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An Image Super-Resolution Algorithm
for Different Error Levels Per Frame

Hu He and Lisimachos P. Kondi, Member, IEEE

Abstract—In this paper, we propose an image super-resolution
(resolution enhancement) algorithm that takes into account in-
accurate estimates of the registration parameters and the point
spread function. These inaccurate estimates, along with the ad-
ditive Gaussian noise in the low-resolution (LR) image sequence,
result in different noise level for each frame. In the proposed
algorithm, the LR frames are adaptively weighted according to
their reliability and the regularization parameter is simultane-
ously estimated. A translational motion model is assumed. The
convergence property of the proposed algorithm is analyzed in
detail. Our experimental results using both real and synthetic data
show the effectiveness of the proposed algorithm.

Index Terms—Regularization, resolution enhancement, super-
resolution.

1. INTRODUCTION

HE objective of super-resolution, or resolution enhance-

ment, is to reconstruct a high-resolution (HR) image from
a sequence of low-resolution (LR) images. The LR sequence
experiences different degradations from frame to frame, such
as point spread function (PSF) blurring, motion, subsampling
and additive noise. Each frame of the LR sequence only brings
partial information of the original HR image. However, if there
exists subpixel motion between these LR frames, each frame
will bring unique partial information of the original HR image.
Furthermore, if enough of such unique-information-bearing LR
frames are available, digital image/video processing can be ap-
plied to recover the HR image.

The direct reverse solution from interpolation, motion com-
pensation and inverse filtering is ill-posed due to the existence of
additive noise, even in the cases where perfect motion registra-
tion is available and the PSF of the optical lens is known. Under
these circumstances, the original HR image can not be “fully”
recovered. Many approaches have been proposed to seek a stable
solution with good visual quality to overcome the ill-posedness
of the super-resolution. To our knowledge, the earliest effort was
from Tsai and Huang [1]. Their method operates on the noise-free
data in the frequency domain and capitalizes on the shifting prop-
erty of the Fourier Transform and the aliasing relationship be-
tween the continuous Fourier transform (CFT) and the discrete
Fourier transform (DFT). This technique was further improved
by Tekalp et al. in [2] by taking into account a linear shift invariant
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(LSI) blur PSF and using a least squares approach to solving the
system of equations. Kim et al. [3] also extended this technique
for noisy data and derived a weighted least squares algorithm.
However, these methods are applicable only to global motion that
was known a priori. Most of the other resolution enhancement
techniques that have appeared in the literature operate in the spa-
tial domain. A projection onto convex sets (POCS) approach was
formulated by Stark and Oskoui [4]. In this method, the space
of HR images is intersected with a set of convex constraint sets
representing desirable image characteristics, such as positivity,
bounded energy, fidelity to data, smoothness, etc. The POCS ap-
proach has been extended to time-varying motion blur in [5], [6].
Block matching or phase correlation was applied to estimate the
registration parameters in [5].

Another class of resolution enhancement algorithms is based
on stochastic techniques. Methods in this class include max-
imum likelihood (ML) [7] and maximum a posteriori (MAP)
approaches [8]-[11]. MAP estimation with an edge preserving
Huber—Markov random field image prior is studied in [8]-[10].
MAP based resolution enhancement with simultaneous estima-
tion of registration parameters (motion between frames) has
been proposed in [11]-[15].

By using a specific Gaussian—-Markov random field (GMRF)
image prior with local clique, the MAP method is equivalent to
the regularization approach. The cost function of MAP method
is regularized with a regularization parameter. In most previous
works on image restoration, a special case of resolution en-
hancement, regularization is widely used to avoid the ill-posed
problem of inverse filtering [16], [17]. The regularization pa-
rameter of the cost function plays a very important role in the
reconstruction of the HR image. The L-curve method was used
to estimate this parameter in [18], where the desired “L-corner,”
the point with maximum curvature on the L-curve, was chosen
as the one corresponding to the regularization parameter. Iter-
ative adaptive algorithms with automatically updated regular-
ization parameter have been proposed in [13] with much less
computational cost and better visual quality.

