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ABSTRACT

In this work, we propose a No-Reference (NR) bitstream-based model for predicting the quality of H.264/AVC
video sequences, affected by both compression artifacts and transmission impairments. The proposed model is
based on a feature extraction procedure, where a large number of features are calculated from the packet-loss
impaired bitstream. Many of the features are firstly proposed in this work, and the specific set of the features as
a whole is applied for the first time for making NR video quality predictions. All feature observations are taken
as input to the Least Absolute Shrinkage and Selection Operator (LASSO) regression method. LASSO indicates
the most important features, and using only them, it is possible to estimate the Mean Opinion Score (MOS)
with high accuracy. Indicatively, we point out that only 13 features are able to produce a Pearson Correlation
Coefficient of 0.92 with the MOS. Interestingly, the performance statistics we computed in order to assess our
method for predicting the Structural Similarity Index and the Video Quality Metric are equally good. Thus, the
obtained experimental results verified the suitability of the features selected by LASSO as well as the ability of
LASSO in making accurate predictions through sparse modeling.
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1. INTRODUCTION

As video communications become increasingly popular, Video Quality Assessment (VQA) gains more and more
attention of the researchers. It is generally admitted that the human observer is the most reliable source for
VQA. However, the collection of video subjective scores implicates a series of constraints. In subjective quality
assessment tests, a number of human subjects are required to rate the video quality of the presented content. Such
tests have to be carefully designed and performed and require a significant number of viewers available to perform
the specific task.1 An alternative approach to subjective tests is crowdsourcing,2 where the testing procedure
is conducted through the Internet. By following this method, one can access a wider range of evaluators, while
keeping the financial cost low and obtaining results similar to those of lab-based subjective tests. Even in such
a case, these tests are time-consuming and cannot be used in real-time applications.

In order to avoid subjective VQA tests, many modern methods for perceptual quality assessment have been
developed and can be grouped into three categories. Full-Reference (FR) methods have access to both the
original and impaired videos, and they are mostly suitable for offline applications, due to their dependence on
the original video. Reduced-Reference (RR) methods use only partial information from the original video, which
is transmitted to the receiver either using an ancillary channel3 or by watermarking.4 However, the cost of
maintaining an ancillary channel may be high, while such methods may be unable to meet the requirements of
quality estimation in the event of a failure in RR information delivery. No-Reference (NR) methods have access
only to the impaired video, and thus, they are the most broadly applicable in real-time applications,5 though
quality estimation with limited available input information can be challenging.
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It is highly desirable to be able to estimate and control video quality automatically so as to satisfy the needs
for high end-to-end Quality of Experience (QoE). Thus, objective metrics have greater potential, especially for
real-time quality monitoring of video communication systems. In general, degradation of perceptual video quality
can incur due to lossy video encoding and transmission losses. Lossy encoding methods are applied to video
sequences in order to reduce the bit rate required for storage and/or transmission, while network congestion
may result in packet losses with visible impairments on the decoded video. Therefore, there is the need for the
development of a perceptual video quality model able to estimate possible video degradations due to both sources
of distortion.

In the literature, several works have been proposed to address this issue. However, some of them propose FR6

or RR7 models, and/or they are not assessed using subjective measurements.6 On the contrary, there are also
some approaches that suggest the use of NR models for the same purpose of video quality estimation. In Ref. 8
the authors proposed two NR bitstream-based video quality metrics that use the bilinear Partial Least Squares
Regression (PLSR) method and the trilinear PLSR method, where a number of features related to the properties
of the encoded video sequence are extracted from the H.264/Advanced Video Coding (AVC) bitstream. In Ref. 9
a metric for video compression artifacts using supervised learning was proposed and in Ref. 10 the goal was a NR
model that predicts video quality by taking into account only compression-related artifacts, proposing the use
of a kernel-based learning algorithm for regression. However, Refs. 8–10 focused solely on compression artifacts
and did not take into account the network-related impairments.

