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Effective Resource Management in Visual
Sensor Networks With MPSK

Olusegun O. Odejide, Elizabeth S. Bentley, Lisimachos P. Kondi, and John D. Matyjas

Abstract—The problem of resource management in a Direct
Sequence Code Division Multiple Access (DS-CDMA) wireless
Visual Sensor Network (VSN) with M-array Phase Shift Keying
(MPSK) modulation in an Additive White Gaussian Network
(AWGN) channel was considered in this paper. Achieving max-
imum video quality, in spite of the prevailing network resource
constraints, is of utmost importance in VSN applications. Our
optimization scheme is based on the Nash Bargaining Solution
(NBS). The nodes in the network negotiate in order to determine
their transmission parameters (transmission powers; source and
channel coding rates for each node). The task is to optimize
the transmission powers (which are continuous) and the source
and channel coding rates (which are discrete) for all the network
nodes, while taking advantage of the improved bandwidth spectral
efficiency provided by the higher order constellation.

Index Terms—Cross layer optimization, game theory, MPSK,
Nash bargaining solution, visual sensor network.

I. INTRODUCTION

HE reliability of streaming applications over wireless

links suffers, as a result of the challenges associated with
wireless networks. The output at the application layer can be
improved by jointly optimizing parameters at the various layers
of the network stack, while considering quality of service (QoS)
requirements. This can be achieved by allocating resources
(compression ratio at the application layer, channel coding rate
at the data link layer, and transmit power at the physical layer)
to video camera nodes that negotiate according to the Nash
Bargaining Solution (NBS) approach, in order to improve the
overall objective video quality of the VSN.

Previous research in this field focuses on the important
issue of controlling power consumption in VSN [1], [2]. How-
ever, solutions presented in [1] did not optimize the overall
end-to-end video quality. In other recent work, several ap-
proaches have been presented towards achieving an end-to-end
video quality by reducing the intra-cell interference with the
aid of cross-layer optimization schemes [3]-[5]. However, in
previous work only BPSK modulation was considered. Using
BPSK limits the bandwidth spectral efficiency (information
rate that can be transmitted over a given bandwidth), so a
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higher spectral efficiency can be obtained by using higher order
constellations such as QPSK and 8-PSK. Also in [6], though
the authors look at optimizing the cross layer design techniques
for video streaming over cooperative wireless networks with
distributed control, they did not consider the effect of higher
order constellation schemes.

Our framework considered spatially distributed nodes, each
equipped with a camera capable of recording scenes with high
motion and low motion. In order to reduce the effect of interfer-
ence and operate optimally within the limits of the network re-
source constraints, we need to establish a joint network resource
allocation scheme that can enhance the global video quality.

In this paper, the cross-layer resource allocation scheme
is based on the Nash Bargaining Solution (NBS) from game
theory. Resources are allocated by the NBS based on negotia-
tions between the nodes, coordinated by the centralized control
unit. A Centralized Coordination Unit (CCU) coordinates the
resource allocation among the nodes. A multi-user/multi-access
channel access method (DS-CDMA) was employed, as well
as H.264 AVC video codec. In order to achieve a flexible
coding scheme, Rate Compatible Punctured Convolutional
Codes (RCPC) were used. Our method ensures fair allocation
of resources to obtain satisfactory utilities for all nodes and
takes into consideration the various channel conditions, the
video content characteristics, and the resource needs of the
other nodes so as to achieve the required level of Quality of
Service (QoS). The source coding rate and the channel coding
rate take on discrete values, whereas the transmission power
is allowed to take on values from a continuous set. Hence, the
resulting optimization problem is a mixed-integer problem, and
it is solved using Particle Swarm Optimization (PSO) [7].

The remainder of the article is organized as follows; in
Section II, we discuss the system model and the MPSK mod-
ulation scheme using trellis coding. The node clustering and
optimization framework is presented briefly in Section III. Se-
lected computational results are provided in Section IV which
is followed by some concluding remarks in Section V.

