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Abstract. In medical image acquisition, hardware limitations and scan-
ning time constraints result in degraded images. Super-resolution (SR)
is a post-processing approach aiming to reconstruct a high-resolution
image from its low-resolution counterpart. Recent advances in medical
image SR include the application of deep neural networks, which can
improve image quality at a low computational cost. When dealing with
medical data, accuracy is important for discovery and diagnosis, there-
fore, interpretable neural network models are of significant interest as
they enable a theoretical study and increase trustworthiness needed in
clinical practice. While several interpretable deep learning designs have
been proposed to treat unimodal images, to the best of our knowledge,
there is no multimodal SR approach applied for medical images. In this
paper, we present an interpretable neural network model that exploits
information from multiple modalities to super-resolve an image of a tar-
get modality. Experiments with simulated and real MRI data show the
performance of the proposed approach in terms of numerical and visual
results.

Keywords: medical image super-resolution · interpretable neural net-
works · deep unfolding · coupled sparse representations.

1 Introduction

Image super-resolution (SR) is a well-known inverse problem in imaging ap-
plications. Depending on the number of the employed imaging modalities, SR
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techniques can be divided into single modal and multimodal. Single modal SR
aims to reconstruct a high-resolution (HR) counterpart of a given low-resolution
(LR) image of the same modality. Multimodal SR uses complementary informa-
tion from multiple modalities to recover a target modality. In medical imaging,
multiple modalities are coming from different scanning devices or different hard-
ware configurations. Acquisition time constraints, hardware limitations, human
body motion etc., result in low-resolution images; therefore, applying a post-
processing SR technique to improve the quality of the modality of interest is a
considered approach in medical applications [6].

Existing image reconstruction approaches include conventional methods and
data-driven techniques. Conventional methods model the physical processes un-
derlying the problem and incorporate domain knowledge; however, the associated
iterative optimization algorithms, typically, have a high computational complex-
ity. Among data-driven techniques, deep learning (DL) is popular [12, 17, 21, 29,
24, 30] as it can dramatically reduce the computational cost at the inference
step [11]. Nevertheless, neural networks have generic architectures and it is un-
clear how to incorporate domain knowledge. As a result, one can hardly say what
a model has learned. When dealing with medical data, the accuracy and trust-
worthiness of reconstruction is critical for discovery and diagnosis. Therefore,
finding a balance between accuracy and latency raises a significant challenge [27].

Bridging the gap between conventional methods and DL has motivated the
design of interpretable neural networks [15, 18]. Recently, a principle referred to
as deep unfolding has received a lot of attention [3, 7, 22]. The idea is to unfold
the iterations of an inference algorithm into a deep neural network, offering
interpretability of the learning process. The model parameters across layers are
learned from data and the inference is performed at a fixed computational cost.
The approach has been applied to medical imaging in [1, 19, 26]; however, existing
works deal with unimodal data. To the best of our knowledge, no interpretable
DL design has been reported for multimodal medical image reconstruction.

In this paper, we assume that the similarity between different imaging modal-
ities can be captured by coupled sparse representations that are similar by means
of the `1-norm. We formulate a coupled sparse representation problem which can
be solved with an iterative thresholding algorithm. The algorithm is unfolded
into a neural network form, resulting in a learned multimodal convolutional
sparse coding model (LMCSC). We incorporate LMCSC into a network that
can reconstruct an HR image of a target modality from an LR input with the
aid of another guidance modality.

We apply our model to multi-constrast Medical Resonance Imaging (MRI).
MRI images with different contrast mechanisms (T1-weighted, T2-weighted,
FLAIR) provide different structural information about body tissues. However,
the long acquisition process can result in motion-related artifacts. To reduce the
acquisition time, a compromise is to generate an LR T2W image and a corre-
sponding HR T1W (or FLAIR) image with a short acquisition time and then
obtain an HR T2W image by using multimodal SR methods. Our experiments
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are conducted on two benchmark datasets, showing that the proposed model
achieves state-of-the-art performance.