Clearly, the distortion due to lossy compression has a significantly different impact on perceptual video
quality compared to packet-loss affected sequences. A NR H.264/AVC objective video quality metric that
classifies packet losses as visible or invisible was proposed in Ref. 11. Similarly, Ref. 12 proposed a NR model
that predicts continuous estimates of the visibility of packet losses in standard definition and high definition
H.264/AVC video sequences. Nonetheless, both Refs. 11, 12 focused on the impact that a packet loss incurs to
perceptual video quality, while compression distortion was neglected.

A work that measures the overall quality degradation due to both compression and packet losses was presented
in Ref. 6. However, the specific article evaluates the severity of a packet loss in terms of Peak Signal to Noise Ratio
(PSNR), which does not correlate well with human perception, and the proposed metric is of FR type, which
is rather unsuitable for VQA in bandwidth-limited channels. Another research effort of the same authors13

presented two Just Noticeable Difference (JND)-based metrics that consider both compression and network
distortions. Similarly to Ref. 6, the aforementioned metrics are also of FR type. In Ref. 14, the authors
developed models for predicting the objective Video Quality Metric (VQM) scores using features, which can
be extracted from individual packets. However, this model was not tested for its correlation with subjective
assessment.

Moreover, a NR quality assessment framework for monitoring the quality of networked video was presented
in Ref. 15, where video quality measurements took place in the spatial and temporal domains. Nonetheless,
this work was based on a number of assumptions and approximations, where video sequences of low resolution
were considered in combination with a not very efficient Group Of Pictures (GOP) structure. In addition, the
mathematical equations used in Ref. 15 were targeted at capturing the various video impairments at frame level,
rather than extracting specific features able to do this task. Furthermore, in Ref. 16 a NR video quality metric
was proposed that exploits the MacroBlocks (MBs) in inter-frame encoding frames under wireless networks. This
metric took into account spatiotemporal characteristics by using the characters of block-based coding standards.
Although the specific metric is well correlated with Mean Opinion Score (MOS), the impacts from intra-frame
encoding characters are not considered by the proposed model.

The present work moves beyond the works existing in the literature and extends our previous work,10 propos-
ing a NR model for estimating the quality of H.264/AVC video sequences, affected by both compression artifacts
and packet losses. The concept is based on the extraction of a large set of quality-relevant features from impaired
bitstreams. The features extracted in this study represent virtually all of the relevant features proposed in the
literature, aiming at capturing the impact of various distortion types on perceptual quality. The proposed set of
features as a whole was not used before and even some features are firstly proposed in this article. The feature
observations are given as input to the Least Absolute Shrinkage and Selection Operator (LASSO) regression



method,17, 18 in order for the latter to indicate those features that have the strongest effects towards video qual-
ity, and using only them to produce video quality estimates. To the best of our knowledge, this is the first time
that LASSO regression is applied in order to achieve this dual goal in the building of a NR model. Additionally,
in order to evaluate the efficiency of LASSO in terms of both model’s sparsity and estimation accuracy, we also
employed the Ordinary Least-Squares (OLS) regression method19 as a baseline.

Our proposed model estimates the subjective ratings of the tested video sequences, that is the MOS, as
well as the Structural Similarity Index (SSIM)20 and VQM,21 which are known for their good correlation with
subjective assessment. Moreover, in order to assess the performance of our model, we emphasize on measuring
the estimation accuracy, monotonicity, consistency and error. The provided experimental results signify the
validity of the extracted features as well as the suitability of the features selected by LASSO in capturing the
various types of video impairments, and thus, promoting efficient video quality estimations. Interestingly, we get
impressive performance statistics with regard to MOS, SSIM and VQM through the use of a sparse regression
model. In fact, LASSO outperforms OLS since it not only offers improved performance statistics, but also this
goal is achieved through the exploitation of fewer features, meaning that less complexity is involved.

The rest of the article is structured as follows: Section 2 describes the features extracted from the bitstream
in order to be used for making video quality estimations. Section 3 discusses linear regression and analyzes the
proposed method as well as the OLS method, which was used for comparison purposes. Section 4 presents the
employed video database along with experimental results of our method, accompanied by their interpretation.
Last, Section 5 summarizes the key concepts of this work.