II. SYSTEM MODEL

The focus of this work is the analysis of a multi-node cross-
layer optimization technique for resource management in VSNs.
This is a cross-layer network performance optimization scheme
involving three different layers (physical, data link, and appli-
cation): optimization of the transmission powers at the physical
layer, optimal channel coding rates at the data link layer, and
compression rates at the application layer. Using BPSK mod-
ulation and RCPC codes, allowed the channel coding rate to
be optimized because variable rates are allowed, however the
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channel coding rate has to be fixed for Trellis Coded Modula-
tion when using higher order constellations.

Our framework assumes that the network nodes access the
wireless VSN using the DS-CDMA channel access method.
The VSN is comprised of low-weight spatially distributed
video cameras (referred to as nodes) and a CCU which co-
ordinates the resource allocation activities of the nodes, so
as to maintain good end-to-end video quality. All nodes in a
DS-CDMA system transmit over the same bandwidth, while
a unique spreading code is used to identify the transmission
of each node. The power S} of node & (measured in Watts) is
given by S, = Fi Ry, where F, is the received energy-per-bit
and R is the total transmission bit rate which is defined as
Ry = Roi/Recx, foranode b = 1,2,...,K. Ry is the
source coding rate, and R ;. is the channel coding rate. There-
fore, the energy-per-bit to multiple-access-interference (MAI)
ratio can be defined as:

Sp,
%: e k=12,
0 ik
where Iy /2 is the two-sided power spectral density due to MAI,
and it is measured in Watts/Hertz. W, is the total bandwidth
measured in Hertz. The subscript £ denotes the current node
while ;7 denotes the interfering nodes.

The video coding was based on the H.264/MPEG-4 AVC
video coding standard. Channel coding is required in order to
prevent channel errors and as such improve the overall video
quality. In this paper, for BPSK modulation scheme, channel
coding is achieved by using the Rate Compatible Punctured
Convolutional (RCPC) codes [8]. The Viterbi upper bound for
bit error probability, P, is given by:

, K (1)
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where P is the code period, d¢,.. is the free distance of the
code, ¢4 is the information error weight and P; is the proba-
bility that the wrong path at distance  is selected. In an AWGN
channel using the Binary Phase Shift Keying (BPSK) modula-
tion scheme, F; is given by:

QAR Ey ) o)
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R, is the channel coding rate, and Ey, /Ny is the energy-per-bit
normalized to the MAI ratio for the corresponding node .

MPSK Trellis Coding Modulation: Our goal is to investi-
gate the performance of the VSNs when different modulation
schemes such as QPSK and 8-PSK were used for modulation as
opposed to BPSK. With QPSK, a rate 1/2 convolutional codes
can be used. Using QPSK gives the same performance, in terms
of bit error probability evaluation, because although the free
squared Euclidean distance is halved in comparison to BPSK,
the amount of information transmitted has doubled [9]. How-
ever, using higher-order constellations with RCPC codes con-
stitutes some problems for our coding scheme to effectively
recover the signals at the receiver side; hence the need to use
Trellis Coded Modulation (TCM).
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Trellis Coded Modulation is a bandwidth-efficient modula-
tion that is based on convolution coding. This consists of a
combined convolutional codes and MPSK, e.g. rate 2/3 convo-
lutional codes and 8-level Phase Shift Keying (8-PSK). With
TCM, higher-order constellation modulation is combined with
convolutional codes to improve the error rate performance while
keeping the bandwidth unaltered. At the receiver, the received
signal is demodulated and then decoded. The performance is
dependent on the Euclidean distance between the transmitted
signal sequences instead of the free Hamming distance of the
convolutional code. The Viterbi ML-decoding algorithm is used
to decode the trellis code.

The basic idea involves transmitting /4 bits/waveform in each
signalling interval using a modulator with a set of 2"+ constel-
lation points such that the signal gets further apart, increasing
the Euclidean distance between the signals in the set.

The redundancy in the number of available waveforms is ex-
ploited through a proper choice, in each signalling interval, of
the 2" waveforms necessary to transmit A bits. The choice in
each interval is made on the basis of the past transmitted signals
through the memory of the encoder. A detailed description and
tutorial of TCM schemes and their applications can be found in
[91, [10].

The union upper bound for the bit error probability, P, for
TCM is given by [9]:

d%RCEk-I
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where n is the number of bits per symbol, B; is the average
number of bit errors on error paths with distance d,?, and R, is
the channel coding rate.