The precise registration of the subpixel motion and knowl-
edge of the PSF are very important to the reconstruction of the
HR image. However, precise knowledge of these parameters
is not always assured in real applications. Lee and Kang [19]
proposed a regularized adaptive HR reconstruction consid-
ering inaccurate subpixel registration. Two methods for the
estimation of the regularization parameter for each LR frame
(channel) were advanced, based on the approximation that the
registration error noise is modeled as Gaussian with standard
deviation (STD) proportional to the degree of the registration
error. The convergence of these two methods to the unique
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global solution was observed experimentally using different
initial conditions for the HR image. However, the convergence
of these methods was not rigorously proved. Image restoration
from partially known blurs was studied in the hierarchical
Bayesian framework in [20]. The unknown component of the
PSF was modeled as stationary zero-mean white noise. Two it-
erative algorithms were proposed using evidence analysis (EA),
which in effect are identical to the regularized constrained total
least squares filter and linear minimum mean square-error filter,
respectively.

Robust super-resolution techniques have appeared in
[21]-[23] and take into account the existence of outliers (data
that do not fit the model very well). In [21], a median filter
is used in the iterative procedure to obtain the HR image.
The robustness of this method is good when the errors from
outliers are symmetrically distributed, which are proved to be,
after a biased detection procedure. However, a threshold is
needed to decide whether the bias is due to outlier or aliasing
information. Also, the mathematical justification of this method
is not analyzed. In [22] and [23], a robust super-resolution
method was proposed based on the use of the L; norm in both
the regularization and the measurement term of the penalty
function. Robust regularization based on a bilateral prior was
proposed to deal with different data and noise models. Also,
the mathematical justification of a “shift and add” was provided
and related to L; norm minimization when relative motion
is pure translational, and the PSF and decimation factor are
common and space invariant in all LR images.

The technique in [11]-[15] was later extended to the cases
in which the LR frames are contaminated by additive white
Gaussian noise (AWGN) with different variance for each frame
[24]. The motivation is that when AWGN with different variance
is the only noise source added to the LR images, the residual
term of the cost function should be weighted by the inverse of
the variance to each frame (channel). Furthermore, when there
exist other types of noise (errors) in the reconstruction process
during resolution enhancement, some form of weighting should
also be given to each channel to reduce the error effect. There-
fore, in this paper, we take all three types of noise (blur noise
due to inaccurate estimation of the PSF, registration noise due to
inaccurate registration and additive Gaussian noise) into consid-
eration. All three types of noise will affect the residual norm of
the cost function of each LR frame (channel). The three types of
errors can result in different residual noise levels per frame. For
example, motion estimation might be more successful for some
frames than for others. Furthermore, the system PSF can be dif-
ferent between frames due to time-varying atmospheric turbu-
lence. These situations will lead to different noise levels per LR
frame. An iterative process is, thus, proposed with a regulariza-
tion parameter to control the within-channel balance between
received data and prior information, and a channel weight co-
efficient to control the channel fidelity. The convergence of the
proposed algorithm is also fully discussed.

The rest of the paper is organized as follows. In Section II,
a regularized cost function for super-resolution (resolution en-
hancement) is proposed. An iterative algorithm is derived along
with the proof of convergence and choice of the regularization
parameter and channel weight coefficients. In Section III, ex-
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perimental results and a comparison of the proposed algorithm
with five other methods are presented. Finally, in Section 1V,
conclusions are drawn and future work is suggested.

II. REGULARIZED COST FUNCTION FOR
RESOLUTION ENHANCEMENT

A. Observation Model

The image degradation process is modeled by a linear blur,
motion, subsampling by pixel averaging along with additive
Gaussian noise. We assume that p LR images, each of size IN; x
N,, are obtained from the acquisition process. The following
observation model is assumed, where all images are ordered lex-
icographically [11], [13], [24]

y =Wz +n. D
The full set of ILR frames is described as
y = [le,yg,...,yZ;] , where yx, £ = 1,...p, are

the p LR images. The desired HR image z is of size
N = 11Ny X l3N,, where [ and l» represent the up-sampling
factors in the horizontal and vertical directions, respectively.
The term n represents zero-mean additive Gaussian noise.