2. FEATURES MODELING VIDEO IMPAIRMENTS

NR models have a limited source of input information compared to FR or RR models. Due to this, we extract a
large set of bitstream-based features that are expected to affect perceptual video quality in an effort to enhance
the accuracy of the estimations. These features, based on how they relate to the different types of distortion, can
be characterized as factors related to video content characteristics, signal factors, error factors, motion factors,
and factors related to the effectiveness of the error concealment technique. Particularly, they can be described
as follows:

1) Intra[%]10 is the percentage of I coded MBs in a slice.

2) I4× 4inIslice[%]10 is the percentage of MBs of size 4× 4 in an I slice.

3) I16× 16inIslice[%]10 is the percentage of MBs of size 16× 16 in an I slice.

4) IinPslice[%]10 is the percentage of I coded MBs in a P slice.

5) P[%]10 is the percentage of P coded MBs in a slice.

6) PSkip[%]10 is the percentage of P MBs coded as PSkip in a slice.

7) P16× 16[%]10 is the percentage of P MBs coded with no sub-partition of MBs in a slice.

8) P8× 16[%]10 is the percentage of P MBs coded with 8× 16 and 16× 8 partition of MBs in a slice.

9) P8× 8[%]10 is the percentage of P MBs coded with 8× 8 partition of MBs in a slice.

10) P8× 8Sub[%]10 is the percentage of P MBs coded with 8× 8 in a sub-partition of MBs in a slice.

11) P4× 8[%]10 is the percentage of P MBs coded with 4× 8 and 8× 4 sub-partition of MBs in a slice.

12) P4× 4[%]10 is the percentage of P MBs coded with 4× 4 sub-partition of MBs in a slice.

13) - 20) B modes correspond to the same features as given in features 5 to 12, but for B MBs.

21) - 22) ∆MVx, ∆MVy
10 are the average measures of motion vector difference values for x and y direction

in a slice.



23) - 24) avg(MVx), avg(MVy)
10 are the average measures of motion vector values for x and y directions

in a slice.

25) MV0[%]10 is the percentage of motion vector values equal to zero for x and y direction in a slice.

26) ∆MV0[%]10 is the percentage of motion vector difference values equal to zero in a slice.

27) Motion Intensity 110 is given by:

N
∑

i=1

√

MVxi

2 +MVyi

2

where MVa, a ∈ [x, y] represents the average value of motion vectors in an MB in a-direction and
N is the total number of MBs in a slice.

28) Motion Intensity 210 is given by:

√

avg(MVx)2 + avg(MVy)2.

29) - 30) |avg(MVx)|, |avg(MVy)|10 are the absolute values of average motion vector values for x and y
direction in a slice.

31) Motion Intensity 3 is given by:

N
∑

i=1

√

|(MVx)|2i + |(MVy)|2i

where |(MVa)| represents the absolute value of motion vectors in an MB in a-direction.

32) Motion Intensity 4 is given by:

√

|avg(MVx)|2 + |avg(MVy)|2.

33) NotStill22 is a boolean variable, which is true, if the value of “Motion Intensity 2” feature is over
1/10th of the highest magnitude value of all sequences.

34) HighMot22 is a boolean variable, which is true, if the value of “Motion Intensity 2” feature is over
8/10th of the highest magnitude value of all sequences.

35) - 36) MaxResEngy, MeanResEngy23 are the maximum and mean residual energy values over all the
MBs of a slice. The residual energy for an MB is computed as the sum of squares of its transform
coefficients.

37) LR is a boolean variable, which is true, if a slice is lost.

38) LostSinFrm is the number of lost slices in a frame.

39) Height22 is the vertical location of the lost slice within a frame.

40) TMDR22 is the number of frames affected by a lost slice, due to error propagation.

41) SpatialExtend22 is the number of consecutive lost slices in a frame.

42) SpatialExtend222 is a boolean variable, which is true, if SpatialExtend=2.

43) SpatialExtendFrm22 is a boolean variable, which is true, if all slices of a frame are lost.



