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The accuracy of image registration plays a dominant role in image super-resolution methods

and in the related literature, landmark-based registration methods have gained increasing

acceptance in this framework. In this work, we take advantage of a maximum a posteriori

(MAP) scheme for image super-resolution in conjunction with the maximization of mutual

information to improve image registration for super-resolution imaging. Local as well as

global motion in the low-resolution images is considered. The overall scheme consists of two

steps. At first, the low-resolution images are registered by establishing correspondences

between image features. The second step is to fine-tune the registration parameters along

with the high-resolution image estimation, using the maximization of mutual information

criterion. Quantitative and qualitative results are reported indicating the effectiveness of the

proposed scheme, which is evaluated with different image features and MAP image super-

resolution computation methods.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Image super-resolution (SR) reconstruction has gained
lots of prominence in the last two decades. Many applica-
tions, ranging from medical imaging to image recognition
and video applications, are driving the need for better
reconstruction techniques to enhance image resolution.
The objective of image super-resolution is to reconstruct
a high-resolution (HR) image from a sequence of low-
resolution (LR) images. The SR methods aim to improve
the spatial resolution by fusing the set of LR images to
produce an image with more visible detail in the high
spatial frequency features. The LR images experience
different degradations such as motion, point spread func-
tion blurring, subsampling and additive noise. The HR
image is estimated from a sequence of LR aliased images,
which is possible if there exists sub-pixel motion between
. All rights reserved.

s),

di).
the LR images. Thus, each frame of the LR sequence brings
complementary information on the original HR image.

Super-resolution reconstruction is achieved in three
main steps: (i) registration, (ii) interpolation and (iii)
restoration. Registration is the process of estimating an
image transformation model derived directly from the LR
data set. In the interpolation step, the LR images are
superimposed onto the HR image grid, while restoration
removes noise and blur that is present in the LR images.
The direct inverse solution from interpolation, motion
compensation and inverse filtering is ill-posed due to
the existence of additive noise, even in cases of perfect
motion registration and accurate knowledge of the point
spread function of the acquisition system. Since the
seminal work of Tsai and Huang [33], many methods
have been proposed to seek a stable solution with high
visual quality to overcome the ill-posed nature of the
problem. Among them, methods based on the Fourier
transform [31,35] and projections onto convex sets [13]
have gained popularity.

Close attention has been paid to stochastic methods,
which impose a prior distribution on the image to be
reconstructed. In this context, a basic maximum a posteriori
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(MAP) multi-frame SR framework exists, where the poster-
ior distribution of the HR image is maximized [16,18,19,
26,9,11,14,38]. Bayesian approaches are also very popular.
They seek to find a solution where all the unknown para-
meters, such as registration parameters, have the max-
imum probability [26,25,32,20,28,14]. A number of studies
have been applied in reconstruction from only a single LR
frame [39]. These methods called quasi-super-resolution

methods.
A key issue in the quality of the super-resolved image

is the accuracy of the employed image registration tech-
nique. Also, knowledge of the involved motion model
facilitates the task. This may include simple translational,
rigid body or affine motion as well as projective or even
photometric transformations. The standard approach is to
estimate the registration parameters separately from the
HR image [9,11], either by aligning the LR images once,
at the beginning of the algorithm or iteratively before or
after each update of the HR image [16,18,19]. The method
of Farsiu et al. [14] focuses in this direction. The use of
L1 norm and a robust regularization term achieves high
accuracy and results in images with sharp edges. Also, there
exist techniques where the registration parameters are
assumed to be random variables and they are marginalized
in a Bayesian formulation [26,25]. Apart from using block
matching or phase correlation techniques, the majority
of the registration methods used in the SR literature are
related to standard optical flow methods and their variants
[23,5,15]. In the same context, the study of Zhou et al. [42]
try to estimate the registration parameters between a
reference and a sensed image using a limited number of
control points. Their application to image super resolution
shows the potential of the method to correctly estimate the
registration parameters under several affine deformations.
In the sense of feature extraction techniques Baboulaz and
Dragotti [4] developed a method for accurate registration of
LR images.

Super-resolution lies at the heart of many aspects of
image analysis theory and it therefore requires the under-
standing of several fields. In this framework, image fusion
has efficiently been used to extract relevant information
between LR images in a MAP-based scheme [38], where
the unknown misregistrations can easily be handled.

Following the trends in computer vision, feature
matching has also been used [9]. The parameters of the
geometric transformation between the LR images are
estimated by automatic detection and analysis of corre-
sponding features among the input images. Typically,
some hundreds of points of interest, such as the Harris
corner features [17], are detected with sub-pixel accuracy
and correspondences are established by examining the
image neighborhoods around them.

Several image registration methods have been applied
to image super-resolution reconstruction algorithms. Meth-
ods relying on image features such as Harris and SIFT [9] do
not provide subpixel accuracy. Methods based on block
matching [16] and optical flow [8] are generally time
consuming. Algorithms using automatically computed seg-
mentation maps [10] and tracking algorithms [13,6], which
have also been applied are both slow and prone to
localization errors. All these landmark-based registrations
are limited to least-squares based solutions. Mutual infor-
mation (MI) [24,36] is a method that was originally
proposed for medical image registration. It is widely used
in many domains, achieves sub-pixel registration accuracy
and has never been employed in super-resolution recon-
struction. Maximization of MI is a very general and power-
ful criterion, because no assumptions are made regarding
the nature of the statistical dependence between the two
images and no limiting constraints are imposed on the
image content of the involved degradations. In the last 15
years, the maximization of the mutual information has
revolutionized image registration theory and applications
as it considers the whole gray level image information and
consistently provides sub-pixel precision. If mutual infor-
mation is not initialized close to the global maximum,
local extrema impede the registration process [27] and
consequently, they rule out sub-pixel accuracy. To our
knowledge, mutual information has not been applied
as a registration method to the problem of multiple image
super-resolution. A work that involves mutual information
and SR was proposed by Zhang et al. [41]. However, the
goal of the algorithm was to enhance the quality of a single
image by generating multiple LR images from the same
single image. Also, in [12], mutual information was
employed as a regularization term in Bayesian image
restoration.

In this paper, we propose to register the LR images by
building correspondences between the LR frames followed
by a gentle step of fine-tuning in synergy with the HR
image estimation, by maximization of the mutual informa-
tion criterion [24,36] between the estimation of the HR
image and each upsampled LR image. A four page summary
of this work was presented in [37]. Herein, we present
more experimental results comparing different feature-
based registration methods and combining them with the
maximization of mutual information criterion. Correspond-
ing robust features are obtained in three different manners,
using Harris corners [17], SIFT [22] and SURF descriptors
[7]. Also, four MAP image super-resolution algorithms
are put to test [16,18,14,38], in order to demonstrate the
effectiveness of the approach.

The main contribution of this paper is the development
of a registration approach based on mutual information for
SR reconstruction. Numerical results demonstrate that the
reconstructed HR images are of higher quality with respect
to standard MAP-based SR approaches not employing the
mutual information criterion in the registration step.

