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Abstract—Performance guarantees for the algorithms deployed
to solve underdetermined linear systems with sparse solutions are
based on the assumption that the involved system matrix has the
form of an incoherent unit norm tight frame. Learned dictionaries,
which are popular in sparse representations, often do not meet the
necessary conditions for signal recovery. In compressed sensing
(CS), recovery rates have been improved substantially with opti-
mized projections; however, these techniques do not produce bi-
nary matrices, which are more suitable for hardware implementa-
tion. In this paper, we consider an underdetermined linear system
with sparse solutions and propose a preconditioning technique that
yields a system matrix having the properties of an incoherent unit
norm tight frame.While existing work in preconditioning concerns
greedy algorithms, the proposed technique is based on recent theo-
retical results for standard numerical solvers such as BP andOMP.
Our simulations show that the proposed preconditioning improves
the recovery rates both in sparse representations and CS; the re-
sults for CS are comparable to optimized projections.

Index Terms—Compressed sensing, incoherent unit norm tight
frames, preconditioning, sparse representations.

I. INTRODUCTION

S PARSE signal recovery was introduced in signal pro-
cessing in the context of sparse and redundant repre-

sentations as the problem of finding a signal representation
with a few nonzero coefficients. Sparsity has improved the
performance of many signal processing applications such as
compression, feature extraction, pattern classification, and
noise reduction [1].
A recent branch of sparse representations that has become a

center of interest of its own, is compressed sensing (CS) [2], [3].
Exploiting sparsity, CS acquires signals at a drastically smaller
rate than the Shannon/Nyquist theorem imposes, performing a
number of measurements that is much smaller than the signal
length.
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At the heart of sparse representations and CS lies an under-
determined linear system defined by

(1)

with , . Having more unknowns than equa-
tions, system (1) either has no solutions or infinitely many solu-
tions. Assuming that the systemmatrix is full rank to avoid the
anomaly of having no solution, one way to guarantee a single
solution is to enforce sparsity [4]. Therefore, we assume that

, , where is the so-called -norm
(which is actually not a norm) counting the non-vanishing com-
ponents of the respective vector. Seeking a sparse solution, we
are led to the following minimization problem

(2)

Problem (2), known as sparse recovery, is NP-hard and can be
solved with numerical methods including greedy algorithms and
convex relaxation. Performance guarantees for standard numer-
ical solvers such as OMP and BP underline that must be an
incoherent unit norm tight frame [5]. Incoherence is a property
that characterizes the similarity between the columns of , de-
noted by . The worst similarity, defined by

(3)

is known as mutual coherence. A matrix with small mutual co-
herence is referred to as incoherent.
In sparse representations, CS and many other problems as-

suming the above formulation, the involved system matrix does
not always satisfy the necessary conditions for sparse recovery.
In this paper, we transform (1) into a form that is more suit-
able for finding numerically a sparse solution, a process referred
to as preconditioning. Using frame theory and following recent
theoretical results for sparse recovery, the proposed precondi-
tioning yields a system matrix having the properties of an inco-
herent unit norm tight frame (UNTF). The proposed technique
is based on an algorithm for building incoherent UNTFs pre-
sented in [6], [7]. Besides sparse representation problems, for
the first time to the best of our knowledge, we apply precon-
ditioning in CS. Using binary random matrices for sensing, we
show that preconditioning can improve the efficiency of the ac-
quisition hardware substantially; according to our simulations,
the performance of the deployed sparse recovery algorithms is
similar to the one observed for optimized projections in [7].
The rest of the paper is organized as follows. In Section II we

review the sparse recovery problem in the context of sparse rep-
resentations and CS. As our construction employs frame theory,
Section II also provides the necessary background regarding
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frames. The proposed preconditioning and the algorithm for
building incoherent UNTFs are presented in Section III. Our ex-
periments in Section IV include signal recovery both in sparse
representation problems and CS, deploying OMP and BP. Fi-
nally, conclusions are drawn in Section V.