44) Error1Frm22 is a boolean variable, which is true, if TMDR=1.

45) DistToRef22 is the distance in frames between the current frame and the reference frame used for
concealment. Based on our considered GOP pattern, P frames are concealed using images from a
temporal distance of three frames ago, while both I frames and B frames are concealed using images
from a temporal distance of one frame ago.

46) FarConceal22 is a boolean variable, which is true, if |DistToRef| ≥ 3.

It is worth mentioning that most of the features are inspired from Refs. 10, 22, 23. However, features 13-20 and
31, 32, 37, 38 are, to our knowledge, proposed for the first time in the current study, in order to contribute to
the achievement of more precise video quality estimations. For the sequence encoding considered in the database
that we used in this work,1 a packet corresponds to a video slice, where each slice consists of a full row of MBs.
In light of this, calculating feature values for each slice of the video can better model the impairments due to
possible packet losses. Therefore, the features that are related to the occurrence of a packet loss are computed
at slice level, while the features that are related to motion vectors, are more suitably computed at MB level. In
the following, we apply a bottom-up approach and take average values for all MB-level features at slice level,
and next we average further these values to obtain their corresponding values for each video sequence.

3. REGRESSION METHODS

In this section we briefly overview linear regression and in the following, we present the LASSO regression
method employed to estimate video quality. Also, the OLS regression method is analyzed, which was used for
comparison.

A linear regression model is a model of the form:

ŷi = w0 +

m−1
∑

j=1

wjφj(xi) = w⊤φ(xi), for i = 1, . . . , n

where n is the total number of observations, namely the total number of examined slices; ŷi is the estimated value
of perceptual quality at observation xi; the basis function φ(xi) is a vector of m-by-1 values at observation xi,
which includes the values for all examined features for a particular slice, and w is an m-by-1 vector of regression
coefficients including the intercept term w0. Such a model is linear in the coefficients w.

3.1 Ordinary Least-Squares (OLS) Regression

Ordinary Least-Squares regression19 is by far the most widely used method for regression because of its ease
of implementation as well as its simplicity. It determines the regression coefficients w, by solving the following
minimization problem:

min
w

(

1

2

n
∑

i=1

(

yi − w⊤φ(xi)
)2

)

= min
w

1

2
‖y − Φw‖2. (1)

From Eq. (1) we observe that the fitted coefficients minimize the mean squared difference between the n-by-1
vector y of measured perceptual quality values and the prediction vector Φw. Specifically, Φ is the n-by-m
design matrix for the model, i.e., the matrix that includes the values for all examined features of all slices, and
w is the vector of regression coefficients as it results from the solution of the problem of Eq. (1). Particularly, it
is given by:

w = (Φ⊤Φ)−1Φ⊤y.

In the following, the calculated weights (regression coefficients), as they resulted from the training phase, are
applied to the test data so as to get the estimated perceptual quality values ŷ.

However, there are two major disadvantages of this method that make its use problematic. The first is the
prediction accuracy. There are cases where many of the features of the design matrix are highly correlated and



thus, we can get inaccurate results about any regression coefficient assigned to a predictor. Additionally, a high
degree of multi-collinearity means that the matrix Φ is not of full rank and hence, neither is Φ⊤ Φ. Therefore,
the inversion of Φ⊤ Φ is infeasible or the results after such an inversion may be imprecise. The other major
concern of OLS is that of interpretation. Having a large number of features, we often desire to select a small
subset of them, by keeping the features that capture the strongest effects towards video quality. In fact, some
of the computed features may be irrelevant or noise, leading to estimation harming. A method that circumvents
both of these issues is the one presented below.