2. Method

Given a collection of blurred LR images, which differ by
a rigid transformation (rotation and translation) and are
corrupted by white Gaussian noise, the goal is to auto-
matically estimate a high resolution image. A flowchart
of the proposed method is shown in Fig. 1. A feature
extraction algorithm is firstly applied, which is followed
by a least squares estimation of the rigid transformation
parameters [34] based on the correspondences between
features. This is, in general, the standard approach for any
MAP-based super-resolution algorithm which then esti-
mates the high resolution image.



Fig. 1. Flowchart of the proposed method. First, we perform one step of

registration based on feature extraction and then iteratively, we register

with mutual information and update the HR estimation.
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However, feature based registration is prone to detec-
tion errors and errors in establishing correspondences
between features which makes the result optimal only
in the least squares sense. The least squares solution
is relatively stable and close to the optimal minimizer
but in most cases it needs further improvement. In order
to overcome this limitation, we propose to employ the
feature correspondence as the initialization of a registra-
tion algorithm relying on the maximization of the mutual
information criterion [24,36] which is a very powerful
tool for image registration. Let us notice, that, the mutual
information alone is very sensitive to local minima and
needs a good initialization close to the optimal solution.
This is true even if the registration problem is set in noise
free conditions. Therefore, it cannot be employed in SR
problems as the Gaussian noise may lead to large mis-
registrations. The synergy of least squares feature-based
registration and mutual information is a proposed for
increasing the quality of the super-resolved image.

2.1. Iterative MAP image super-resolution

The image degradation process [18] is modeled by
motion (rotation and translation), a linear blur, and sub-
sampling by pixel averaging along with additive Gaussian
noise. We assume that p LR images, each of size M¼N1�

N2, are obtained from the acquisition process. The follow-
ing observation model is assumed, where all images are
ordered lexicographically:

y¼Wzþn: ð1Þ

The set of LR frames is described as y¼ ½yT
1 ,yT

2 , . . . ,yT
p �

T ,
where yk, for k¼ 1, . . .p, are the p LR images. The desired
HR image z is of size N¼ l1N1 � l2N2, where l1 and l2
represent the up-sampling factors in the horizontal and
vertical directions, respectively. The term n represents
zero-mean additive Gaussian noise. In (1), the degradation
matrix W¼ ½WT

1,WT
2, . . . ,WT

p �
T performs the operations of

motion, blur and subsampling. Thus, matrix Wk, for the k-th
frame, may be written as

Wk ¼DBkMðskÞ, ð2Þ

where D is the N1N2 � N subsampling matrix, Bk is the N �

N blurring matrix. The transformation model represented
by matrix MðskÞ is described by

z0i ¼RziþTþdi,

where zi is the i-th pixel of the high resolution image and z0i
is the corresponding transformed pixel. R and T denote the
global rotation and translation parameters and di is the
local translational motion vector of the i-th pixel. Thus,
matrix MðskÞ now implies global rotation, global translation
and local shift and sk ¼R,T,di for the k-th LR image.

Formulating the super-resolution problem in a prob-
abilistic framework [16], a smooth Gaussian prior is
generally considered for the HR image

pðzÞ ¼
ða9Q T Q 9ÞN=2

ð2pÞN=2

YN
i ¼ 1

exp �
1

2
aðQzÞT ðQzÞ

� �
, ð3Þ

where Qz is the Laplacian of the HR image z and para-
meter a controls the precision (inverse covariance) and
consequently the shape of the distribution. The above
zero-mean normal distribution assigns a high probabi-
lity to images not exhibiting rich edge information. The
simplest approach is to consider parameter a spatially
constant, yielding a stationary model for the whole image.
This implies that the statistics for Qz are Gaussian,
independent and identically distributed. Small values of
a indicate the presence of a large variation. By this means,
this prior may maintain edges and suppress noise in
smooth areas of the image. Given the HR image z and
the registration parameters between the LR images
s¼ fs1,s2, . . . ,skg, the likelihood of the LR images is also a
Gaussian [18]

pðy9zÞ ¼
1

ð2pÞpM=2spM
Z

exp �
ðy�WzÞT ðy�WzÞ

2s2
Z

 !
, ð4Þ

where s2
Z is the variance of the observation noise n.

Employing a MAP approach and maximizing
pðz9yÞppðy9zÞpðzÞ leads to the following MAP functional
to be minimized with respect to the HR image z and the
rigid transformation parameters s:

Lðz,sÞ ¼
Xp

k ¼ 1

Jyk�WkðskÞzJ
2
þ
s2
Z

l
JQzJ2: ð5Þ

Notice the change in notation to explicitly underpin
the dependence of matrix Wk on the registration para-
meters sk.

Using a gradient descent method with a properly cal-
culated step size it can be shown that the update equation
minimizing (5) can be written as

ẑ
nþ1
¼ ẑ

n
�enrzLðz,sÞ9z ¼ ẑn

,s ¼ ŝ
n : ð6Þ

Parameter en is the step size at the n-th iteration which
may be obtained in closed form from the data [16]. In
general, the estimation of the regularization parameter l,
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which depends on the noise standard deviation sZ, and
the parameter a controlling the variance in the prior (3), is
a difficult task. Generally, the parameters sZ and l are
empirically selected [16].

In the same spirit, He and Kondi [18] perform a refine-
ment step in order to avoid a blurred version of the high-
resolution image. The regularization parameter l and the
noise standard deviation parameter sZ are automatically
computed from the data in an iterative scheme. The step
size parameter en is also computed in a closed form at
each iteration.

Moreover, Farsiu et al. [14] proposed an efficient MAP
estimation method to fuse a sequence of LR images. This
technique can also cope with color images and reduce any
color artifacts. The proposed cost function is also based
on Eq. (5) but introduces three more penalty terms. The
first penalty term refers to the spatial luminance, as it is
important that the edges in the estimated HR image
remain sharp. The second one, refers to the regularization
of the color effects and finally, the third term penalizes
the edge location and orientation across the different
color bands. It is worth noticing that this method deter-
mines the value of step size en heuristically.

Following a more general model for the prior distribution
pðzÞ, Šroubek and Flusser [38] employ a Markov random
field with a Gibbs distribution pðzÞp expð�FðzÞ=CÞ, where C

is a constant and F is an energy function. To overcome the
problem of no prior knowledge on the blurring functions, a
Markov random field is also employed for the shape of the
prior distribution of the degradation matrix pðWÞ. Employing
a MAP approach maximizing pðz,W9yÞppðy9z,WÞpðzÞpðWÞ
leads to a minimization problem with respect to the HR
image z and the unknown blurs W. Consequently, the
updating of the HR image comprises two steps, the estimate
of the HR image itself and the estimate of the blur.
2.2. Image registration for super-resolution

2.2.1. Feature extraction

A standard approach in MAP super-resolution algorithms
is to register the LR images prior to the computation of
the HR image. This is performed once and the registration
parameters are fixed during the iterative estimation of the
super-resolved image. In computer vision registration pro-
blems, it is common to estimate geometric transformations
by computing corresponding features between LR images [9].
Fig. 2. Representative extracted features of the LR clock s
The Harris corner detector is a very useful technique
for finding point-to-point correspondences among the LR
images [17]. The basic idea behind the Harris corner detector
is that it finds a point where two edges meet, which also
means that this point is in an area with high gradient in two
directions. Although the extracted features are robust due
to their invariance to rotation, affine intensity change and
image noise, they often require expert supervision to prevent
from registration errors as the registration parameters are
computed in the least squares sense.