In (1), the degradation matrix W = [W1, Wy, ..., W;]T
performs the operations of blur, motion and subsampling. Thus,
‘W, for frame k can be further written as

W, = SB;M; (2)

where S is the N1 N3 x N subsampling matrix, By, is the N x NV
blurring matrix, and My is the N x N motion matrix which
consists of Os and 1s and gives the location of each pixel after
motion. In this paper, we assume that no information is lost or
added due to motion operation, and matrix M}, indicates the
“new” location of each pixel of frame &k on the HR grid after
motion operation, with respect to the original HR image. In this
case, the elements of the motion matrix are Os and 1s, with only
one 1 in each column and each row. This corresponds to transla-
tional motion. We can easily verify that M, is a unitary matrix
(M{Mk =1, where I is the N x N identity matrix).
The observation model for each frame can be written as

Ye=Wiz+ny 3)

B. Cost Function

A regularized approach using the image prior information of
the desired HR image can be used to make the inverse problem
well-posed. Considering that each LR image may experience
a different degradation process, which implies that different
weighting should be given to it in the desired solution, the
following channel-weighted cost function is proposed

L(z) =) cxLifon(z), 2] 4)

where ¢, is the positive weight coefficient for channel &k and

Li[on(2),2] = [lyr — Wiz + ar(2)[ Dzl (5)
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where the operator D is generally a high-pass filter and is used to
penalize discontinuities in the final solution. The regularization
parameters «y(z) control the relative contribution between the
error term for the kth channel (residual norm ||y — Wp.z||?)
and the smoothness norm ||Dz||2. In this paper, we still use the
L5 norm instead of the L1 norm that was used in [22], [23].

In this deterministic regularization formulation, the usage of
the Lo norm does not imply that the distribution of noise is ex-
actly of Gaussian type. When the noise power is well bounded
in most regions, we believe that the Ly norm is still a good se-
lection. The justification that the residual noise is approximately
Gaussian is provided in the Appendix. In the overall cost func-
tion (4), the individual cost functions (5) are weighted by cg,
which denotes the importance and usefulness of the channel in-
formation. If the information of each channel is assumed to be
equally important, all cs can be simply set to be 1. In this spe-
cial case, the overall cost function (4) will be reduced to that
in [25]. However, due to the difference among the channels, the
residual norm ||y, — W z||? for each channel k£ may be different
from channel to channel. Thus, the weighted form of the overall
cost function applies to more general cases. Here, the residual
norm ||y, — Wyz||? has three possible sources: PSF blur noise,
registration noise and additive Gaussian noise, but as we will
show later, the channel weights can adaptively balance the con-
tributions from the p channels.

C. Choice of Regularization Parameter

In order for the nonlinear cost function L(z) to have a global
minimum, a(z) should be chosen in a proper way. Also,
compared with the cost function in [25], now each individual
channel cost function is weighted by ¢, which corresponds to
the reliability of a specific channel. In the following, we expand
the choice in [25] to a more general case, where each individual
cost function is assigned a weight coefficient c;. There are
many meaningful choices of the regularization parameter.
In this paper, the following propositions and properties are
adapted from [26].

Proposition 1: Positive weighted summation of convex func-
tional results in a convex function. The convexity of an indi-
vidual cost function implies (for simplicity, we drop the ay(z)
from the cost function Lg[z])

Lk[)\zl + (1 — /\)ZQ] Z )\Lk[Zl] + (1 — )\)Lk[z2] (6)

fork = 1,...,p, 21,22 € |[Re¥*tand 0 < X\ < 1. This
proposition can be proved by multiplying both sides of the above
inequality with the positive weight coefficient c;, and summing
up. Therefore, if each individual cost function L[ (2z),z] in
(5) is convex, the cost function in (4) is also convex.

Now, the regularization parameter should be selected in the
way such that each individual cost function is convex and the
regularization parameter is able to control the balance between
the residual norm ||y, — Wyz||> and the smoothness norm
||IDz||%. Thus, we impose the following desirable properties for
ag(z):

Property 1:

ar(z) = f(Lklo(2), 2]) = vi{Li[ok(2), 2]} (7
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or, equivalently

lyr — Waz|*
o(z) = ®)
o — |Dz||?
where f(-) represents a linear monotonically increasing func-
tion. The justification behind this choice is based on the set
theoretic formulation of the restoration problem [7], [26] and
we have also observed that it gives good results. The smaller
the smoothness norm ||Dz||?, the more energy is distributed to
the low frequency components in the partially reconstructed HR
image and a relatively smaller regularization parameter can be
used to further recover high frequency components of the HR
image, and vice versa. Therefore, «,(z) should be proportional
to both the residual norm ||yx — Wyz||? and smoothness norm
|IDz||2. Also, for a linear f(-), the minimizer z, which satisfies
V2L(2) = 0, also satisfies \/, > &_; crag(2z) =0
df .
0= dL : VZL (Z)
_ {df (L)}
B dZ Z=27

