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Abstract. Reduced-reference (RR) and no-reference (NR) models for video quality estimation, using features
that account for the impact of coding artifacts, spatio-temporal complexity, and packet losses, are proposed. The
purpose of this study is to analyze a number of potentially quality-relevant features in order to select the most
suitable set of features for building the desired models. The proposed sets of features have not been used in the
literature and some of the features are used for the first time in this study. The features are employed by the least
absolute shrinkage and selection operator (LASSO), which selects only the most influential of them toward per-
ceptual quality. For comparison, we apply feature selection in the complete feature sets and ridge regression on
the reduced sets. The models are validated using a database of H.264/AVC encoded videos that were subjec-
tively assessed for quality in an ITU-T compliant laboratory. We infer that just two features selected by RR
LASSO and two bitstream-based features selected by NR LASSO are able to estimate perceptual quality
with high accuracy, higher than that of ridge, which uses more features. The comparisons with competing
works and two full-reference metrics also verify the superiority of our models. © 2016 SPIE and IS&T [DOI: 10
.1117/1.JEI.25.5.053012]
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1 Introduction
The video portion of the global mobile data traffic has
increased tremendously and it is estimated to be nearly
75% by 2019, from being 55% in 2014.1 Therefore, with
this growing usage of videos, it is believed that the end-
users are becoming more aware of the perceptual quality
characteristics of video services. A required amount of com-
pression of the raw (original) videos has to be performed in
order to meet the practical limits of data storage devices and
transmission channels. Depending upon its intensity, the
compression can introduce different visual artifacts in a
video that may decrease its perceptual quality as compared
to its original version.

Besides compression, video quality can also suffer from
degradations due to transmission over lossy networks.
Losses of video data in a network can occur for various rea-
sons, such as network fluctuations, buffer overflows, and
any operational management procedures. However, there
is a growing trend of video communications through reliable
transmission methods, where losses can be recovered
through retransmissions, though it might be difficult to avoid
all losses in the case of varying network characteristics. It is
believed that retransmissions cannot avoid all losses in real-
time video transmissions due to delay constraints. Moreover,
real-time communications, such as video-conferencing and
other low-delay demanding video services, may suffer from
packet losses, as the underlying transport mechanisms gen-
erally do not apply retransmissions, e.g., user datagram pro-
tocol (UDP), real-time transport protocol (RTP), and so on.
A parameter that is commonly used by service providers in

order to evaluate the quality of service for an end-user is the
packet loss rate (PLR), which is generally considered as a
useful measure for quantifying the losses in a network.
Hence, a study involving PLR or features that attempt to
model this quantity so as to evaluate the performance of
video communications in lossy networks can be quite useful.

In most scenarios of processing or transmission of visual
information, the ultimate judges of quality are human
observers. Despite the fact that many evaluation methods
of objective performance have been developed, subjective
assessment is the most authoritative solution, since it pro-
vides the ground truth of quality. The recommended proce-
dures for subjective video quality assessment (VQA) involve
the collection of quality scores from a viewers’ panel, usually
under a controlled laboratory environment2 or relatively less
controlled environments.3 The product of such assessments
is typically a mean opinion score (MOS)4 for each test sam-
ple, which corresponds to the average value of the scores
given by the panel. Crowdsourcing-based subjective VQA
is an emerging technique, where test material is transferred
to the viewer’s premises through the Internet and the quality
scores are collected through a loosely controlled environ-
ment.5 However, subjective VQA is rather tedious, time-
consuming, and impractical to be incorporated in many real-
time applications.

In the last two decades, many modern models/metrics of
perceptual VQA have been developed and they can be com-
puted automatically based on quality-relevant features of a
video. The goal of such objective metrics is the computation
of a perceptual quality estimate that correlates well with
the results of subjective assessment. A classification of
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the objective metrics can be made on the basis of the refer-
ence information used for quality estimation.6 Given that
“original” refers to the unprocessed pristine video and
“impaired” refers to its processed version (including coding
and/or transmission losses), full-reference (FR) metrics have
full access to both the original and impaired videos, reduced-
reference (RR) metrics have access to some suitable features
transmitted from the server’s side and full access to the
impaired video, and no-reference (NR) metrics have access
only to the impaired video.