Another technique for finding interest points in the
input LR images is the Scale Invariant Feature Transform
(SIFT) [22]. SIFT is a descriptor of length 128, computed in
four steps: (i) scale-space extrema detection, (ii) keypoint
localization (iii) orientation assignment and (iv) keypoint
descriptor generation. SIFT features are generally more
robust than corner features. Features extracted from LR
image are detectable even under changes in rotation, scale,
noise, illumination and viewpoint [22].

Finally, the Speed Up Robust Features (SURF) is a SIFT-
like scale, rotation and noise invariant keypoint detector
and descriptor [7]. SURF features can be computed much
faster than SIFT. They are based on integral images for fast
image convolution and they use the sum of Haar wavelet
responses around the point of interest.

2.2.2. Mutual information registration

The maximization of mutual information, originally
proposed for medical image registration, is considered to
be one of the most accurate methods for image registra-
tion [24,36] as it provides sub-pixel accuracy. It relies on
gray level information by considering each image pixel as
a random variable.

Let yk with k¼ 1,2, . . . ,p and ẑ
n

be the two images with
marginal probability density functions (computed from
their histograms) pyk

ðiÞ and pẑn ðjÞ respectively. Let also
their joint density be pyk ẑn ði,jÞ. The mutual information
between yk and ẑ

n
measures the degree of dependence

between them and it is defined by

Iðyk,ẑ
n
Þ ¼HðykÞþHðẑ

n
Þ�Hðyk,ẑ

n
ÞIðyk,ẑ

n
Þ

¼
X

i

X
j

pyk ẑn ði,jÞ log
pyk ẑn ði,jÞ

pyk
ðiÞ � pẑn ðjÞ

, ð7Þ

where HðykÞ and Hðẑ
n
Þ are the marginal entropies of the

random variables yk and ẑn
and Hðyk,ẑn

Þ is their joint
entropy. If the images are correctly registered, their mutual
information is maximized.
equence. (a) SIFT, (b) SURF and (c) Harris corners.



Table 2
PSNR statistics (in dB) for the compared super-resolution methods for the cloc

PSNR Registration

method

Hardie et al. [16] He and Ko

mean std median mean s

35 dB Gaussian noise SIFT 24.26 0.64 24.29 24.93 0

SIFT & MI 25.34 0.57 24.72 25.80 0

SURF 24.31 0.62 24.13 24.88 0

SURF & MI 25.40 0.64 24.19 25.84 0

Harris 23.33 0.28 22.83 23.57 0

Harris & MI 25.17 0.69 25.31 25.13 0

30 dB Gaussian noise SIFT 22.86 0.46 21.86 22.96 0

SIFT & MI 23.60 0.21 23.32 24.42 0

SURF 22.29 0.73 22.17 23.32 0

SURF & MI 23.47 0.71 23.98 23.07 0

Harris 21.66 0.32 21.29 21.11 0

Harris & MI 22.71 0.47 22.29 23.99 0

25 dB Gaussian noise SIFT 22.13 0.39 22.02 22.48 0

SIFT & MI 22.65 0.17 22.86 22.54 0

SURF 21.76 0.25 21.77 22.34 0

SURF & MI 22.49 0.43 22.59 22.76 0

Harris 21.45 0.74 21.51 21.34 0

Harris & MI 21.59 0.66 21.77 22.73 0

Table 3
ISNR statistics (in dB) for the compared super-resolution methods for the clock

ISNR Registration

method

Hardie et al. [16] He and Ko

mean std median mean s

35 dB Gaussian noise SIFT 1.61 0.15 1.58 1.47 0

SIFT & MI 1.87 0.22 1.61 1.40 0

SURF – – – – –

SURF & MI 1.42 0.23 1.68 1.39 0

Harris 1.47 0.16 1.15 1.97 0

Harris & MI 1.52 0.53 1.71 1.71 0

30 dB Gaussian noise SIFT 1.45 0.21 1.42 1.61 0

SIFT & MI 1.60 0.21 1.65 1.97 0

SURF – – – – –

SURF & MI 1.43 0.13 1.39 1.92 0

Harris 1.44 0.18 1.45 1.75 0

Harris & MI 1.46 0.18 1.42 1.73 0

25 dB Gaussian noise SIFT 1.41 0.19 1.65 1.77 0

SIFT & MI 1.69 0.26 1.71 1.78 0

SURF – – – – –

SURF & MI 1.37 0.18 1.31 1.75 0

Harris 1.42 0.53 1.13 1.69 0

Harris & MI 1.39 0.16 1.34 1.61 0

Table 1
Statistics for the registration errors in pixels for the clock sequence.

Registration errors

Methods mean std median min max

SIFT 0.102 0.036 0.115 0.013 0.169

SIFT & MI 0.049 0.024 0.045 0.014 0.089

SURF 0.121 0.077 0.111 0.020 0.317

SURF & MI 0.064 0.039 0.057 0.014 0.089

Harris 0.142 0.063 0.134 0.035 0.252

Harris & MI 0.101 0.051 0.112 0.019 0.191
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In order to provide invariance to the overlapping areas
between the two images, a more robust measure is the
normalized mutual information (NMI) [30]

NMIðyk,ẑ
n
Þ ¼

HðykÞþHðẑn
Þ

Hðyk,ẑn
Þ

: ð8Þ

A drawback of the mutual information (and NMI) is that,
if it is not initialized close to the optimal solution it is
trapped by local maxima [27]. To overcome this issue, a
good initialization is important.
k sequence.

ndi [18] Farsiu et al. [14] Šroubek and Flusser [38]

td median mean std median mean std median

.47 24.91 24.50 0.73 24.57 23.26 0.32 23.24

.10 25.61 25.06 0.34 24.37 24.11 0.19 24.59

.76 25.19 23.19 0.25 22.05 23.02 0.20 22.94

.11 25.54 23.58 0.51 23.85 24.07 0.38 24.27

.18 23.43 22.47 0.66 22.57 22.91 0.84 23.19

.22 25.07 24.47 0.17 24.50 24.63 0.19 24.41

.61 23.21 22.25 0.51 22.58 22.34 0.18 22.30

.21 24.80 23.73 0.29 22.81 22.42 0.27 22.57

.28 23.89 22.33 0.20 22.13 22.56 0.26 22.94

.84 23.75 22.56 0.71 22.15 23.13 0.41 23.28

.26 21.09 22.42 0.70 21.66 22.23 0.31 22.26

.34 23.38 22.77 0.25 22.65 23.31 0.16 23.07

.26 22.37 22.56 0.21 22.46 22.19 0.47 22.27

.14 22.03 22.69 0.14 22.87 22.25 0.18 22.25

.21 22.35 21.30 0.63 21.67 22.26 0.33 22.43

.04 22.79 22.71 0.79 21.89 22.66 0.44 22.80

.64 21.21 21.42 0.82 21.56 21.09 0.80 21.27

.59 22.65 22.66 0.45 22.08 22.01 0.27 22.66

sequence. Baseline is the SURF-based registration method.