=V.f {Z CkLk[ak(i)7i]}

=V, > e f{Lxlok(2), 2]}

k=1
P

=V, Y k(). C))
k=1

Property 2: The «p(z) should be chosen to make
Li[ax(z),2z] convex. The sufficient condition for this is

(7]

of(L) _ 1
oLy ~ ||Dz|?*’

(10)

From Proposition 1, L(z) is also convex and the local minimizer
will also become the global minimizer. Also from (7) and (10),
the condition for convexity can be derived as (1/v;) > ||Dz||?,
which ensures a positive a(z) in (8).

With the given properties, the gradient of the cost function
L(z) is

P
Val(z) =2 cx {[Wi Wy + ax(z2)D"D] 2
k=1
~W i+ Dzl v cu(2)}

P
=2 e {[WiW, + ax(2)D"D] z - Wy}
1

El
Il

4

+ 2||Dz||? Z Ck Vaz @k (2).

k=1

(11)

At the global minimum, the gradient is equal to the zero vector.
According to (9), the last term of (11) becomes zero at the min-
imizer. The HR image is the solution of

p p
> ek [WEW, + ar(z)D'D] 2= "¢ [Wiyi] (12)
k=1 k=1
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and can be solved using iterative method

in-{-l =Zn
p
—e> o {[WEW + ax(z)D"D] 2, - Wiyi}. (13)
k=1

The sufficient condition for the convergence of the above itera-
tion is given by the following proposition [25].
Proposition 2: Consider the equation

G(z)z=Db (14)

where G(z) is a matrix, G(z) = ¢1G1(z) + c2Ga(2z) + -+ +
cpGp(z),b = c1bi+caba+---+¢yby, c1,C2,. .., ¢p are pos-

itive coefficients and each ¢ G (2) is a positive definite matrix.
The sufficient condition for the convergence of iteration

Znt+1 = Zn — €[G(Zn)2, — b] (15)
is

€ GuslTercinaral < (16)
p
where J., G, (z)z is the Jacobian matrix of vector c;G'(z)z and
¢max(+) is the maximum singular value of a matrix. Equiva-
lently, because of the positivity of ¢; along with the assump-
tion that ¢, is not a function of z, the above inequality can be
rewritten as
2
€- ()Zsmax[JG;‘.(z)z] < -. (17)
p
For subsampling by pixel averaging in (2), we can easily
verify that SST = (1/(l112))1, where T is the Ny Ny x N; N>
identity matrix. Therefore, ¢max[STS] = Gmax[SST] =
(1/(l1l2)); also, from the earlier discussion, we know M is a
unitary matrix. Therefore, MZMk = I Further, the impulse
response coefficients of the PSF are assumed to be normalized
to add to 1; thus, ¢ (B{Bk) = 1[13]. By applying Proposition
2 and (2) to (13) and using the property of singular value of a
matrix, we have

Pmax [WE Wi + ay(z)DTD]
< bmax [WFW,] + i(2)pmax[DTD]
= Gmax [BF MF STSM;.B] + a4 (2)pmax[DT D]
< $max [BE] dmax [M}] bmax[S™ |bmax
X [S]Pmax[Mk] pumax[Br]
+ ak(Z)¢max [DTD]
= Gmax[BJ Br]dmax [Mf My] $max[S”S]

+ (%) pmax[D' D]
_ 1 T
= ) + a(2)Pmax[D* D]
< 3 (18)
€p
Therefore
9 _ ep;
(l112)
ag(z) < 76p¢max[DTD]' (19)
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From (8) and (19), we have
1 epdmax[D'D] 2 2
— < —————||lyx — Wiz||” + ||Dz||". (20)
< Ty Ik~ Wil + 1Dz
If we can select the step size € as
2 l1ly )
€= — 21
p ((1112)¢max[DTD] +1
inequality (20) will become
1
o <l = Wizl* + Dz (22)

An upper bound of (1/yx) is (1 + lilo)|lyl|/?, since
llyr — Wizl|? < |lyx||* (each LR image is assumed to have
more energy than the residual noise), and ||Dz|> < ||z]|*> ~
l1l2||lyk||*. Considering piece-wise smoothness of z, usually
IDz||? < (||z||*/l1l2) =~ ||y&||? is satisfied for not too large
upsampling ratio [, lo. Therefore, we use (1/7;) = 2|y || in
this paper and [13], which is shown to be a good choice in the
experimental results.