II. BACKGROUND

A. Sparse and Redundant Representations

The weakness of orthogonal transforms to provide highly
sparse representations has promoted the development of over-
complete dictionaries. An overcomplete or redundant dictionary
is an matrix, , with unit norm columns known
as atoms, spanning the -dimensional signal space. When we
expand a signal in an overcomplete dictionary

, we obtain the underdetermined linear system

(4)

where is the vector of the unknown coefficients.
Seeking a sparse vector satisfying (4) leads to a minimization
problem of the form (2). Considering the necessary conditions
for signal recovery, must be an incoherent UNTF.
Although constructions of incoherent tight dictionaries ap-

pear often in signal processing applications, such dictionaries
have a limited ability of sparsifying signals or are suitable only
for certain signal types. Learning based dictionaries that have
been proposed as an alternative, contain atoms generated from
instances belonging to a particular signal family. Every signal
in the family can then be represented as a linear combination of
a few atoms from the dictionary. The weakness of such dictio-
naries to satisfy incoherence properties, motivated the authors in
[8] to propose amodification of thresholding andOMP, such that
in the estimation of the unknown support, a matrix other than
the original representation dictionary is employed. Regarding
thresholding, an explicit formula for calculating the optimal ma-
trix for support estimation is given in [9].

B. Compressed Sensing

Compressed sensing offers simultaneous acquisition and
compression of sparse signals, using a sensing mechanism
described by

(5)

where , , is the sensing or projection matrix
and is the representation dictionary. System (5) is
underdetermined with equations and unknowns. Seeking a
sparse solution, we are led to a problem of the form (2), which
can be solved numerically as long as the effective dictionary

is close to an incoherent UNTF.
Successful signal reconstruction in CS is based on the choice

of the projection matrix. While random matrices are considered
a universal solution, the demand to increase reconstruction ac-
curacy and reduce the necessary number of measurements has
led to new theoretical and practical results. Towards this di-
rection, a substantial improvement has been achieved with op-
timized projections [10], [6], [7]. Nevertheless, when talking
about projection matrices, a significant issue is the design of ac-
quisition hardware. Binary random matrices are considered the
best option for practical implementation. However, the recovery
rates they yield are similar to the ones achieved with random

Gaussian matrices at best [11], [12], while certain types of bi-
nary projections work well only when combined with specific
representation dictionaries [13].

C. Frames

Frames [14] have been popular in sparse and redundant rep-
resentations as they are a natural extension of orthogonal bases.
A finite frame in a real or complex -dimensional Hilbert
space is a sequence of vectors , ,
satisfying the following condition

(6)

with positive constants and . When , we obtain an
-tight frame, that is

(7)

In this case, the rows of form an orthonormal family.
A tight frame with unit norm columns, referred to as unit norm
tight frame (UNTF), exists only for [14].
Frame theory has become important in sparse reconstruction

problems due to equiangular tight frames (ETFs), which ex-
hibit equal correlation between frame elements [15]. Equian-
gular UNTFs, also known as optimal Grassmannian frames, are
ideal candidates for sparse recovery algorithms as they meet the
minimum possible bound regarding mutual coherence [15], that
is

(8)

Frames satisfying (8) with equality do not exist for arbitrary
frame dimensions , while their construction has been
proven extremely difficult.
Next, we present a design methodology for building inco-

herent UNTFs that are close to optimal Grassmannian frames.