ndi [18] Farsiu et al. [14] Šroubek and Flusser [38]

td median mean std median mean std median

.17 1.38 1.31 0.32 1.53 1.88 0.40 1.17

.14 1.45 1.57 0.29 1.59 2.29 0.21 2.13

– – – – – – –

.37 1.47 1.80 0.17 1.87 2.02 0.15 2.06

.28 1.77 1.80 0.55 1.81 1.39 0.17 1.21

.17 1.77 1.88 0.41 1.63 1.51 0.19 1.84

.64 1.48 2.90 0.42 2.40 1.34 0.17 1.46

.21 1.61 2.99 0.16 2.71 1.97 0.18 1.79

– – – – – – –

.33 1.55 1.73 0.45 1.69 1.77 0.27 1.92

.11 1.73 2.29 0.35 1.79 1.45 0.50 1.19

.31 1.79 2.36 0.55 2.02 1.48 0.22 1.35

.43 1.92 2.26 0.34 2.13 1.31 0.44 1.61

.21 1.86 2.55 0.16 2.51 1.73 0.27 1.93

– – – – – – –

.18 1.78 1.78 0.25 1.47 1.68 0.13 1.43

.24 1.70 1.88 0.44 1.53 1.49 0.21 1.34

.16 1.52 1.89 0.52 1.53 1.70 0.32 1.76
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2.3. The overall algorithm

In this framework, we propose to estimate the regis-
tration parameters in two steps. In the first step, the
registration procedure is initialized by a landmark-based
registration scheme. To this end, to register the LR images,
we employ features such as the ones described in the
previous section. Considering a LR image as the reference,
the rigid transformation parameters (translation and
rotation) are estimated through minimization of the
mean square error between the locations of the features
Table 4
SSIM statistics for the compared super-resolution methods for the clock sequen

SSIM Registration

method

Hardie et al. [16] He and K

mean std median mean s

35 dB Gaussian noise SIFT 0.87 0.02 0.88 0.85 0

SIFT & MI 0.88 0.01 0.88 0.87 0

SURF 0.86 0.01 0.86 0.86 0

SURF & MI 0.87 0.02 0.87 0.88 0

Harris 0.85 0.03 0.84 0.81 0

Harris & MI 0.89 0.01 0.88 0.87 0

30 dB Gaussian noise SIFT 0.82 0.01 0.82 0.82 0

SIFT & MI 0.83 0.03 0.83 0.83 0

SURF 0.84 0.01 0.84 0.83 0

SURF & MI 0.85 0.02 0.84 0.82 0

Harris 0.83 0.02 0.83 0.82 0

Harris & MI 0.85 0.03 0.87 0.85 0

25 dB Gaussian noise SIFT 0.67 0.01 0.67 0.60 0

SIFT & MI 0.68 0.02 0.67 0.61 0

SURF 0.67 0.01 0.67 0.60 0

SURF & MI 0.68 0.01 0.68 0.61 0

Harris 0.66 0.01 0.66 0.57 0

Harris & MI 0.70 0.01 0.70 0.60 0

Table 5
VIF statistics for the compared super-resolution methods for the clock sequenc

VIF Registration

method

Hardie et al. [16] He and K

mean std median mean s

35 dB Gaussian noise SIFT 0.80 0.07 0.81 0.78 0

SIFT & MI 0.77 0.04 0.80 0.79 0

SURF 0.79 0.07 0.81 0.78 0

SURF & MI 0.77 0.07 0.78 0.79 0

Harris 0.65 0.18 0.61 0.58 0

Harris & MI 0.92 0.10 0.94 0.76 0

30 dB Gaussian noise SIFT 0.76 0.07 0.78 0.54 0

SIFT & MI 0.73 0.11 0.77 0.52 0

SURF 0.78 0.04 0.80 0.54 0

SURF & MI 0.75 0.06 0.74 0.55 0

Harris 0.75 0.13 0.70 0.49 0

Harris & MI 0.84 0.20 0.93 0.56 0

25 dB Gaussian noise SIFT 0.74 0.06 0.73 0.50 0

SIFT & MI 0.70 0.05 0.71 0.50 0

SURF 0.71 0.06 0.70 0.51 0

SURF & MI 0.74 0.05 0.71 0.52 0

Harris 0.68 0.13 0.65 0.41 0

Harris & MI 0.84 0.08 0.84 0.50 0
between the reference image and each LR image [34].
Thus, we obtain a good initialization for the unknown
registration parameters.

In the next step, during the iterative update of the HR
image, a fine tuning of the registration parameters is
accomplished by the maximization of the mutual infor-
mation between the current estimate of the HR image
and each upscaled LR image. Upscaling is performed by
deblurring (inverse filtering) and upsampling. As the
estimate of the HR image changes at each iteration, the
registration parameters are updated based on this estimate.
ce. registration method.

ondi [18] Farsiu et al. [14] Šroubek and Flusser [38]

td median mean std median mean std median

.01 0.85 0.89 0.01 0.88 0.81 0.01 0.82

.02 0.88 0.89 0.04 0.88 0.84 0.02 0.84

.01 0.86 0.80 0.04 0.80 0.84 0.01 0.83

.02 0.87 0.88 0.03 0.85 0.86 0.01 0.85

.02 0.81 0.83 0.02 0.83 0.85 0.02 0.86

.03 0.88 0.89 0.03 0.90 0.85 0.02 0.84

.01 0.82 0.83 0.01 0.83 0.82 0.01 0.82

.01 0.82 0.80 0.04 0.81 0.83 0.02 0.84

.01 0.82 0.78 0.04 0.80 0.80 0.01 0.81

.02 0.82 0.80 0.03 0.80 0.82 0.01 0.83

.01 0.83 0.83 0.02 0.83 0.81 0.01 0.81

.01 0.85 0.87 0.04 0.86 0.82 0.03 0.82

.02 0.60 0.71 0.01 0.71 0.64 0.01 0.65

.02 0.60 0.78 0.04 0.78 0.72 0.02 0.72

.01 0.60 0.68 0.04 0.70 0.64 0.01 0.64

.02 0.60 0.70 0.01 0.70 0.72 0.01 0.72

.02 0.56 0.73 0.02 0.73 0.70 0.02 0.72

.02 0.60 0.75 0.05 0.73 0.74 0.03 0.75

e. registration method.