D. Adaptive Update of Channel Weights

The channel weight c;, is the indicator of the reliability of
each channel. Channels with larger residual noise should be
given relatively smaller weight.

There are three sources for the residual noise: 1) Type I: PSF
blur noise due to nonperfect estimation of the PSF; 2) Type II:
registration noise, due to the nonperfect estimation of the regis-
tration parameters; 3) Type III: AWGN. All three types of noise
contribute to the residual norm ||y — Wz||?, the first term in
the cost function for each channel. We assume that this residual
norm depends on the registration and PSF estimation errors as
well as the additive noise and is not directly related to the HR
image z. In most previous work, only Type III noise is taken
into account, and assumed to be independent and identically
distributed (i.i.d). In this case, all the channels are given equal
weight ¢, = 1. In our recent work [24], Type III noise with dif-
ferent noise levels for each channel is taken into consideration.
In [19], Type II noise is also modeled as Gaussian-type noise
and an adaptive regularization algorithm is proposed.

Based on the the justification provided in the Appendix, the
residual noise is assumed to be approximately Gaussian. If the
noise variance for channel k is o} and the residual norm of
channel k is bounded by o7 N1 No, we propose that the channel
weight cj, should satisfy the following properties: (a) the cy,
should be inversely proportional to the residual norm ||y —
W,.z||%; (b) S°F_, ¢, = p. This constraint avoids the trivial
solution (all zeros) for ci. The simplest linear solution for cri-
teria (a) and (b) is

RH.VE“,
cp= —————— (23)
T v — Wazl?
where R.y. is the average residual norm defined as
Rave = P (24)

Zp: T W—aTE
— Wz
= My 12|
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We can see that ¢, is actually an inversely factored estimator
of the “Gaussian” bound o7. Note that more complex solu-
tions for ¢, can be obtained using nonlinear functions, such as
logarithmic function. Compared with the methods of Lee and
Kang, the major difference is that in out method, the smooth-
ness norm ||Dz||? is bounded. The proper bound (1/7;) not
only prevents the possibility of exponential increase of the reg-
ularization functional in this ill-posed problem, but also adap-
tively enhances the imagery detail. When the smoothness norm
||IDz||? is smaller, which means that the HR image consists of
more low-frequency components, a relatively small oy, is pro-
vided to let enough high-frequency components appear in the re-
constructed HR image. This is why our method will give better
result than those of Lee and Kang in general.

We also notice that the convergence of Lee—Kang’s method
is not mathematically verified and some choices of the reg-
ularization functional of the regularization parameters will
exponential increase during the reconstruction and not con-
verge. In our method, the convergence is always guaranteed
and the relationship between ¢ and «, is more clear. Also, our
method is already in multichannel form and can be computed
in parallel.

cr. depends on the residual norm, which is assumed to be a
function of the three types of noise and has little dependence on
the particular z. Thus, ¢, is assumed to be a constant. Therefore,
the derivations regarding convergence in the previous section
still hold. Now, the weight coefficients in (8) work as the cross-
channel fidelity, while the regularization parameter in (23) acts
as the within-channel balance between data and prior model for
each channel.

Compared to the choice of regularization parameters in paper
[19], our method explicitly separates the within-channel balance
and cross-channel balance. The regularization is imposed on
each channel instead of on the overall weighted-channel residual
norm. Our method is able to find the unreliable channels and
gives them less fidelity more quickly because linear solution im-
plemented. By imposing property (b), Y_»_, cx = p, the pro-
posed method also avoids the problem of exponential increase
of the regularization parameters for some functionals.