III. INCOHERENT UNIT NORM TIGHT FRAMES
FOR SPARSE RECOVERY

A. Preconditioning for Underdetermined Linear Systems with
Sparse Solutions

In linear algebra and numerical analysis, preconditioning is a
process that conditions a given problem into a form that is more
suitable for numerical solution [16]. Given a linear system

, a preconditioner of the matrix is a matrix such
that has a smaller condition number than . Considering an
underdetermined linear system with sparse solutions, recent re-
sults have shown that problem (2) can be efficiently solved with
greedy algorithms and convex relaxation, if the systemmatrix is
an incoherent UNTF [5]. Therefore, a preconditioner for a min-
imization problem of the form (2) should yield a system matrix
as close to an incoherent UNTF as possible.
Let be an arbitrary matrix, not satisfying the nec-

essary conditions for sparse recovery. Suppose there exists an
matrix such that the product be an incoherent

UNTF. Multiplying both sides of (1) by , we obtain

(9)
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where . Requiring to be invertible, implies that system
(1) is equivalent to (9). Therefore, solving the following mini-
mization problem

(10)

we obtain a solution that satisfies also (2).
Problem (10) involves the effective system matrix ;

thus, the efficiency of the numerical algorithms deployed to
solve it depends on the properties of . The question that natu-
rally arises is how can we construct an invertible matrix
such that the effective matrix is an incoherent UNTF?

B. Construction of Preconditioner

Incoherent UNTFs are frames close to optimal Grassman-
nian frames. Optimal Grassmannian frames not only exhibit
minimal mutual coherence, but -tightness as well. Thus,
we propose the following design methodology: First, we com-
pute a matrix with small mutual coherence. Then, we find a
UNTF that is nearest to the computed incoherent matrix in the
Frobenius norm.
Regarding the first step, we work with the Gram matrix.

Given a matrix , formed by the frame vectors
as its columns, the Gram matrix is the Hermitian

matrix of the column inner products, that is . For
unit norm frame vectors, the maximal correlation is obtained as
the largest absolute value of the off-diagonal entries of . We
propose to bound the off-diagonal entries according to

(11)

where is the ( ) entry of the Gram matrix. The selected
bound is approximately equal to the lowest bound (see
eq. (8)) for large values of . Other choices of the bound might
be considered depending on the frame dimensions.
Regarding the second step, we must solve a matrix nearness

problem.We can solve this problem algebraically by employing
the following theorem [17].
Theorem 1: Given a matrix , , suppose

has singular value decomposition (SVD) . With respect
to the Frobenius norm, a nearest - tight frame to is given
by . Assume in addition that has full row-rank. Then

is the unique - tight frame closest to . Moreover,
one may compute using the formula .
The algorithm we propose is iterative. We select the initial

matrix to be an random Gaussian matrix; a square
random matrix will almost never be singular [18]. Setting

, the -th iteration of the proposed algorithm involves the
following steps:
1. Obtain the matrix , after column normalization of .
2. Calculate the Gram matrix and apply (11)
to bound the absolute values of the off-diagonal entries,
producing . (Our experience indicates that this step pre-
serves positive semidefiniteness of , which is necessary
to proceed.)

3. Obtain of rank by computing the truncated SVD of
, i. e. set the smallest singular values to zero.

4. Let the SVD of . The matrix
satisfies .

5. Apply Theorem 1 to obtain .
6. Find the matrix by solving the minimization
problem .

7. Set .

Fig. 1. Discrepancy between the Gram or pseudo-Gram matrices involved in
support estimation and the identity matrix of same dimensions. The experiments
involve matrices with and .

We cannot guarantee that the above algorithm yields an in-
vertible matrix . However, according to our analysis in [7],
there is strong evidence that the algorithm converges locally,
meaning that the output matrix is close to the initial matrix

. Having selected an invertible initial matrix, the proba-
bility that the obtained matrix is singular is very small.

IV. EXPERIMENTAL RESULTS

In this section we present simulations showing the effect of
the proposed preconditioning approach in the numerical solu-
tion of sparse recovery problems that we encounter in sparse
representations and CS. In our experiments we deploy OMP, a
typical greedy approach, and BP, a numerical solver for convex
relaxation programs [1].