It is generally believed that FR metrics have the capacity
to provide the most accurate estimations of video quality,
since they use input information from both the original
and impaired videos. However, because of the dependence
on the original video, FR metrics are mostly suitable for off-
line applications, such as encoder performance comparisons.
In addition to the processed video, RR metrics can also
access selected features of the original video. These features
can be sent to the receiver through an ancillary channel7 or
alternatively, they can be embedded in the video content
itself, by using techniques, such as watermarking.8 For the
purpose of quality estimation, NR metrics make use of either
the bitstream of the impaired video or the decoded pixels of
it, or a combination of both to build NR hybrid metrics.9,10 A
detailed review of NR metrics using this classification can be
found in Ref. 11. Because of the limited or lack of depend-
ence on the original video, RR and NR metrics are suitable
for real-time applications and online quality monitoring of
the streaming videos.12

In this article, we present a study on the design, imple-
mentation, and evaluation of RR and NR models, which
employ two different sets of perceptually motivated features.
These features are extracted from H.264/AVC encoded vid-
eos impaired with different amounts of packet losses. In
order to make an accurate quality estimation, we decided
to extract a large number of features from the bitstreams
as well as from the pixels of a video and hence, our proposed
models belong to the class of hybrid metrics. The use of least
absolute shrinkage and selection operator (LASSO) regres-
sion13–15 is proposed aiming at the dual goal of feature selec-
tion and MOS estimation. As a baseline, ridge regression16–18

is applied on the preselected set of features, having per-
formed sequential feature selection (SFS)19 on the complete
RR and NR set of features. Thus, ridge performs MOS esti-
mation without performing any feature selection. An overall
scheme of this work is presented in Fig. 1.

The rest of this article is organized as follows: Sec. 2
presents an overview of the related work and concludes with
a summary of the key points and contributions of this paper.
A discussion on the employed features that are potentially
related to perceptual video quality takes place in Sec. 3
and the problem of video quality estimation based on a
set of quality-relevant features and its solution using
LASSO is presented in Sec. 4. In the same section, the pro-
cedure followed for the model’s development is also

described. The employed measures of performance, the pro-
vided experimental results and their analysis, and the perfor-
mance comparison of our proposed models with that of ridge
in combination with feature selection as well as with related
works are given in Sec. 5. Finally, conclusive remarks on this
work are given in Sec. 6.

2 Related Work
During the last decade, a considerable part of the scientific
community has focused its interest on efforts for the develop-
ment of objective video quality metrics that target at reliable
and accurate modeling of subjective VQA. Some RR metrics
of VQA are presented in Refs. 20–22. In Ref. 20, the authors
designed an RR metric that is targeted for applications
related to wireless communications. It is built based on
the principle that humans tend to have different impairment
perceptibility based on the spatial and temporal affected
regions of a video sequence. The work in Ref. 21 presented
a family of RR VQA models that differ in the amount of
reference information required for video quality measure-
ment, while Ref. 22 proposed a wavelet-based video distor-
tion metric that can operate in FR or RR mode, as required.
Actually, RR metrics can be an alternative to FR metrics
when the original video is not accessible. However, in some
cases, the cost of maintaining an ancillary channel may be
high for an RR approach, while such metrics may not meet
the requirements of quality estimation in the event of a fail-
ure in RR data delivery to the receiver’s end.

For these reasons, NR metrics are the most broadly appli-
cable solution for VQA, though quality estimation with lim-
ited available input information can be challenging.11 An NR
metric tested on MPEG-4 compressed video that estimates
the peak signal to noise ratio (PSNR) at the macroblock
(MB) level was proposed in Ref. 23 and a similar method
that estimates the structural similarity (SSIM) index was
introduced in Ref. 24. The study presented in Ref. 25
described a PSNR estimator that considers only the com-
pressed bitstream of an H.264/AVC coded video. How-
ever, the estimation of perceptual quality in terms of MOS
could be an applicable improvement for the works presented
in Refs. 23–25.

A set of bitstream-based features related to slice coding
type, coding modes, various statistics of motion vectors,
and quantization parameter (QP) values were employed in
Ref. 26 with the goal of quality estimation of high definition
television video, encoded by H.264/AVC. For the same pur-
pose, statistics of boundary strength values of the deblocking
filter, QP, and average bitrates were used in Ref. 27 for
H.264/AVC-encoded videos. Also, a motion-based quality
metric was explored in Ref. 28 for H.264/AVC-encoded vid-
eos as well. For this metric, some statistical features related
to motion vectors along with the bitrate and frame rate were
calculated, and the principal component analysis method was
used to identify the parameters that can be the most influen-
tial in quality value. Similarly, a low complexity solution of
VQA based on bitstream features was proposed in Ref. 29.
An improvement of this approach was included in Ref. 30, in
which the required number of features was reduced so as to
promote computational efficiency. In that work, an improve-
ment was noted in estimation accuracy by the virtue of the
usage of an artificial neural network. A further improvement
of Ref. 30 can be found in Ref. 31, in which a larger setFig. 1 Overall scheme of the proposed approach.
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of parameters was used and the estimation of subjective
MOS was also considered. However, the models built in
Refs. 26–31 are oriented toward capturing distortions due
to lossy source coding only, and thus, they cannot be applied
in the case of packet-loss impaired videos.