The paper is organized as follows. Section 2 provides the necessary back-
ground on sparse modelling, and Section 3 reports related work on deep un-
folding. The proposed model is presented in Section 4, while experiments are
included in Section 5. Finally, conclusions are drawn in Section 6.

2 Sparse Modelling for Image Reconstruction

Linear inverse problems in imaging are typically formulated as follows [20]:

y = Lx+ η, (1)

where x ∈ Rk is a vectorized form of the unknown source image, y ∈ Rn denotes
the degraded observations and η ∈ Rn is the noise4. The linear operator L ∈
Rn×k, n < k, describes the observation mechanism. In image SR, L can be
expressed as the product of a downsampling operator E and a blurring filter
H [25].

Even when the linear observation operator L is given, problem (1) is ill-posed
and needs regularization. Following a sparse modelling approach, we assume that
x = Dxu, with Dx ∈ Rk×m, k ≤ m, denoting a representation dictionary, and
u ∈ Rm being a sparse vector. Then, (1) can be written as y = Axu+ η, with
Ax = LDx, Ax ∈ Rn×m, and finding x reduces to the sparse approximation
problem

min
u

1

2
‖y −Axu‖22 + λ‖u‖1, (2)

where λ is a regularization parameter, and ‖u‖1 =
∑m
i=1 |ui| is the `1-norm,

which promotes sparsity. Sparse approximation was first used for single image
SR in [25].

According to recent studies [16], the accuracy of sparse approximation prob-
lems can be improved if a signal ω correlated with the target signal x is available;
we refer to ω as side information (SI). Let ω ∈ Rd have a sparse representation
z ∈ Rm under a dictionary Dω ∈ Rd×m, d ≤ m; assume that z is similar to u
by means of the `1-norm. Then, given the observations y, we can obtain u as
the solution of the `1-`1 minimization problem

min
u

1

2
‖y −Axu‖22 + λ(‖u‖1 + ‖u− z‖1). (3)

Similarity in terms of the `1-norm holds for representations with partially com-
mon support and a number of similar nonzero coefficients; we refer to them as
coupled sparse representations.

4 Notation: Lower case letters are used for scalars, boldface lower case letters for
vectors, boldface upper case letters for matrices and boldface upper case letters in
math calligraphy for tensors.
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3 Deep Unfolding

Deep unfolding was first proposed in [7] where a sparse coding algorithm was
unfolded into a neural network form. The resulting model, coined LISTA, is a
learned version of the iterative soft thresholding algorithm (ISTA) [4]. Each layer
of LISTA computes:

ut = φγ
(
Stut−1 +Wy

)
, (4)

where φγ denotes the soft-thresholding operator φγ(αi) = sign(αi)(|αi| − γ),
i = 1, . . . , k; the parameters St, W , γ are learned from data. The authors of [10]
integrated LISTA into a neural network design for image SR, obtaining an end-
to-end reconstruction architecture that incorporates a sparse prior.

Multimodal image SR via deep unfolding was first addressed in [13], where the
authors introduced the assumption that correlated images of multiple modalities
can have coupled sparse representations. According to this assumption, given an
HR image ω of a guidance modality, we can compute a sparse representation
u from the observations of the target modality y by solving a problem of the
form (3). The multimodal network presented in [13] incorporates LeSITA [23], a
deep unfolding design that learns coupled sparse representations. Implementing
iterations of a side-information-driven thresholding algorithm that solves (3),
each layer of LeSITA computes:

ut = ξµ
(
Stut−1 +Wy; z

)
, (5)

where ξµ is a proximal operator [23] that integrates the information coming from
another modality (in the form of z) into the reconstruction process.