3.2 Least Absolute Shrinkage and Selection Operator (LASSO) Regression

Least Absolute Shrinkage and Selection Operator regression18, 24 was proposed by Tibshirani,17 as an innovative
tool that improves the estimation accuracy of ill-posed problems and can be used for both selection of regression
coefficients as well as response variable estimation. It is a linear model, which is useful in some contexts due to
its tendency to prefer solutions with fewer parameter values, effectively reducing the number of variables upon
which the given solution is dependent, and producing interpretable models like subset selection, by exhibiting
the stability of ridge regression25 at the same time.17

The specific method minimizes the residual sum of squares, subject to the sum of the absolute value of the
regression coefficients being less than a constant. Mathematically, for a given nonnegative λ value, it solves the
following penalized least squares problem:

min
w

(

1

2

n
∑

i=1

(

yi − w⊤ φ(xi)
)2

+
λ

2

n
∑

i=1

|wi|
)

. (2)

From Eq. (2) we observe that the fitted coefficients minimize the mean squared difference between the measured
perceptual quality values and the design matrix multiplied by the regression coefficient values. The minimization
problem involves the penalization of the sum of the absolute values of the regression coefficients, where the
amount of the regularization is controlled by λ. It holds that the larger the λ values are, the more coefficients
wi are driven to zero, leading in this way to a sparse model representation. Likewise, for λ = 0 no shrinkage is
performed and hence, the solution of the OLS method is obtained. For our experiments, we selected the λ > 0
value that corresponds to the lowest Mean Squared Error (MSE) value of the first term of Eq. (2), for each
model. Furthermore, it is to be noted that in all considered regression models, we included the intercept term,
in order to absorb the bias, since we empirically observed that its inclusion greatly improved the convergence of
each considered regression model.

Tables 1 and 2 include the intercept values as well as the regression coefficient values (listed from 1 to 46)
assigned to each feature, for the estimation of MOS, SSIM and VQM quality metrics, when OLS and LASSO
regression is applied, respectively. Also, in Table 2 the row “λ” depicts the λ values for each model, used in
Eq. (2). From the provided results of these tables we can see that LASSO is a sparser approach compared to
OLS. It keeps less than 1/3 of the input features, for each model, assigning zero regression coefficient values
to the rest, and thus, it renders them useless. On the contrary, the OLS method assigns non zero regression
coefficients to all of the features, without eliminating any possible redundancies in the input data. Therefore, it
poses the risk of deteriorating the estimations of the quality values.

4. EXPERIMENTAL RESULTS

In order to evaluate the behavior of the proposed models that attempt to estimate video quality in terms of
MOS, SSIM and VQM, evidently, it was necessary to calculate the true values for each of these metrics. The
computation of the actual SSIM and VQM values was a trivial task, while we were supplied with the MOS values,
generated at the Ecole Polytechnique Fédérale de Lausanne (EPFL) and Politecnico di Milano (PoliMi).1 More
specifically, in our experiments we dealt with the results obtained from EPFL.

The specific publicly available database1 was formed with the goal of supporting reproducible research in
the field of quality assessment algorithms. Particularly, the test material used in our experiments included the
“Foreman”, “Mother” and “Paris” video sequences at Common Intermediate Format (CIF) resolution (352x288



Table 1: Intercept and regression coefficient values achieved by OLS.
Features MOS SSIM VQM
0) Intercept −13.5897 0.4593 14.3036
1) Intra[%] −0.0686 −0.0020 0.0781
2) I4× 4inIslice[%] 0.9315 0.0101 −0.3498
3) I16× 16inIslice[%] −0.0643 −0.0058 −0.1963
4) IinPslice[%] 0.0294 −2.7338× 10−4 −0.0382
5) P[%] 0.0260 0.0017 −0.0598
6) PSkip[%] 0.0452 4.2590× 10−4 −0.0350
7) P16× 16[%] 0.0409 −0.0013 −0.0194
8) P8× 16[%] 0.2989 0.0046 −0.2508
9) P8× 8[%] −0.3785 −0.0022 0.2563
10) P8× 8Sub[%] 0.1773 −0.0011 −0.0400
11) P4× 8[%] 0.0603 −4.2319× 10−4 0.0913
12) P4× 4[%] −0.4568 −0.0087 0.5975
13) B[%] 0.1297 0.0059 −0.1203
14) BSkip[%] 0.0221 −1.3470× 10−4 −0.0060
15) B16× 16[%] −0.0141 −2.0760× 10−5 0.0241
16) B8× 16[%] −0.0548 4.7298× 10−4 6.8552× 10−4