In Ref. 32, the authors extracted a set of features from the
MPEG-2 bitstream and proposed two different modeling
approaches: (1) a tree classifier to decide if a packet loss is
visible or invisible and (2) a generalized linear model (GLM)
to estimate the probability that a packet loss is visible. In
Ref. 33, the GLM approach was extended for H.264/AVC
bitstreams to model the visibility of individual and multiple
packet losses. An application of the proposed GLM scheme
to packet prioritization of a video stream, considering factors
not only within a packet but also in its vicinity, was sug-
gested in Ref. 34. The visual effect of whole B-frame losses
was investigated in Ref. 35. For this purpose, a GLM was
used to estimate the probability of the visibility of a B-frame
loss and a router was able to decide about which frames to
drop in a video transmission scenario, in which the incoming
bitrate was higher than the outgoing rate. However, the meth-
ods presented in Refs. 32–36 classified packets in a binary
mode as visible or invisible based on the viewers’ responses
to the glitches they spotted. For example, a packet loss was
assumed to be visible when the percentage of the viewers that
identified an impairment was over a threshold and invisible
when this percentage was under a threshold. On the contrary,
Argyropoulos et al.37 introduced a NR bitstream-based
model that predicts continuous estimates for the visibility
of packet losses, and the impact of the lost packets on per-
ceptual video quality was also studied. However, most of
these metrics mainly target the visibility of packet losses
and a direct estimation of perceptual quality is not made
by also including the features related to video coding.

In addition to bitstream-based features, some approaches
include pixel-based features or network-level impairments as
well for better prediction performance11 resulting in hybrid
models. In Ref. 9, the proposed model combines the impact
of network distortions with quality-related information of the
video data. Specifically, the impact of jitter, delay, and packet
loss on the video quality is assessed. Secondly, it estimates
the impairments incurred due to compression while consid-
ering the content characteristics of a video. An analysis of the
significance of different loss types (I-, P- or B-slices), video
content characteristics, and quantizer scale on the video qual-
ity prediction is also presented. Similarly, the method pro-
posed in Ref. 38 makes use of the impacts of spatial and
temporal error concealment, missing prediction residuals,
and the temporal propagation as a result of motion compen-
sation. Additionally, the contribution of channel distortions
that occur with relation to intra-MB prediction and deblock-
ing filter is considered. The ITU-T standardized approach of
hybrid video quality is published through ITU-T: J343,
which uses bitstream data in addition to processed video
sequences.

The NR method presented in Ref. 39 estimates the quality
of videos transmitted over wireless networks, using informa-
tion from MBs of interframe encoded pictures of a video.
The proposed method analyzes the impact of both encoding
and channel conditions to the video quality degradation by
using motion vectors and residual error from the received P-
frame and/or B-frame. In addition, in Ref. 40, a quality of

experience (QoE) evaluation model was proposed to estimate
the end-users’ perception on a video streaming service con-
sidering different video content types. This QoE model
extracts key parameter information directly from degraded
video frames in order to estimate the video QoE. A similar
NR quality metric for networked video was introduced in
Ref. 41 using information extracted from the compressed bit-
stream only. This metric accounts for picture distortion
caused by quantization, quality degradation due to packet
losses and error propagation, and temporal effects of the
human visual system.

2.1 Related Work Selected for Comparison
Keeping in view the usage of test stimuli, the performance of
our proposed LASSO models is compared with that of ridge
models, two FR metrics, as well as with the following related
works. The study presented in Ref. 42 proposes an FR
method that uses both singular values and singular vectors
as visual features, and a machine learning technique for
feature pooling is also introduced. The work presented in
Ref. 43 proposes an RR metric that compares the phase and
magnitude of the two-dimensional (2-D) discrete Fourier
transform of the reference and distorted images in order to
compute visual quality. An NR bitstream-based quality met-
ric that considers both the effects of lossy H.264/AVC video
encoding and packet losses over Internet Protocol networks
is proposed in Ref. 44. In Ref. 45, an NR video quality metric
for H.264/AVC video transmissions in packet-based net-
works is introduced, which uses features from the headers
that encapsulate compressed video data. Similarly, in Ref. 46,
an enhanced algorithm based on the G.1070 model47 is devel-
oped that compensates for the impact of varying video content
characteristics on encoding bitrate. Lastly, genetic program-
ming-based symbolic regression is used in Ref. 48 in order
to build a bitstream-based NR model. The used features char-
acterize encoding settings, parameters related to network dis-
tortions, and video content.