4 A Multimodal Convolutional Deep Unfolding Design
for Medical Image Super-Resolution

Due to the large size of images, sparse modelling techniques are typically applied
to image patches. Alternatively, Convolutional Sparse Coding (CSC) [28] can be
directly applied to the entire image. Let X ∈ Rn1×n2 be the image of interest.
A sparse modelling approach with respect to a convolutional dictionary DX ∈
Rp1×p2×k has the form X =

∑k
i=1D

X
i ∗ Ui, where DX

i ∈ Rp1×p2 , i = 1, ..., k,

are the atoms of DX , and Ui ∈ Rn1×n2 , i = 1, ..., k, are the corresponding
sparse feature maps; the symbol ∗ denotes a convolution operation. Then, an
observation of X can be written as Y =

∑k
i=1A

X
i ∗Ui, with AX

i = LDX
i .

When, besides the observation of the target image modality, another image
modality Ω, correlated with X is available, we can reconstruct X by solving a
convolutional form of (3), that is,

min
Ui

1

2
‖Y −

k∑
i=1

AX
i ∗Ui‖2F + λ(

k∑
i=1

‖Ui‖1 +

k∑
i=1

‖Ui −Zi‖1), (6)

where Zi ∈ Rn1×n2 , i = 1, ..., k, are the sparse feature maps of the modality Ω
with respect to a convolutional dictionary DΩ ∈ Rp1×p2×k.
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Fig. 1: The proposed multimodal SR model. The lower branch computes the
sparse codes Z of the guidance modality, while the upper (main) branch com-
putes the sparse codes U of the target modality with the aid of Z. The target
HR image X is the result of a convolution operation between U and a learned
dictionary DX .

The linear properties of convolution allow to write (6) in the form of (3).
Then, LeSITA (5) can be used for the computation of the convolutional sparse
codes. However, it is computationally more efficient to write (5) in a convo-
lutional form [14], obtaining a learned multimodal convolutional sparse cod-
ing (LMCSC) model. LMCSC includes the following stages:

U t = ξµ(U t−1 −Q ∗R ∗ U t−1 + P ∗ Y ;Z), (7)

with ξµ the proximal operator defined in [23]. The parameters Q ∈ Rp1×p2×c×k,
R ∈ Rp1×p2×k×c, P ∈ Rp1×p2×c×k correspond to learnable convolutional layers;
c is the number of channels of the employed images; µ > 0 is also learnable.

We will apply this model for the super-resolution of LR T2W images with the
aid of HR T1W (or FLAIR) images. We assume that images of both modalities
have coupled sparse representations under different convolutional dictionaries.
We also assume that the LR and HR T2W images can have the same sparse
representation under different convolutional dictionaries. Therefore, the recon-
struction of the HR T2W image reduces to the computation of the convolu-
tional coefficients of the corresponding LR image. The final HR T2W image can
be obtained by a convolutional operation between the sparse coefficients and a
convolutional dictionary. The model is depicted in Fig. 1. The training process
results in learning the convolutional dictionary DX as well as the parameters of
the unfolded algorithm (7). The sparse codes Z of the guidance modality are
obtained using a convolutional LISTA model [22], computing at the t-th layer:

Zt = φγ(Zt−1 − T ∗ V ∗Zt−1 + G ∗Ω), (8)

with T ∈ Rp1×p2×c×k, G ∈ Rp1×p2×c×k, V ∈ Rp1×p2×k×c and γ learnable pa-
rameters.
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(a) LR T2W (b) HR T1W (c) ground truth

(d) coISTA [5] (e) proposed LMCSC

Fig. 2: A ×6 SR example from the MS-MRI dataset. Reconstruction of an HR
T2W image from an LR T2W image (PSNR = 17.51 dB) with the aid of an HR
T1W image. Reconstruction PSNR values are 37.53 dB for coISTA and 38.45 dB
for LMCSC.