As mentioned earlier, the work of the CCU is to allocate net-
work resources to the nodes. Degradation due to lossy compres-
sion and channel error affects the video received by the CCU.
The CCU need to be able to estimate the expected video quality
at the receiver prior to resource allocation. In this work, in order
to estimate the expected video distortion E[D,. ] for each
node k at the receiver, we assumed the Universal Rate Distor-
tion Characteristics (URDC) for each node k:

1 -3
E[Ds-l-c,k‘] =« |:10g10 (E)] (5)

where a and (3 are positive parameters which depend on both the
motion level sequence and the source coding rate of each node
k [6]. Their values are determined by using the mean square
optimization from some (E[Dy. x|, P, ) pairs that are obtained
experimentally. Once the values of & and 3 are determined from
some experimental values, the expression in (5) can be used to
estimate the expected video distortion given Py,.

There exist limitations concerning the total available bit rate
that can be used by each node for both source and channel
coding. The maximum bit rate at which each node should
transmit data is the same. Hence the source coding rate and
channel coding rate are interdependent, increasing one leads to
a reduction of the other.
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Taking into considerations the required constraints, the goal
is to enable the CCU to optimize the allocation of network re-
sources (source coding rate, channel coding rate, and the power
level) to each node k in order to minimize the end-to-end ex-
pected distortion. Combining all previous equations, the ex-
pected distortion E[D, . | for node k can be written as a func-
tion of the source coding rate IZ, 1, the channel coding rate R, x,
as well as of the transmission powers, S = (51, Sa, ..., Sk)7T
of all nodes participating in the network. E[DS+C, %] expression
for BPSK is given in (6) while similar expression can be ob-
tained for MPSK by substituting (4) into (5).

E[Ds—l—c,k](Rs,k: Rc,k7 S)
-

1
= a |logyg ) — (6)
b S wa(RE)
d=ds ce
where k = 1,2, ..., K denotes the corresponding node.

III. NODE CLUSTERING AND OPTIMIZATION FRAMEWORK

Our framework divides the available nodes into two major
categories in order to characterize heterogeneous data. The
first group of node cluster captures videos with high levels
of motions whereas the other group cluster captures video
with low levels of motion or relatively stationary fields. It
was assumed that the nodes can only detect high-motions
and low-motions scenes. The classification was done in order
to avoid the confusion caused by the high computational
complexity in cases where the different video sequences
contain a range of different motion levels. Therefore, the
vectors can be identified as Bo . pign = (Rs,mghyRc,h.,;gh)T,
Rs+c,IO'zlz = (Rs,lmu,Rc,ln'zu)Ts and S = (Shigh,Slmu)Ts where
R, c nign is a vector that represents the high-motion class
nodes combining both the source coding rate fis pign,, as
well as the channel coding rate R, jign; in a similar manner
R, .1, represents the combination for the low-motion class
nodes and S is a vector that includes the powers for the high
and low motion class respectively.

For the network resource allocation, we employed quality-
driven optimization criteria using the Nash Bargaining Solu-
tion (NBS), which is based on game theory. In NBS, the nodes
try to find the Nash equilibrium (maximize the Nash product)
based on the bargaining power of each node and the disagree-
ment point. For a detailed discussion of the Nash Bargaining
Solution see [11], [12].

The utility function, Uy, constitutes a measure of relative sat-
isfaction for each user. In our problem, the PSNR is used as the
utility function and it is defined as:

2552

Uy =10log10 { =———
g & (E[Ds+c,k]

) foranodek =1,2,... K.

In order to achieve global optimization among the nodes,
we employed the particle swarm optimization (PSO) algorithm.
PSO was used due to its ease of implementation, and its quick
convergence. These are essential characteristics for optimality
in several wireless VSN applications.
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Fig. 1. PSNR under different modulation using n.NBS.

IV. COMPUTATIONAL RESULTS

We considered a VSN comprising of 50 nodes, clustered in
two motion classes. The bit error probabilities that were used
for the calculation of « and /3 for the expected video distortions
equation were P, = 10~7, 1079, and 10~°, while the distor-
tions for each video sequence was assessed on an average over
300 repetitions. We use RCPC code with R, , rates 1/3, 1/2 and
2/3 for BPSK, and Ungerboeck 16-state 8-PSK trellis code with
rate 2/3. Subscript z represents the class of nodes (high, low).
The transmission power, S. can take on continuous values from
5.0 to 15.0 measured in Watts.