17) B8× 8[%] 0.0250 −7.1516× 10−4 0.0503
18) B8× 8Sub[%] −0.0788 −4.6022× 10−4 0.0657
19) B4× 8[%] 0.2776 2.6528× 10−5 −0.0151
20) B4× 4[%] 1.6525 −0.0020 −0.1985
21) ∆MVx 0.3324 −0.0016 −0.1912
22) ∆MVy −5.7547 −0.0445 3.9846
23) avg(MVx) 0.0627 1.8509× 10−4 −0.0429
24) avg(MVy) 0.2392 1.9322× 10−4 −0.1718
25) MV0[%] 25.2009 −0.0110 −10.7282
26) ∆MV0[%] −4.7468 −0.0447 4.9602
27) Motion Intensity 1 0.0011 7.6397× 10−7 −4.7568× 10−4

28) Motion Intensity 2 −0.0028 −1.8478× 10−4 −0.0107
29) |avg(MVx)| −0.0014 −2.2317× 10−4 3.5045× 10−4

30) |avg(MVy)| 0.0036 −7.2850× 10−4 −0.0363
31) Motion Intensity 3 −0.0015 −9.3395× 10−6 4.7530× 10−4

32) Motion Intensity 4 −0.0337 −3.5414× 10−4 0.0187
33) NotStill −430.7387 −6.8888 885.7327
34) HighMot −93.6475 −1.4840 223.0036
35) MaxResEngy 697.6703 12.1826 −1.2948× 103

36) MeanResEngy −8.9787 0.0533 1.3253
37) LR 17.7861 −0.1709 0.3835
38) LostSinFrm −8.5533 0.1025 −29.0802
39) Height 15.0957 −0.7480 −5.6862
40) TMDR 119.6991 −1.0521 131.5921
41) SpatialExtend 2.6052 0.8778 3.1276
42) SpatialExtend2 425.1855 11.9312 −1.1407× 103

43) SpatialExtendFrm 3.8337× 10−9 8.4789× 10−11 −2.4944× 10−8

44) Error1Frm −5.7420× 10−9 −1.5256× 10−12 3.1181× 10−9

45) DistToRef 0.8024 −0.0284 −0.0715
46) FarConceal 83.2314 −3.0833 129.9600

pixels) and “Ice”, “Harbour” and “Parkjoy” video sequences at 4CIF resolution (704x576 pixels). All CIF
sequences as well as “Harbour” consisted of 298 frames, while “Ice” and “Parkjoy” comprised of 238 and 250



Table 2: Intercept and regression coefficient values achieved by LASSO.
Features MOS SSIM VQM
0) Intercept 2.6052 0.0832 −0.1886
1) Intra[%] 0.0000 0.0000 0.0000
2) I4× 4inIslice[%] 0.0000 2.1534× 10−4 0.2482
3) I16× 16inIslice[%] −0.0831 −0.0044 0.0000
4) IinPslice[%] 0.0000 0.0000 0.0000
5) P[%] 0.0000 0.0000 0.0000
6) PSkip[%] 0.0000 0.0000 0.0000
7) P16× 16[%] 0.0000 0.0000 0.0000
8) P8× 16[%] 0.0000 0.0047 0.0000
9) P8× 8[%] 0.0000 0.0000 0.0000
10) P8× 8Sub[%] 0.0000 0.0000 0.0000
11) P4× 8[%] 0.0000 0.0000 0.0000
12) P4× 4[%] 0.0000 0.0000 1.9112
13) B[%] 0.0000 0.0124 0.0000
14) BSkip[%] 0.0000 0.0000 0.0000
15) B16× 16[%] 0.0000 0.0000 0.0000
16) B8× 16[%] 0.0000 0.0000 0.0000
17) B8× 8[%] 0.0000 0.0000 0.0000
18) B8× 8Sub[%] 0.0000 0.0000 0.0000
19) B4× 8[%] 0.0000 0.0000 0.0000
20) B4× 4[%] 0.0000 0.0000 0.0000
21) ∆MVx 0.0000 0.0000 0.0000
22) ∆MVy 0.0000 0.0000 2.7188
23) avg(MVx) 0.0000 0.0000 0.0000
24) avg(MVy) 0.0000 0.0000 0.0000
25) MV0[%] 0.0000 0.0000 0.0000
26) ∆MV0[%] 2.4405 0.0000 2.1070
27) Motion Intensity 1 0.0000 0.0000 0.0000
28) Motion Intensity 2 0.0000 −1.3768× 10−6 0.0000
29) |avg(MVx)| 0.0000 0.0000 0.0000
30) |avg(MVy)| 0.0000 0.0000 0.0000
31) Motion Intensity 3 0.0000 0.0000 0.0000
32) Motion Intensity 4 0.0000 0.0000 0.0000
33) NotStill −1.1180 −0.2925 0.0000
34) HighMot 0.0000 0.0000 0.0000
35) MaxResEngy 3.0031× 10−9 0.0000 0.0000
36) MeanResEngy −7.3627× 10−9 −7.6440× 10−11 −2.8375× 10−8