5 Experiments

We have used LMCSC with two multimodal MRI databases from the Laboratory
of Imaging Technologies5, namely, a brain MR database [2], which contains sim-
ulated data from 20 patients, and an MR Multiple Sclerosis (MS) database [9],
which contains real data from 30 patients. Both databases include co-registered
T1W, T2W and FLAIR 3D images. From each database, we reserve data from
five patients for testing. We create the training dataset by selecting cropped
image slices of size 44× 44, and apply data augmentation by flipping and rotat-
ing images, obtaining 22K training samples for the MS-MRI dataset and 25K
samples for the brain-MRI dataset. We use whole image slices for testing. Each
T2W image is blurred with a 3× 3 Gaussian filter and downsampled. We obtain
an input LR image of the desired dimensions after bicubic interpolation.

We implement the proposed model with three unfolding stages for each net-
work branch. The size of the learned parameters is set to 7× 7× 1× 85 for P ,
Q, T , G, and 7 × 7 × 85 × 1 for R, V , DX ; a random gaussian distribution

5 http://lit.fe.uni-lj.si/tools.php?lang=eng
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Table 1: Super-resolution of T2W with the aid of T1W or FLAIR images (SI).
Results are presented in terms of PSNR (in dB) for two multimodal datasets.

SI T1W FLAIR

dataset Brain-MRI MS-MRI Brain-MRI MS-MRI

SR-scale ×4 ×6 ×4 ×6 ×4 ×6 ×4 ×6

bicubic interpolation 28.56 25.30 17.16 17.15 28.55 25.30 17.18 17.14
coISTA [5] 32.57 28.34 40.54 36.56 32.39 28.10 40.28 36.66
LMCSC 34.86 31.97 40.94 37.28 32.11 28.44 40.66 36.80

Table 2: Performance of LMCSC [in terms of PSNR (in dB)] for varying number
of unfolding stages. Experiments are conducted for ×4 SR of T2W with the aid
of T1W images on the MS-MRI dataset.

model configuration #stages=2 #stages=3 #stages=4

LMCSC 40.85 40.94 40.92

with standard deviation 0.01 is used for initialization. The initial value of the
parameters γ, µ is set to 0.1. We set the learning rate equal to 0.0001 and use the
Adam optimizer [8] with the mean square error loss function to train the network
end-to-end for 100 epochs. As a baseline method, we use a convolutional form of
the coISTA model proposed in [5]. We follow the same initialization and train-
ing procedure for coISTA. All experiments have been performed on a desktop
with AMD Ryzen 5 1600 Six-Core 3.7 GHz CPU, 16GiB RAM, and an NVIDIA
GeForce GTX 1070 GPU.

Numerical results, in terms of Peak Signal-to-Noise Ratio (PSNR), presented
in Table 1 include ×4 and ×6 SR. Besides LMCSC and coISTA, we also report
results for bicubic interpolation. The results show the superior performance of
the proposed approach. A visual example presented in Fig. 2, shows that recon-
struction with the proposed LMCSC results in a high-contrast and more clear
image compared to coISTA [5].

We also report results for different realizations of the proposed model with
varying number t of unfolding stages as described by (7). We only vary the
number of stages of the main network branch computing the representation of
the target modality. The number of ACSC unfoldings is kept fixed, i.e., equal to
three. Experiments for this study have been conducted on the MS-MRI dataset
for ×4 SR of T2W with the aid of T1W. As can be seen in Table 2, the best
performance is achieved with three unfolding stages.

6 Conclusion

Interpretable deep learning is a promising approach for the recovery of medical
images as it combines trustworthiness and fast inference. Following the princi-
ple of deep unfolding, we have presented LMCSC, an interpretable multimodal
deep learning architecture that computes coupled convolutional sparse codes.
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LMCSC was applied to super-resolve multi-contrast MRI images. The model is
designed to address linear inverse problems with side information, therefore, it
can be applied for other multimodal recovery tasks such as denoising or com-
pressive sensing reconstruction, while it can also include other medical imaging
modalities. We will investigate these applications in our future work.
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