ondi [18] Farsiu et al. [14] Šroubek and Flusser [38]

td median mean std median mean std median

.06 0.81 0.47 0.06 0.51 0.59 0.04 0.58

.02 0.87 0.57 0.09 0.56 0.67 0.06 0.68

.06 0.78 0.52 0.09 0.49 0.66 0.02 0.65

.08 0.81 0.53 0.06 0.55 0.63 0.02 0.63

.12 0.56 0.50 0.06 0.52 0.64 0.05 0.66

.18 0.84 0.56 0.07 0.58 0.64 0.09 0.60

.10 0.55 0.51 0.04 0.53 0.61 0.05 0.63

.10 0.53 0.58 0.09 0.54 0.67 0.05 0.66

.10 0.51 0.47 0.08 0.49 0.63 0.02 0.64

.08 0.55 0.51 0.07 0.50 0.64 0.03 0.63

.11 0.51 0.56 0.06 0.57 0.59 0.03 0.57

.07 0.56 0.44 0.08 0.42 0.66 0.09 0.64

.09 0.49 0.44 0.02 0.43 0.56 0.04 0.54

.10 0.52 0.55 0.07 0.54 0.65 0.05 0.63

.10 0.46 0.48 0.07 0.50 0.60 0.02 0.59

.09 0.49 0.51 0.05 0.49 0.63 0.02 0.61

.04 0.42 0.40 0.06 0.36 0.55 0.05 0.56

.07 0.52 0.57 0.09 0.59 0.64 0.07 0.66
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By these means, the registration accuracy is improved at
each iteration step. The overall algorithm is summarized
in Algorithm 1.

Algorithm 1. Feature extraction based super-resolution
image reconstruction algorithm.
T
P

T
IS
Input: Low-Resolution images yk , k¼ 1,2, . . . ,p and l1, l2 up-sampling

factors.

Output: High-Resolution image estimate ẑ .

� Extract features from the LR images and establish

correspondences.

� Estimate rotations and translations using least squares [34].
able 6
SNR statistics (in dB) for the compared super-resolution methods for the star se

PSNR Registration

method

Hardie et al. [16]

Local motion

He and Ko

Local moti

mean std median mean st

35 dB Gaussian
noise

SIFT 27.72 0.18 27.29 28.65 0.

SIFT & MI 27.85 0.59 27.60 29.14 0.

SURF 22.11 0.48 21.81 24.12 0.

SURF & MI 22.37 0.86 21.15 24.67 0.

Harris 27.48 0.93 27.34 28.41 0.

Harris & MI 28.12 0.18 28.56 28.51 0.

30 dB Gaussian
noise

SIFT 27.66 0.89 27.38 26.24 0.

SIFT & MI 27.84 0.44 27.58 27.94 0.

SURF 22.28 0.91 22.29 21.88 0.

SURF & MI 23.12 0.42 22.22 22.36 0.

Harris 27.11 0.24 27.79 27.94 0.

Harris & MI 28.27 0.97 28.88 28.65 0.

25 dB Gaussian
noise

SIFT 25.47 0.13 25.64 26.09 0.

SIFT & MI 26.38 0.87 26.42 26.36 0.

SURF 24.17 0.78 24.65 18.98 0.

SURF & MI 24.62 0.27 25.06 21.82 0.

Harris 25.81 0.87 26.10 25.79 0.

Harris & MI 26.01 0.13 26.85 26.97 0.

able 7
NR statistics (in dB) for the compared super-resolution methods for the star se

PSNR Registration

method

Hardie et al. [16]

Local motion

He and Ko

Local moti

mean std median mean st

35 dB Gaussian
noise

SIFT 0.99 0.39 1.04 1.67 0.

SIFT & MI 1.68 0.13 1.25 1.17 0.

SURF – – – – –

SURF & MI 1.34 0.86 2.07 1.93 0.

Harris 1.10 0.79 1.79 1.28 0.

Harris & MI 0.96 0.02 0.96 1.39 0.

30 dB Gaussian
noise

SIFT 1.08 0.75 1.24 1.42 0.

SIFT & MI 2.11 0.17 2.39 2.02 0.

SURF – – – – –

SURF & MI 1.55 0.43 1.47 1.30 0.

Harris 1.28 0.28 1.78 1.50 0.

Harris & MI 0.95 0.02 0.97 2.01 0.

25 dB Gaussian
noise

SIFT 1.70 0.55 1.29 1.56 0.

SIFT & MI 1.73 0.31 1.23 1.77 0.

SURF – – – – –

SURF & MI 1.21 0.78 1.53 1.77 0.

Harris 1.02 0.73 1.59 1.76 0.

Harris & MI 0.97 0.01 0.98 1.80 0.
� Estimate local motion by applying block matching algorithm.

� First estimate of the HR image ẑ
0

using (6).

� n : ¼ 1;

� do
q

nd

on

d

5

9

6

3

2

7

8

5

3

4

4

8

6

8

1

3

6

2

q

nd

on

d

6

4

4

9

7

8

4

4

1

7

1

2

3

2

6

– do

n Random selection of a LR image yk .
n if yk is visited.
� Register by mutualinformation, given in (8), the upscaled yk

to ẑ
n
.

� Estimate local motion by applying block matching algorithm.
� Update ẑ
n

using (6) only for the visited yk .
n end

n Declare yk visited.
uence.

i [18] Hardie et al. [16]

Global motion

He and Kondi [18]

Global motion

median mean std median mean std median

2 28.65 20.59 0.76 20.27 19.92 0.25 19.99

0 28.43 20.09 0.33 20.08 19.85 0.81 19.80

9 24.33 20.18 0.36 20.14 19.90 0.82 19.70

0 25.42 20.18 0.36 20.14 20.88 0.42 20.83

0 28.04 20.27 0.97 20.55 19.99 0.59 19.78

0 28.81 21.21 0.77 20.95 20.48 0.51 20.41

9 26.61 20.12 0.77 20.38 19.10 0.34 19.70

5 27.36 20.27 0.36 20.36 19.94 0.11 19.36

7 21.66 20.19 0.35 20.15 19.10 0.83 19.44

2 21.51 20.19 0.35 20.15 20.87 0.41 20.82

0 27.56 20.55 0.49 20.95 19.98 0.59 19.88

2 28.00 20.59 0.61 20.39 20.53 0.35 20.53

8 25.48 20.27 0.41 20.13 18.83 0.59 18.35

8 26.14 20.63 0.89 20.23 18.34 0.24 18.10

2 18.27 20.15 0.40 20.03 15.92 0.33 15.29

9 20.79 20.09 0.33 20.08 20.53 0.39 20.50

9 25.64 19.61 0.78 20.11 19.80 0.66 19.39

4 27.25 19.44 0.13 20.09 19.66 0.35 19.69

uence. Baseline is the SURF-based registration method.

i [18] Hardie et al. [16]

Global motion

He and Kondi [18]

