblocks consti-
tute a lost group of shape information that has to be treated in
a unifying way. Second, if the lost information yields multiple
missing segments, we need to apply error concealment for every
missing segment separately. As we have already mentioned, a
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Fig. 11. Original bird and fishbone.

missing segment is defined by the start and the end point, that is
the connecting points. In order to find pairs of connecting points,
we use the algorithm proposed in [10], which is based on the as-
sumption that the boundary is a closed non-intersecting curve.
Since every line that goes into a lost block must come out of it,
there is always an even number of connecting points. However,
connecting points lead to possible pairs. The connecting

points are coupled recursively, under the condition that no pair
can lead to intersected straight line segments. The reader is re-
ferred to [10] for more details. After concealment splines con-
struction, the above assumption is checked again, since non-in-
tersecting straight line segments do not necessary lead to non-
intersecting splines. Finally, when the concealed boundary is
constructed, we can extract the corresponding -plane by as-
signing the value 1 to the pixels that are in the interior of the
boundary and 0 to the others (including the ones belonging to
the boundary). Algorithm 2 summarizes the whole error con-
cealment process.

Algorithm 2 Shape error concealment

1: find the received boundary of a binary encoded shape
( -plane)

2: group 4-connected lost macroblocks together
3: for every lost group do
4: find pairs of connecting points according to [10]
5: for every pair of connecting points do
6: apply the proposed error concealment
7: end for
8: end for
9: extract the reconstructed -plane or calculate the B-spline
encoding curve

VII. EXPERIMENTAL RESULTS

To test the proposed concealment method, a number of ex-
periments were performed, some of which are presented here.
Besides numerical results, examples showing the visual out-
come are shown. In order to quantify the performance of the
proposed method, we use a relative measure, the ratio of
the number of different pixels in the original and reconstructed
-plane divided by the total number of object pixels in the orig-
inal -plane. This is a quality metric used in MPEG-4 to eval-
uate shape coding techniques. Other metrics such as recall, pre-
cision, and distortion were also utilized in our experiments but

TABLE I
NUMERICAL RESULTS IN CASE OF 1 LOST MB

TABLE II
NUMERICAL RESULTS IN CASE OF 2 LOST MBS

TABLE III
NUMERICAL RESULTS IN CASE OF A B-SPLINE ENCODED BOUNDARY

they did not accurately depict the differences between the pro-
posed and existing methods.
Our experiments are divided into two categories. First, we as-

sume that the decoder receives a corrupted -plane. The tested
shapes are described by an -plane of 128 128 pixels and the
missing information block consists of either one macroblock
(16 16 pixels) or two neighboring macroblocks (16 32 or
32 16 pixels). All possible loss patterns that lead to a broken
boundary have been considered. We have also tried loss pat-
terns with larger groups of lost macroblocks. However, they do
not express the differences among the methods under testing,
so they are not presented here. Subsequently, we consider a
boundary encoded with B-splines, as described in Section V.
Here, we assume that some control points are lost during trans-
mission and error concealment is applied. After boundary recon-
struction, the corresponding -plane is extracted. The concealed
-plane is compared to the original. Pixels that are assigned 1(0)
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Fig. 12. Error concealment visual results. (a) Corrupted hammer, bird, fishbone, and fork. (b) Concealment with the proposed method. (c) Concealment with [13].
(d) Concealment with [10].

in the new -plane while their value is 0(1) in the original are
considered erroneous.
In our experiments we used object shapes with different

smoothness level and concealing difficulty, namely hammer,
fountain, bird, fishbone, and fork as shown in Figs. 1 and
5, Figs. 10 and 11, respectively. Besides the proposed error
concealment method, we also applied the methods of [10] and
[13]. Tables I and II show the average values associated
with every object. We also show the low and high of values
observed for every object, corresponding to the best and worst
concealment results.

As can be seen in both tables, as far as the proposed method
is concerned, only a small percentage of the reconstructed ob-
ject pixels differs from the original ones. In most cases, such
small differences are hardly visible. Comparing the proposed
method to [13] or [10], in Table I, we can see that the pro-
posed method gives better average values for three of the
five shapes, namely fork, fishbone and bird and similar for the
remaining. The proposed method also yields better results as far
as the worst (high) values are concerned. The difference be-
tween the proposed and the existing methods is more obvious in
the case of a less smooth boundary like fork. This is explained
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Fig. 13. Realistic error concealment scenario for 320X240 video objects. The
reconstructed boundary is drawn on the top of the missing MBs. (a) Original
boundary for fish and airplane. (b) First loss scenario and reconstructed
boundary. (c) Second loss scenario and reconstructed boundary.

by the fact that a quadratic [10] or a cubic [13] curve can be ef-
fective in modeling smooth boundaries; however, for complex
boundaries a spline curve is more appropriate.
In Table II, we demonstrate the results for the case where

two neighboring macroblocks of the transmitted -plane are
lost. Here, we expect larger values compared to Table I. In-
creasing the lost information block results in larger difficulties
in error concealment and leads to smaller differences among the
methods tested. Still, the proposed method yields better average
results for three of the five shapes and smaller worst values
for most of the shapes under testing.
In the second category of experiments we assume that the

original boundary was encoded using a quadratic B-spline
approximation [31]. The spline lies in a band of one pixel width
along the original boundary, therefore, it can be considered
shape-preserving. Thus, as discussed in Section V, the com-
putational complexity of the error concealment algorithm is
reduced by not performing received boundary modeling. The
number of the control points is approximately 1/10 of the total
number of the original boundary points. Moving along the
boundary, we assume that two consecutive control points are
lost during transmission, which results in a missing segment
consisting of 30 original points. Spatial concealment in case

of more lost control points is not possible, as it introduces
great distortion. We apply error concealment using the received
control points as described in Section V. The low average
values demonstrated in Table III indicate successful conceal-
ment for the proposed method. Moreover, compared to [10]
and [13], our method yields better results for most of the tested
shapes.
Obviously, numerical results cannot express the subjective

impact of the reconstructed boundary. Besides the example in
Fig. 8, we illustrate some more examples for which we con-
struct the concealed -planes in Fig. 12. The proposed method
yields natural and pleasant visual results. In most examples a
small distortion can be noticeable only if we compare the re-
constructed -plane to the original one. It is clear that the error
concealment preserves the original boundary form. This is not
true when the concealment is based on [10] or [13]. The results
may sometimes look awkward as these methods fail in capturing
the original shape.
In the above experiments we have chosen small objects in

order to reduce evaluation time. Towards a more realistic error
concealment scenario, in Fig. 13, we also present some visual
results for 320 240 frames considering several missing mac-
roblocks. Fig. 13(a) shows the original boundary for fish and air-
plane. Fig. 13(b)–(c) illustrate the loss scenarios; the lost mac-
roblocks are represented as grey shadowed blocks and the re-
constructed boundary is drawn on top of them.

VIII. CONCLUSION

Motivated by splines’ ability to model natural forms suc-
cessfully, we develop a new error concealment method based
on a geometric representation of a VO shape. Considering a
broken boundary, the construction of a quadratic B-spline curve
is proposed to replace a missing segment. The new curve is
obtained by applying smoothness conditions at the connecting
points touching the missing segment. We use T-splines to pro-
duce an approximation of the received boundary, aiming at a
representation that preserves the original boundary character-
istics and provides a reliable estimation of the direction at the
connecting points. At these points, the original boundary ap-
proximation and the concealment curve have the same direc-
tion. Under these conditions, we construct a concealment curve
yielding better objective and subjective results than the current
state of the art.
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