III. EXPERIMENTAL RESULTS

A number of experiments were conducted, some of which are
presented here. To test the performance of our algorithms, we
used the 256 x 256 “Cameraman” and “Lena” test images for
the synthetic test. Four frames were generated with down-sam-
pling ratio [y = Iy = 2. Four cases, Cases 1-4, as listed in
Table I, were tested. In these four tests, the PSF was a Gaussian
blur with support size 15 x 15 and STD o = 1.7 for the no
blur-noise cases (the PSF was assumed to have been perfectly
estimated). For blur-noise cases, the PSF estimation was biased
and determined to be Gaussian with a STD ¢ = 1.4. The regis-
tration parameters for the four frames were global translations
[0,0], [0, 1], [1,0], [1,1] in the HR grid, respectively, for the no
registration-noise cases. For registration-noise cases, the second
frame’s motion vector was biased by one pixel to [0, 2]. i.i.d.
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TABLE 1
FOUR CASES OF SYNTHETIC TEST

‘ | Additive noise | Blur noise | Registration noise

Case 1 Y N N
Case 2 Y N Y
Case 3 Y Y N
Case 4 Y Y Y

AWGN noise with same variance o2 was added to each frame,

which corresponds to a signal-to-noise ratio (SNR) of 30-40 dB,
the same level as the AWGN noise of the real data.

D was a high-pass filter formed by the two-dimensional
Laplacian kernel defined as

1 fori =7
dij = { —, fori,j: zj is a cardinal neighbor of z;. (25)

To compare, we test the four cases in Table I and list the
results from the proposed algorithm along with five other algo-
rithms, that is, bilinear Interpolation, algorithm of Hardie [11]
with the best visual reconstruction (the regularization parameter
was obtained via trial and error), algorithm (I) of Lee—Kang
[19], algorithm (II) of Lee-Kang [19], and, simultaneous
method without weighted channels [13]. Since the algorithms
of Lee—Kang do not consider inaccurate PSF estimate, results
for these algorithms are only presented for Cases 1 and 2.

Each algorithm was carried out until convergence was
reached when ((||z"*! —2"[|)/(]|z"||)) < 1076. The peak
signal to noise ratio (PSNR) values of the reconstructed images
for “Cameraman” and “Lena” using the six methods are shown
in Tables II and III, respectively. The reconstructed HR images
of for “Cameraman” and “Lena” using the six methods in Case
2 are shown in Figs. 1-6 and Figs. 7-12, respectively.

From Tables II and III, it can be seen that the ‘“non-
channel-weighted simultaneous method” provides a better or
close reconstruction compared to the algorithm of Hardie in
Case 1, as has been shown in [13]. For Cases 2, 3, and 4, when
there exist inaccurate estimates of PSF blur and/or registra-
tion, Hardie’s method with a good regularization parameter
may perform better than “nonchannel-weighted simultaneous
method,” but when adaptive channel weighting is utilized in
the proposed method, it provides the best PSNR values among
the algorithms.

Also, when the adaptive channel weighting is utilized, the
proposed method performs better than both algorithms of
Lee—Kang, in the sense of the average enhanced PSNR values
for Cases 1 and 2 by 0.475 and 0.310 dB for the “Cameraman”
and 0.690 and 0.535 dB for the “Lena,” respectively. From these
results, we can see that our algorithm is applicable to different
cases of noise and generates good reconstruction results.

Furthermore, we can see that for the “Cameraman,” the
proposed algorithm has an average PSNR improvement of
0.340 dB compared to the simultaneous method without
weighted channels for the two registration-noise cases (Cases 2
and 4), and 0.235-dB PSNR improvement for the two blur-noise
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50 100 150 200 250

Fig. 1. Bilinear interpolation of the first LR Cameraman image in Case 2.

50 100 150 20 250

Fig. 2. Reconstructed HR Cameraman image using Hardie’s algorithm in
Case 2.

50 100 150 200 250

Fig. 3. Reconstructed HR Cameraman image using Lee—Kang’s algorithm (I)
in Case 2.

cases (Cases 3 and 4). These improvements for “Lena” are
0.525 and 0.345 dB, respectively. This indicates that Type
II noise has a more serious effect during the process of HR
reconstruction than Type I noise, which shows the need for
accurate registration, which is more important than the perfect
estimation of the PSF of the optical lens.

50 100 150 200 250

Fig.4. Reconstructed HR Cameraman image using Lee—Kang’s algorithm (II)
in Case 2.

50 100 150 200 250

Fig. 5. Reconstructed HR Cameraman image using the simultaneous method
without weighted channels in Case 2.

50 100 150 200 250

Fig. 6. Reconstructed HR Cameraman image using the proposed method in
Case 2.

It is also easy to see that when only AWGN noise exists
(Case 1), the reconstruction result from the proposed algorithm
is equivalent to that in [24].

Next, we used real data of two video sequences provided to
us by the Naval Research Laboratory, Washington, DC, to test
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50 100 150 200 250

Fig. 7.