Global motion

median mean std median mean std median

8 1.46 0.25 0.76 0.57 0.56 0.25 0.99

2 0.54 0.43 0.43 0.30 0.63 0.81 0.69

– – – – – – –

0 1.42 0.65 0.36 0.70 0.60 0.42 0.65

2 1.84 0.57 0.97 0.30 0.49 0.59 0.78

0 1.19 0.62 0.77 0.89 0.35 0.52 0.43

8 2.07 0.55 0.75 0.31 0.11 0.34 0.44

1 2.25 0.56 0.36 0.48 1.17 0.13 1.74

– – – – – – –

2 2.19 0.46 0.07 0.47 0.24 0.40 0.28

9 1.88 0.19 0.49 0.73 0.13 0.60 0.26

3 1.31 0.11 0.60 0.27 0.15 0.34 0.17

8 1.85 0.17 0.27 0.34 0.12 0.66 0.39

1 1.60 0.15 0.89 0.42 1.56 0.15 1.02

– – – – – – –

8 1.78 0.43 0.43 0.30 0.29 0.51 0.19

7 1.55 0.77 0.75 0.40 0.72 0.11 0.76

5 20.2 0.15 0.15 0.50 0.82 0.35 0.87
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ab
SI

P

3
n

3
n

2
n
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IF

P

3
n

3
n

2
n

– until all yk are visited.
– n : ¼ nþ1;
– Declare all yk , k¼ 1, . . . p unvisited.

� until Jẑ
nþ1
�ẑ

n
J=Jẑ

n
JoE or a predefined number of iterations is

reached.

The proposed algorithm requires as input the LR image
sequence and the up-sampling factors l1 and l2. First, we
extract features from the LR images and establish the
correspondences between them. The correspondences
are obtained by searching for points that are maximally
le 8
M statistics for the compared super-resolution methods for the star sequen

SNR Registration

method

Hardie et al. [16]

Local motion

He and K

Local mo

mean std median mean

5 dB Gaussian
oise

SIFT 0.93 0.01 0.92 0.94

SIFT & MI 0.93 0.02 0.93 0.94

SURF 0.95 0.02 0.98 0.94

SURF & MI 0.96 0.02 0.95 0.95

Harris 0.79 0.17 0.86 0.94

Harris & MI 0.84 0.14 0.86 0.96

0 dB Gaussian
oise

SIFT 0.92 0.03 0.92 0.94

SIFT & MI 0.95 0.03 0.97 0.95
SURF 0.93 0.02 0.93 0.95
SURF & MI 0.96 0.01 0.96 0.95
Harris 0.78 0.02 0.80 0.93

Harris & MI 0.85 0.13 0.78 0.94

5 dB Gaussian
oise

SIFT 0.95 0.03 0.97 0.90

SIFT & MI 0.96 0.03 0.98 0.96
SURF 0.94 0.01 0.96 0.95

SURF & MI 0.95 0.03 0.95 0.96
Harris 0.85 0.03 0.86 0.95

Harris & MI 0.86 0.09 0.82 0.96

le 9
statistics for the compared super-resolution methods for the star sequence

SNR Registration

method

Hardie et al. [16]

Local motion

He and K

Local mo

mean std median mean

5 dB Gaussian
oise

SIFT 0.77 0.05 0.79 0.80

SIFT & MI 0.80 0.07 0.74 0.83
SURF 0.54 0.17 0.52 0.60

SURF & MI 0.55 0.13 0.50 0.63

Harris 0.79 0.08 0.86 0.82

Harris & MI 0.81 0.14 0.86 0.80

0 dB Gaussian
oise

SIFT 0.76 0.02 0.78 0.75

SIFT & MI 0.77 0.06 0.78 0.78

SURF 0.57 0.16 0.54 0.59

SURF & MI 0.59 0.17 0.54 0.55

Harris 0.78 0.12 0.85 0.78

Harris & MI 0.78 0.13 0.85 0.81

5 dB Gaussian
oise

SIFT 0.74 0.06 0.75 0.75

SIFT & MI 0.74 0.07 0.75 0.73

SURF 0.59 0.10 0.65 0.37

SURF & MI 0.63 0.16 0.71 0.49

Harris 0.74 0.14 0.81 0.71

Harris & MI 0.76 0.09 0.72 0.76
correlated with each other within a window of 3�3 size
surrounding each keypoint. Then, the corresponding fea-
tures are used to estimate the transformation parameters
using least squares [34]. Notice that the first estimate of
the HR image is taken by random selection of a LR image
which is then upscaled to the HR grid by bicubic inter-
polation. The random selection also holds for the subse-
quent LR frames, which are upscaled and registered to the
current LR estimate. At each internal iteration, once a
LR frame is registered to the current HR image, the LR
image is updated using (6). The procedure is repeated
ce. registration method

ondi [18]

tion

Hardie et al. [16]

Global motion

He and Kondi [18]

Global motion

std median mean std median mean std median

0.03 0.93 0.49 0.11 0.46 0.82 0.02 0.83

0.02 0.94 0.57 0.15 0.53 0.92 0.02 0.92

0.03 0.93 0.46 0.06 0.48 0.30 0.13 0.22

0.02 0.95 0.46 0.06 0.48 0.94 0.01 0.94

0.01 0.96 0.52 0.06 0.50 0.49 0.08 0.48

0.02 0.95 0.54 0.08 0.53 0.84 0.01 0.84

0.04 0.97 0.44 0.10 0.47 0.83 0.02 0.85

0.02 0.96 0.46 0.07 0.50 0.94 0.01 0.95

0.02 0.95 0.46 0.07 0.47 0.64 0.17 0.68

0.03 0.95 0.46 0.07 0.47 0.94 0.01 0.94

0.02 0.91 0.50 0.08 0.50 0.49 0.08 0.50

0.03 0.94 0.52 0.06 0.50 0.85 0.03 0.86

0.02 0.93 0.44 0.01 0.45 0.83 0.02 0.83

0.10 0.93 0.48 0.14 0.41 0.94 0.03 0.95

0.02 0.97 0.43 0.07 0.43 0.49 0.19 0.37

0.03 0.97 0.57 0.15 0.53 0.93 0.01 0.93

0.03 0.98 0.56 0.10 0.61 0.72 0.11 0.76

0.03 0.98 0.56 0.14 0.63 0.85 0.09 0.87

. registration method.

ondi [18]

tion

Hardie et al. [16]

Global motion

He and Kondi [18]

Global motion

std median mean std median mean std median

0.07 0.80 0.47 0.05 0.46 0.46 0.06 0.47

0.03 0.83 0.45 0.01 0.46 0.47 0.05 0.51

0.11 0.64 0.46 0.06 0.48 0.34 0.23 0.38

0.21 0.72 0.47 0.01 0.48 0.57 0.01 0.58

0.09 0.86 0.44 0.07 0.49 0.54 0.02 0.55

0.13 0.86 0.49 0.01 0.49 0.48 0.01 0.49

0.03 0.74 0.44 0.05 0.46 0.45 0.06 0.43

0.07 0.77 0.47 0.02 0.48 0.50 0.06 0.50

0.16 0.54 0.46 0.07 0.47 0.39 0.18 0.42

0.20 0.51 0.47 0.01 0.48 0.55 0.01 0.56

0.12 0.85 0.49 0.08 0.50 0.49 0.06 0.51

0.09 0.84 0.52 0.01 0.50 0.51 0.07 0.79

0.07 0.76 0.44 0.01 0.45 0.47 0.08 0.44

0.07 0.75 0.46 0.05 0.45 0.47 0.09 0.49

0.08 0.34 0.45 0.01 0.46 0.20 0.19 0.19

0.18 0.41 0.45 0.01 0.46 0.51 0.01 0.52

0.18 0.77 0.56 0.10 0.61 0.50 0.13 0.45

0.09 0.79 0.56 0.14 0.63 0.38 0.09 0.36



Fig. 3. The cost function Lðz,sÞ, with respect to the iteration number compared with (a) Hardie et al. [16] (b) He and Kondi [18] methods.