37) LR −400.7000 −0.1382 951.9403
38) LostSinFrm −8.1379 0.0000 1.3923
39) Height 16.4351 −0.0525 0.0000
40) TMDR −14.3535 −0.5829 −19.2934
41) SpatialExtend 13.9946 −0.2504 −3.8692
42) SpatialExtend2 115.6684 1.6991 109.4864
43) SpatialExtendFrm 0.0000 0.0000 0.0000
44) Error1Frm 325.8795 1.8654 −985.2688
45) DistToRef 0.0000 0.0604 0.0000
46) FarConceal 452.2033 5.2607 −792.4988
λ 9.9335× 10−5 4.3801× 10−6 1.2340× 10−4



frames, respectively. The GOP structure was IBBP with a GOP size of 16 frames. The sources were encoded
using the JM 14.2 version of H.264/AVC reference software using the High profile, where a full row of MBs
was coded as a separate slice and each of the sequences was corrupted with a Packet Loss Rate (PLR) of
0.1%, 0.4%, 1%, 3% and 5%. The video sequences used for the model training were the “Foreman”, “Mother”,
“Paris”, “Harbour” and “Parkjoy”, for all PLRs considered in this work, and the “Ice” video sequences for all
different PLRs were used for testing the performance of our model.

According to VQEG Phase I report on the validation of reduced-reference and no-reference objective models
for standard definition television,26 the performance of a quality estimation model can be evaluated by the
parameters:

1. Pearson Correlation Coefficient (PCC), which measures the linear relationship between estimated and
measured video quality values. It is given by:

PCC =

∑n

i=1(ŷi − ỹ) (yi − ȳ)
√

∑n

i=1(ŷi − ỹ)2
∑n

i=1(yi − ȳ)2
(3)

where ŷi, yi represent the estimated and measured video quality values, respectively; ỹ, ȳ represent the
mean of the estimated and measured video quality values, respectively, and n is the total number of each
such value. It holds that PCC values close to 0 declare bad or no correlation and values close to 1 denote
high positive correlation.27

2. Root Mean Squared Error (RMSE), which evaluates the accuracy of the proposed model, by calculating
the difference between the estimated and measured quality values. It is given by:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(ŷi − y)2.

However, in this paper we selected to normalize the RMSE values, since MOS, SSIM and VQM scores have
different scales. Hence, we computed the Normalized RMSE (NRMSE), by dividing RMSE with the
range of the estimated scores of each quality metric, respectively:28

NRMSE =
RMSE

ŷmax − ŷmin

. (4)

3. Outlier Ratio (OR), which measures the consistency of an objective metric and is expressed as the ratio
of the number of outlier points to the total number of data points.