50 100 150 200 250

Fig. 8. Reconstructed HR Lena image using Hardie’s algorithm in Case 2.

50

100

150

200

250 -
50 100 150 200 250

Fig. 9. Reconstructed HR Lena image using Lee—Kang’s algorithm (I) in
Case 2.

the proposed algorithm. The first sequence is infrared and con-
sists of 20 frames of the LR “truck” image with size 128 x 128
pixels. The second sequence consists of 16 frames of the LR
“chart” image with size 64 x 64 pixels. The up-sampling ratio
is l; = ly = 4. We assumed a Gaussian PSF for the lens and
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50 100 150 200 250

Fig. 10. Reconstructed HR Lena image using Lee—Kang’s algorithm (II) in
Case 2.

50 100 150 200 250

Fig. 11. Reconstructed HR Lena image using simultaneous method without
weighted channels in Case 2.

50 100 150 20 250

Fig. 12. Reconstructed HR Lena image using the proposed method in Case 2.

estimated its STD at 1.7 using trial and error. Bilinear inter-
polation of the first frame was chosen as the first estimate of
HR image z. Registration parameters were predetermined for
each 16 x 16 macro block on the HR grid using the optical flow
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TABLE II
RESULTS OF “CAMERAMAN” USING THE SIX METHODS
PSNR (dB) | Bilinear | Algorithm of Hardie | Algorithm (I) | Algorithm (II) Simultaneous Method Proposed Method
of Lee-Kang | of Lee-Kang | without weighted channels
Case 1 22.51 24.90 24.54 24.60 24.92 24.92
Case 2 22.51 24.64 24.32 24.59 24.59 24.89
Case 3 22.51 24.75 - - 24.68 24.77
Case 4 22.52 24.38 - - 24.36 24.74
TABLE III
RESULTS OF “LENA” USING THE SIX METHODS
PSNR (dB) | Bilinear | Algorithm of Hardie | Algorithm (I) | Algorithm (II) Simultaneous Method Proposed Method
of Lee-Kang | of Lee-Kang | without weighted channels
Case 1 24.97 27.81 27.29 27.28 27.83 27.83
Case 2 24.96 27.37 26.95 27.27 27.30 27.79
Case 3 24.96 27.47 - - 27.36 27.59
Case 4 24.96 26.97 - - 26.98 27.54

Fig. 13. Bilinear interpolation of the first frame of truck sequence.

method [16]. We assumed that convergence was reached when
(((Nz"*t =2")/(I1z"]]))) < 107°.

The reconstructions using the six methods for “truck” se-
quence are shown in Fig. 13-18, respectively. The proposed
method provides the sharpest reconstruction among the algo-
rithms.

The reconstructions using the six methods for “chart” se-
quence are shown in Figs. 19-24, respectively. The bars in the
reconstruction using the proposed method are sharper and easily
decided to be horizontal or vertical.

We also test the a underdetermined system using “chart” with
ten frames. The reconstruction using the proposed method is
shown in Fig. 25. The availability of fewer frames blurs the de-
tailed information of some smaller bars, but the overall quality
of the reconstruction is still good, with most bars easily decided
horizontal or vertical.

300 350 400

450 500

Fig. 14. Reconstructed HR truck image using simultaneous method without
weighted channels.

In all the experimental tests, the computational cost of our
method is lower than that of Hardie and Lee—Kang methods,
because a fixed step size is used in the proposed method instead
of updating the step size in their methods. The computational
cost of the proposed method is higher than that of “non-
channel-weighted simultaneous method” because of channel
weighting, but this increase is reasonable considering the
much better PSNR values provided by the proposed method,
for cases with inaccurate estimates. Compared to the “non-
channel-weighted simultaneous method” in our experiments,
the methods of Hardie, Lee—Kang algorithm (I), Lee—Kang
algorithm (II), and the proposed method are 2.21, 2.19, 2.23,
and 1.52 times slower, respectively. Besides the computational
issue, the proposed method also provides the highest PSNR
values for synthetic images, as well as the best visual quality
for real data among the tested algorithms.
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Fig. 15.

Fig. 16.

300 350 400 450

Fig. 17. Reconstructed HR truck image using Lee—Kang’s algorithm (II).