Fig. 4. Reconstructed HR images for the 256�256 clock sequence (obtained from the USC-SIPI database [1]). For each SR method, representative HR

images are shown with respect to the optimal registration method.
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until a convergence criterion is satisfied or a maximum
predefined number of iterations is reached.

The method is iterative and consists of two steps. A first
step is the registration by mutual information which
converges to the optimal solution provided that the algo-
rithm is initialized close to the global optimum [24,36]. This
is generally the case in super-resolution problems where
the misalignment is below 11 in rotation and one pixel in
translation. Moreover, the problems examined here contain
larger misalignments which are resolved by the registration
of the images using keypoints. The second step concerns
a family of MAP super-resolution reconstruction methods
which converge according to their iterative schemes
[16,18,14,38]. The convergence of these iterative algorithms
is guaranteed by the contraction mapping theorem [21].
According to this theorem, the iterative model (6) con-
verges to a unique solution ẑ. Therefore, our algorithm,
relying on the combination of the above schemes always
converges.
Fig. 5. Reconstructed HR images with local motion compensation for the

400�400 Star sequence. For each SR method, representative HR images

are shown with respect to the optimal registration method.
3. Experimental results

In this work, we sought to establish a methodology for
efficiently registering LR images in the context of SR
reconstruction problem. Since image alignment is critical
to SR reconstruction, the effect of registration error was
investigated experimentally. In order to evaluate the
proposed methodology, several set of experiments were
carried out using four state-of-the-art MAP based SR
algorithms [16,18,14,38]. The majority of the images used
in these experiments are from the USC-SIPI image data-
base [1]. Sequences of five LR images were created by
rotating, translating, blurring, downsampling and degrad-
ing by noise an original image. Translation parameters
were randomly drawn from a uniform distribution in
½�3,3� (in units of HR pixels) and rotation angles were
also uniformly selected in ½�5,5� (in degrees). The images
were then downsampled by a factor of two (four pixels to
one). Then, a point spread function of a 5�5 Gaussian
kernel with standard deviation of 1 pixel was applied.
Finally, the resulting images were degraded by white
Gaussian noise in order to obtain signal to noise ratios
of (i) 25 dB, (ii) 30 dB and (iii) 35 dB. Additionally, in order
to obtain a first estimate of the HR image, a LR image was
chosen and it was upscaled by bicubic interpolation in all
the experiments. In order to evaluate the algorithm over
the local translational model, further experiments on an
artificially generated dataset have also been conducted.
The dataset consists of three shapes, one triangle and two
stars. The stars remain still whereas the triangle moves
along the horizontal and vertical axes with respect to
the stars.

A quantitative evaluation of the obtained HR images is
given by the peak signal to noise ratio (PSNR)

PSNR¼ 10 log10
2552

Jẑ�zJ2
, ð9Þ

where z and ẑ denote the ground truth and the estimated
HR image, respectively.
The improvement signal to noise ratio (ISNR) was also
used, which is defined as

ISNR¼ 10 log10
Jẑref�zJ2

Jẑ�zJ2
, ð10Þ

where ẑref denotes a reference HR image.
The structural similarity measure index (SSIM) [40]

is a metric that represents a visual distortion between a
reference image and the observe LR image. The SSIM is
regarded as a function between two images z and ẑ and it
is expressed as

SSIMðz,ẑÞ ¼
ð2mzmẑþC1Þð2szẑþC2Þ

ðm2
zþm2

ẑ
þC1Þðs2

zþs2
ẑ
þC2Þ

, ð11Þ

where mz and mẑ denotes the mean intensity of the ground
truth and the estimated HR image, respectively. sz and sẑ

are the standard deviations of the two images and C1 and
C2 are constants added to avoid instability.

Finally, we have further used the visual information
fidelity (VIF) measure [29] in order to assess the quality of
the estimated HR image. The construction of VIF relies on
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successfully modeling the image distortion. It is a mea-
sure of statistical modeling described as

VIF¼

P
j2subbandsIð C

!j

; ẑ
!j

9sjÞP
j2subbandsIð C

!j

; z
!j

9sjÞ

, ð12Þ

where we sum over the subbands of interest. The

Ið C
!j

; ẑ
!j

9sjÞ and Ið C
!j

; z
!j

9sjÞ are the corresponding mutual

information measures for the j-th subband. C
!

is a collec-
tion of N realizations of a random coefficient vector field

from a subband in the reference image ẑ and s¼ fs1,s2 . . . ,
sNg denotes a realization of the particular reference image.
Notice that both SSIM and VIF range between zero
and one. The highest the measure value, the better the
reconstructed HR image is.

At first, in order to evaluate the proposed registration
method, we performed a number of experiments in a
Fig. 6. Reconstructed HR images for the 256�256 Boat sequence (obtained f

images are shown with respect to the optimal registration method.
number of registration problems. Registration errors were
computed in terms of pixels and not in terms of transfor-
mation parameters. Registration accuracies in terms of
rotation angles and translation vectors are not easily
evaluated due to parameter coupling. Therefore, the regis-
tration errors are defined as deviations of the corners of the
registered image with respect to the ground truth position.
Let us notice that these registration errors are less forgiving
at the corners of the image (where their values are larger)
with regard to the center of the image frame.

Fig. 2 shows representative extracted features in an
observed LR image using SIFT (129 keypoints), SURF (50
keypoints) and Harris corners (66 keypoints), respectively.

Hence, we examined the dependence of the registration
quality on the registration methods. The experiments for
all images in the data set were realized 15 times using
different transformation parameters and noise realizations.
In the first experiment, we compared the performances of
different feature-based registration methods, namely SIFT,
rom the USC-SIPI database [1]). For each SR method, representative HR
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SURF and Harris corner with and without the mutual
information criterion. Notice that the mutual information
is initialized by the transformation estimated by the corre-
sponding feature-based registration method. Table 1 sum-
marizes the statistics on the registration errors. It is worth
noticing that SIFT and SURF descriptors produce the smal-
lest registration errors when combined with the mutual
information. It may also be noticed that Harris corners
perform worse than SIFT and SURF. In the general case,
Harris corners are less accurate in registering the LR images,
which leads to bad initialization for the mutual information
criterion and affects the registration accuracy.