OR =
Number of outliers

Total number of data points

where

Number of outliers : |perr(i)| > k2
stdDMOS(i)√

Nsubj
. (5)

The amount perr(i) is the estimation error between the corresponding estimated and measured value of a
video sequence i. The constant k2 is equal to 1.96 to account for 95% confidence interval, stdDMOS(i)
is the standard deviation of the individual scores associated with a video sequence i, and Nsubj is the
number of viewers per video sequence i. In this work, 16 viewers evaluated the CIF video sequences and
17 viewers evaluated the 4CIF video sequences, after outliers removal on the results collected by EPFL.1

Thus, a data point is considered as an outlier if the absolute value of perr(i) is greater than the right term
of Rel. (5).

Furthermore, we examined two additional measures of performance that offer information about the mono-
tonicity and the error of the estimations in relation with the measured values. Particularly,



4. Spearman Rank Order Correlation Coefficient (SROCC)27 is related to the monotonicity between
the estimated and measured video quality and is given by:

SROCC = 1− 6
∑n

i=1 di
2

n(n2 − 1)
(6)

where di denotes the difference in ranks between each pair of estimated and measured video quality values
and n is the total number of each such value. It holds that −1 ≤ SROCC ≤ 1, where SROCC = 1 denotes
a perfect positive Spearman correlation, with the estimated values being a perfect monotone function of
the measured values and vice versa for SROCC = −1.

5. Mean Absolute Error (MAE), which is given by:

MAE =
1

n

n
∑

i=1

|ŷi − y|. (7)

The performance results of our proposed models in terms of the indices described above in the database
of Ref. 1 are tabulated in Tables 3 and 4, when OLS and LASSO regression is applied, respectively. In these
tables, the row “Number of Used Features” presents the number of features used by each regression technique for
making quality estimations; that is the number of features that were assigned a non zero regression coefficient
value.

Table 3: Performance results for “Ice” using OLS.
Performance Statistics MOS SSIM VQM

PCC 0.9152 0.9992 0.8786
NRMSE 1.2627 3.7919 0.4312

OR 0.2000 0.2000 0.0000
SROCC 1.0000 0.9000 1.0000
MAE 4.4618 0.1141 1.5382

Number of Used Features 46 46 46

Table 4: Performance results for “Ice” using LASSO.
Performance Statistics MOS SSIM VQM

PCC 0.9173 0.9982 0.8800
NRMSE 0.1476 3.1699 0.2720

OR 0.0000 0.2000 0.0000
SROCC 1.0000 1.0000 1.0000
MAE 0.4287 0.0951 0.8066

Number of Used Features 13 15 12

A close inspection of the results reveals that the performance statistics achieved using the LASSO regression
method are improved compared to the results achieved by OLS. The difference between the results of the two
methods is more obvious in terms of the NRMSE and MAE measures. With only an isolated exception for the
PCC of SSIM, where OLS offers marginally better estimation accuracy, in all other cases the results of Table 4
highlight the ability of LASSO in producing precise quality estimates, carefully selecting the most influential
features towards video quality, at the same time. Compared to OLS, a significantly reduced number of features
is used, contributing in this way to the reduction of the problem’s complexity. Hereinafter, only the specific
feature subset can be used to estimate video quality in any real-time application.

5. CONCLUSIONS

In this work, we develop a NR video quality model, which accounts for the impact of compression artifacts as well
as the impairments due to possible packet losses. A large set of features is extracted from the impaired bitstreams



and the LASSO regression model is used to perform feature selection in order to reject the features that harm
the quality estimates, and produce video quality estimations that correlate well with subjective assessment.
For comparison purposes, we utilize the OLS regression method and except for MOS, we build models able to
estimate SSIM and VQM. The experimental results signify that LASSO achieves high performance statistics
using only a few features, as opposed to OLS. Despite the fact that OLS presents a competitive (but worse)
performance with LASSO in terms of the examined measures of performance, it employs a much larger number
of features increasing problem’s complexity. Moreover, the validity of the features used by LASSO lead to a
very good correlation of our model with MOS, SSIM and VQM. Hence, LASSO is a good choice for building a
simple and low-complexity model that offers high correlation with subjective ratings and FR metrics, when it is
supplied with appropriate, quality-relevant features.
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