IV. CONCLUSION

In this paper, we proposed a technique for image super-res-
olution (resolution enhancement) with adaptively weighted LR
frames (channels) and simultaneous estimation of the regular-
ization parameter. The weight coefficients work as the cross-
channel fidelity to each LR image, while the regularization pa-
rameter acts as the within-channel balance between data and

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 3, MARCH 2006

50 100 150 200 250 300 350 400 450 500

Fig. 18. Reconstructed HR truck image using the proposed method.
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200

250+

50 100 150 200 250

Fig. 20. Reconstructed HR chart image using simultaneous method without
weighted channels.

prior model. The convergence property of the proposed algo-
rithm is analyzed in detail. More importantly, experimental re-
sults show the validity of our algorithm in cases with inaccu-
rate subpixel registration along with inaccurate estimate of the
PSF of the optical system. Also, from results of different noise
cases, we conclude that the registration noise (Type II) impairs
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Fig. 21.

Fig. 22.

Fig. 23.  Reconstructed HR chart image using Lee—Kang’s algorithm (II).

the reconstruction quality more compared to the PSF blur noise
(Type D).
APPENDIX

In this appendix, we will justify the assumption that the
residual noise is approximately Gaussian considering different
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Fig. 25. Reconstructed HR chart image using the proposed method in a
underdetermined case.

combinations of the three types of noise. First, let us analyze
the distribution of the overall noise to see if it is Gaussian or
not. We adapt the GLRT test from [22] to test the residual
noise to be nearly Gaussian or Laplacian distributed. When the
GLRT score of a random variable, which was simplified to be
(61./6¢) in [22], is greater than (7/2¢)'/2, or approximately
0.7602, the random variable is believed to be Gaussian type.
Here, 61, and 64 stand for the ML estimates of the variance
when the random variable assumed to be Laplacian distributed
or Gaussian distributed, respectively.

In the four synthetic tests listed in Table I, the GLRT scores
for “Cameraman” and “Lena” images are as listed in Table IV. In
cases 1 and 3, the GLRT scores are higher than 0.7602; thus, the
residual noise is more Gaussian than Laplacian. In cases 2 and 4,
the GLRT scores are lower than 0.7602; thus, the residual noise
is more Laplacian than Gaussian, but we also notice these scores
are still close to 0.7602, the threshold GLRT test. Also, we no-
tice that if we just remove a very small percentage of pixels (less
than 7%) from the residual image, which have relatively larger
absolute value, the GLRT score for the remaining pixels can
reach the threshold 0.7602. We call the region of the remaining
pixels as “Gaussian” region. It is not surprising to see that the
pixels inside of the “Gaussian” region are in the smooth part
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TABLE IV
TEST OF THE RESIDUAL NOISE OF SYNTHETIC IMAGES

Cameraman | GLRT | Pixel ratio inside | Gaussian Lena | GLRT | Pixel ratio inside | Gaussian
of Gaussian region | variance of Gaussian region | variance

Case 1 0.7994 100% 172270 || Case 1 | 0.7949 100% 22.2016
Case 2 0.5759 94.47% 30.1303 || Case 2 | 0.6540 98.83% 58.8494
Case 3 0.7908 100% 22.9528 || Case 3 | 0.7960 100% 25.6969
Case 4 0.5727 93.91% 31.0734 || Case 4 | 0.6533 97.91% 60.4787

of the HR image, and the the pixels outside of the “Gaussian”
region are mainly around the edges of the HR image, which cor-
respond to the high-frequency components. Therefore, in these
cases, the residual noise in the smooth region is still approxi-
mately Gaussian. The STDs of the “Gaussian” region are also
listed in Table IV.

Comparing Case 2 to 1 (or Case 4 to 3), we can see even in
the “Gaussian” region only, the noise level is clearly increased
(more than 1.5 times) due to the inaccurate estimates. If we con-
sider the “non-Gaussian” edges, the increase of noise level will
be even higher. This implies that channel weighting is neces-
sary when there exist different combinations of Type I and Type
II noise in the residual norm.

The above findings can be also interpreted from the prior
model of the HR image, which is usually taken to be a GMRF.
In this prior model, the image consists of piecewise smooth re-
gions, segmented by the edges of objects inside the image. The
noise due to inaccurate PSF estimate and/or registration param-
eter will be equivalent to a high-pass filtering. The larger abso-
lute values of this residual noise happen around the edges of the
HR image. The residual noise in the smooth region is still ap-
proximately Gaussian type.
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