A next experiment consists in applying a feature-based
registration scheme followed by the maximization of the
mutual information and estimate SR images using the
methods of Hardie et al. [16], He and Kondi [18], Farsiu
et al. [14] and Šroubek and Flusser [38]. For the imple-
mentation of the last two methods we used the code
provided by the authors [2,3]. The numerical results are
summarized in Table 2 showing the PSNR, and Table 3
Fig. 7. Reconstructed HR images for the 256�256 Eye chart sequence (obtained

images are shown with respect to the optimal registration method.
showing the ISNR for 35 dB, 30 dB and 25 dB degradation
noise, where the mean values, the standard deviations
and the median values of the PSNR and ISNR for the
clock sequence are presented. Tables 4 and 5 present the
SSIM and VIF values for the clock sequence for the same
experiments. These values are obtained through 15 ran-
dom realizations of the experiment using different trans-
formation parameters and noise realizations.

In Table 2 it may be seen that the combination of
feature-based initialization of the registration parameters
followed by fine tuning by the maximization of the mutual
information criterion provides consistently higher accu-
racy. The PSNR values in bold indicate the best quality
reconstructed images with respect to the registration
method (along columns). In terms of PSNR, the method
of He and Kondi [18] achieves better reconstruction results
in most cases. The use of mutual information consistently
improves the results in all of the methods.

The results in Table 3 show the ISNR statistics for the
compared SR methods. Registration using SURF was taken
from the USC-SIPI database [1]). For each SR method, representative HR
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to be the reference method (ẑref in Eq. (10)) for computing
the ISNR value. The ISNR values in bold indicate the best
performance with respect to the registration method
(along columns). The method of Farsiu et al. [14] is very
competitive and provides superior performance in most
cases. Notice that the use of mutual information improves
the results almost in every case. It only underperforms
when combined with Harris corners detectors, which is
due to the sensitivity to noise of the corner detectors. This
drawback may lead to bad initialization of the mutual
information criterion and thus the registration method
may fail to register the LR images correctly.

Table 4 shows the statistics using the SSIM index. As it
can be seen, all methods are consistent in the whole set of
experiments. The mutual information criterion improves
the performance of the method in all super-resolution
algorithms. The SSIM values in bold show the best
performance with respect to the registration method.

In Table 5, the numerical results of the HR estimated
image using the VIF measure are shown. As it can be
Fig. 8. Reconstructed HR images for the 256�256 Artificial Lena sequence (obta

HR images are shown with respect to the optimal registration method.
observed, the method of Hardie et al. [16] provides better
results on this dataset. SIFT & MI and Harris & MI are
considered to be the best registration methods for these
experiments. The VIF values in bold denote the best
performance with respect to the registration method. In
the general case, mutual information improves the results
for the majority of the methods for all experiments.

Experiments over an artificially generated dataset
applying a local motion transformation model to the LR
images have also been conducted. Image registration is
performed by first determining the corresponding fea-
tures between the estimated HR image and the LR images,
which are then projected onto the high resolution grid.
Then, the mutual information criterion is optimized to
refine the registration parameters. Next, the local motion
vectors are estimated by applying a block matching
algorithm and motion compensation provides us the
estimated transformation of the reference image with
respect to the current HR estimate. Tables 6, 7, 8 and 9,
present the PSNR, ISNR, SSIM and VIF numerical results
ined from the USC-SIPI database [1]). For each SR method, representative



Fig. 9. Reconstructed HR images for the 256�190 Car sequence. For each SR method, representative HR images are shown with respect to the optimal

registration method.
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for this experiment respectively, comparing the local
motion against the global motion estimation for Hardie
et al. [16] and He and Kondi [18] methods. The values in
bold indicate the best performance for the corresponding
registration method. As it can be observed, mutual infor-
mation improves the super-resolution results in all
experiments. Some representative HR images for the Star

sequence using the local motion compensation technique
are depicted in Fig. 5.

An advantage of the proposed scheme is that not only
is the reconstructed HR image of better quality but also
the algorithm converges faster. This is depicted in Fig. 3,
where the cost function (5) is drawn with respect to
the iteration number for the methods of Hardie et al. [16]
(Fig. 3(a)) and the method of He and Kondi [18] (Fig. 3(b)).
We may observe that in all cases the use of mutual
information improves the convergence rate compared with
the corresponding feature-based registration method.

Convergence of the super-resolution algorithm was
achieved when Jẑ

nþ1
�ẑ

n
J=Jẑ

n
Jo10�5 or until 30 itera-

tions were reached. This criterion was used for Hardie
et al. [16] and He and Kondi [18] algorithms. For the
methods of Farsiu et al. [14] and Šroubek and Flusser [38]
all the parameters required by the methods were set to
their default as proposed by the authors (e.g. the algo-
rithms converged in average at about 10 iterations). Fig. 4
depicts representative results of the implementation of
[16,18,14,38] for the clock sequence with respect to the
optimal registration method. Equivalent results are also
shown in Figs. 6, 7, 8 and 9 for four additional samples of
reconstructed HR images and with different noise degra-
dations. The parameters used for Hardie et al. method
[16] were manually set to l¼ 100 and s2

Z ¼ 1 while, the
parameters used for He and Kondi [18] method were
automatically computed as described in [18].

It is worth noticing that in Fig. 8, for the reconstructed
HR image Artificial Lena, the best registration method is
the Harris corners combined with the mutual informa-
tion. This is due to the high gradient information, which
leads to better initialization of the mutual information
criterion. Also, notice that similar numerical results
are obtained for all the HR reconstructed images.
The complete set of experiments may be seen online at
http://www.cs.uoi.gr/�mvrigkas/MAP_SR.html.

4. Conclusion

In this paper, we presented a two-step registration
approach for image super-resolution, which is supported
by a feature-based image registration followed by a
registration relying on the maximization of mutual infor-
mation. First, an estimate of the transformation para-
meters in the least squares sense is provided. Second,
the influence of misregistration is improved by the use of
mutual information. By these means, the main drawback
of mutual information, that is, the large number of local

http://www.cs.uoi.gr/~mvrigkas/MAP_SR.html
http://www.cs.uoi.gr/~mvrigkas/MAP_SR.html
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maxima is overcome. A solution of high accuracy is
obtained for the super-resolved image when compared
to images reconstructed without the registration step
using the mutual information. The overall reconstruction
algorithm converges faster than the standard solution
based only on landmark correspondence and registration
[9]. These issues were examined using several MAP SR
algorithms.

Finally, let us notice that we have also tried to register
the LR images by the mutual information method only,
without initialization by the feature-based registration. In
all cases the resulting estimation of the registration
parameters was erroneous leading to a HR image of very
low quality. The reason that mutual information itself
may fail to register correct the LR images is its proneness
of being trapped in local maxima.
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