A. Sparse Representations

Considering a sparse representation given by (4), when de-
ploying greedy algorithms, the recovery of the unknown support
depends on the inner products . If was an or-
thonormal basis, then , where is the iden-
tity matrix, and the product would recover the unknown
support. Similarly, when employing overcomplete dictionaries,
successful recovery is achieved if the Gram matrix has small
off-diagonal entries. For dictionaries with high coherence, the
solution proposed in [8] involves support estimation with a dic-
tionary other than the original dictionary . With being
incoherent to , the product yields higher re-
covery rates.
One way to estimate the appropriateness of the dictionaries

involved in support recovery is to compute the discrepancy be-
tween the corresponding Gram or pseudo-Gram matrix and the
identity matrix, that is, for the ini-
tial dictionary, for the proposed pre-
conditioning, and for [8], where de-
notes the Frobenius norm. Results using random Gaussian dic-
tionaries averaged over 500 experiments are presented in Fig. 1,
involving varying matrix dimensions. The results are best with
the proposed construction, indicating improved performance in
numerical recovery.
To test the performance of the deployed algorithms in sparse

representations, we use randomGaussian dictionaries
and produce sparse synthetic signals with varying support size.
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Fig. 2. Support recovery rates for sparse representations using OMP for signals
with varying support size.

Fig. 3. Support recovery rates for sparse representations using BP for signals
with varying support size.

The percentage of fully recovered support, referred to as re-
covery rate, is used to quantify the algorithms’ performance.
Averaged over 500 experiments, the recovery rates for OMP in
Fig. 2 show that the proposed technique improves algorithm’s
performance and surpasses the results in [8]. Similar results ob-
tained for BP ([8] is not applicable here) in Fig. 3 confirm that
the proposed preconditioning is appropriate for finding sparse
representations efficiently.

B. Compressed Sensing

In our previous work [7], starting from Gaussian random
projections, we employ the algorithm for building incoherent
UNTFs to construct an optimized projection matrix such
that the effective dictionary becomes an incoherent
UNTF. In this paper, we consider a more practical problem,
assuming that the sensing mechanism is implemented by a
binary random matrix and improve signal recovery using
preconditioning.
In our experiments, we use a Bernoulli random pro-

jection matrix with entries 0,1. We perform signal acquisition
according to (5). Preconditioning leads to the underdetermined
linear system or , where
is the preconditioner and is the new system matrix
having the properties of an incoherent UNTF. The first group
of experiments involves Haar-DCT dictionaries. Re-

Fig. 4. Support recovery rates for OMP and BP, for signals with varying sup-
port size acquired with Bernoulli random projections.

TABLE I
RECOVERY RATE COMPARISON OF THE PROPOSED METHOD

WITH OPTIMIZED PROJECTIONS [7]

covery rates obtained for OMP and BP are presented in Fig. 4.
Averaged over 500 realizations, the results show that precon-
ditioning yields significant improvement in the performance of
OMP, and particularly of BP, implying that the proposed tech-
nique can be applied successfully in CS.
Next, we compare the proposed method to optimized pro-

jections, for signals that are sparse under random
Gaussian dictionaries. Table I demonstrates recovery rates
achieved with preconditioning and optimized projections [7].
The results are similar for both methods, showing that the per-
formance of the deployed algorithms when used with Bernoulli
projections and preconditioning is comparable to optimized
projections. Considering that Bernoulli matrices are more
convenient for hardware implementation, this is an important
result for practical compressed signal acquisition.

V. CONCLUSIONS

In this paper, we propose a preconditioning technique for un-
derdetermined linear systems that are encountered in sparse rep-
resentations and CS. When the involved system matrix does not
satisfy the necessary conditions for numerical solution, the pro-
posed technique improves the performance of the deployed al-
gorithms. Preconditioning is shown to increase the recovery rate
of binary matrices used for sensing, matching that of optimized
projections, and, therefore, is useful in practical CS systems. Fu-
ture work involves the application of the proposed technique in
other problems assuming the same formulation.
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