For the implementation of the NBS, two assumptions were
made concerning the bargaining powers. The first approach con-
siders that each node has the same weight, and it is referred to
as n.NBS criterion, on the other hand the second approach con-
sider that each class of nodes has an equivalent role in the re-
source allocation game, and it is referred to as c.NBS criterion.
This implies that for the n.NBS criteria, the number of nodes in
the cluster determines the weight ratio (no. of nodes in low-mo-
tion cluster: no. of nodes in high-motion cluster) whereas for the
c.NBS the weight ratio is always 50-50 regardless of the number
of nodes in each cluster.

The bandwidth, Wt is chosen to be 60 MHz and the disagree-
ment point dp is taken to be (28, 28)T dB. The result listed
in Table I is for the n.NBS criterion, while Table II result is
for c.NBS criterion. The results in the tables were used to gen-
erate the plots in Fig. 1 and Fig. 2. The result implies that it is
better to take advantage of better spectral efficiency provided by
the higher order constellations since the PSNR values are still
within acceptable limit.

Fig. 1 and 2 illustrated the performance of the NBS for
different constellation sizes. The system performed better with
BPSK modulation schemes in comparison to higher order con-
stellation schemes as expected. However the performance with
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TABLE 1
N.NBS FOR VARIOUS NODE DISTRIBUTIONS, R = 96 KBPS, dp = (28,28)" dB
N.NBS for various node distributions, Ry =96 KBPS, dp = (28,28)TdB
Node BPSK 1/3 BPSK/QPSK 1/2 BPSK 2/3 8PSK 2/3
Distribution | PSNR;, | PSNR; | PSNRy, | PSNR; | PSNR;, | PSNR; | PSNR;, | PSNR;
45-5 38.0094 | 45.1009 | 41.0828 | 48.1693 | 43.3247 | 50.3686 | 42.6278 | 46.7804
35-15 38.577 | 45.6738 | 41.6522 | 48.7234 | 43.8869 | 50.911 | 43.2933 | 47.3295
25-25 39.1896 | 46.2819 | 42.261 | 49.3142 | 44.4839 | 51.4851 | 43.9996 | 47.9129
15-35 39.8549 | 46.9349 | 42.913 | 49.9448 | 45.1194 | 52.0938 | 44.7492 | 48.5322
5-45 40.5792 | 47.6408 | 43.6126 | 50.6189 | 45.7974 | 52.7404 | 45.5451 | 49.1894
TABLE II
C.NBS FOR VARIOUS NODE DISTRIBUTIONS, Ry = 96 KBPS, dp = (28,28)T dB
C.NBS for various node distributions, Rx =96 KBPS, dp = (28,28)TdB
Node BPSK 1/3 BPSK/QPSK 1/2 BPSK 2/3 8PSK 2/3
Distribution | PSNR, | PSNR; | PSNRy | PSNR; | PSNR, | PSNR; | PSNR, | PSNR,
45-5 36.3761 | 54.9473 | 39.3922 | 57.9396 | 41.6013 | 60.0708 | 40.7501 | 55.7083
35-15 37.2669 | 48.9952 | 40.1683 | 52.2372 | 42.3124 | 54.4906 | 41.7761 | 50.4044
25-25 39.1896 | 46.2819 | 42.261 | 49.3142 | 44.4839 | 51.4851 | 43.9996 | 47.9129
15-35 424758 | 44.75 | 45.7592 | 47.6686 | 48.0902 | 49.772 | 47.6354 | 46.5276
5-45 45.0784 | 46.6586 | 48.3663 | 49.618 | 50.736 | 51.7188 | 50.2825 | 48.331
' ' BI;SK = achieve an acceptable PSNR with better bandwidth spectral
60 - X o Bpskz || efficiency, while using MPSK with the TCM scheme. In the
Q ¥ %  BPSK-2/3 future we intend to look at MPSK modulation scheme under
. \ . e  8PSK-2/3 multipath fading environment.
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