2.2 Goals of the Article
Accordingly, in the context of the aforementioned related
works, we propose an approach that directly estimates video
quality by employing perceptually important video features,
by extending our previous studies presented in Refs. 29–31,
and 49. The key points of this article as well as the contri-
butions that it brings are summarized as follows:

1. We propose RR and NR models in order to estimate
the perceptual quality of H.264/AVC video sequences,
which are affected by packet losses.

2. Avariety of features that are expected to have an effect
on perceptual video quality are collected in order to be
used for building the proposed models. It is worth
mentioning that the RR set of features as a whole
and the NR set of features as a whole are employed for
the first time, while this study also introduces the uti-
lization of 11 new features.

3. LASSO regression13–15 is utilized in order to indicate
the most useful features for making MOS estimations.
To the best of our knowledge, this is the first time
that LASSO is employed in video quality estimation
problems. From the obtained experimental results, we
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confirm that this is a very efficient tool for feature
selection, while producing accurate quality estima-
tions through the use of sparse models, at the same
time. As a baseline, ridge regression16–18 is used,
which requires a much larger number of features, as
compared to LASSO for making MOS estimations,
even after a feature selection preprocessing.19

4. Two different sets of experiments are conducted: (1) a
case in which each of the test video sequences is
excluded from the training set (for all different test
sequences) and (2) a case in which a fixed training and
test set are considered. For the second case, we recom-
mend a specific set of regression coefficient values that
can be used in practice for the prediction of perceived
video quality for other databases.

5. The proposed models exhibit high performance as
gauged by different statistical measures. Particularly,
they offer impressively high accuracy, nearly perfect
monotonicity, and very low estimation errors. In addi-
tion, a performance comparison of the proposed
approaches is made with a number of related studies.
Moreover, the performance statistics for two FRmetrics
that are oriented toward measuring video quality of dig-
ital video systems are explored, namely perceptual
evaluation of video quality (PEVQ)50 and video quality
metric (VQM),51 which are used for comparison. A
close inspection of the results reveals that our proposed
RR and NR models offer better performance than that
of the FR metrics, while the comparative advantage
over the related works is apparent in terms of all used
performance measures and number of used features.

3 Features Related to Perceptual Video Quality
In this section, we describe the video features that we used in
order to model the impact of various impairments on video
quality, and we also discuss the motivation of extracting the
specific features. Table 1 summarizes these features along
with their type. It is worth noting that all of the features
described in Table 1 are used to build the RR models, while
only features 1 to 47 are used for the development of our NR
models.

3.1 Examined Features
In H.264/AVC based coding, several coding modes are typ-
ically dependent on the content of a video. Each frame of a
video is divided into a fixed number of slices, where in this
work, each slice consists of a full row of MBs.52 Mainly, the
coding starts with the prediction of one part (block) of a
video frame from its adjacent frames so as to eliminate any
temporal redundancies. The first frame is intra (I) coded, fol-
lowed by a predetermined sequence of forward predictive (P)
and bidirectional predictive (B) frames, with a periodic recur-
rence of I frames if required. These predictions can be
applied on an MB, i.e., a 16 × 16 block of pixels or on its
subsized blocks. The available information regarding these
coding modes provides an estimation of the structural con-
tent of a video. The features that we compute from the lossy
bitstream and that can be grouped in this category are listed
from 1 to 20 in Table 1. Features 1 and 5 are useful for pro-
viding relative information on the percentage of blocks
whose loss can be more significant as they might be used

in the prediction of other blocks. Moreover, more flexibility
on the usage of bipredictive coding leads to better compres-
sion performance. In this context, we employ feature 13. The
percentage of “intra” coded blocks in an “inter” slice may
represent rapid change of spatial content in a video and it is
captured through feature 4. The percentage of blocks coded
as “Skip” indicates the possibility of no need for any residual
or motion vector information data that in turn represents
the level of SSIM of the content between various frames
of a video. Encoding blocks of size 16 × 16 is preferable
as compared to 4 × 4 because, generally, the use of higher
block sizes exhibits better compression performance.
Accordingly, features 2, 3, 7 to 12, and 15 to 20 represent
the percentages of different block sizes chosen for encoding.

In addition, interframe prediction, which takes advantage
of the temporal redundancy between neighboring frames,
involves the determination of motion vector information.
This information can be used to estimate the relative motion
found in the blocks of different frames of a video. Besides
using the absolute values of the motion vectors, a number of
related statistics were computed so as to better represent the
motion content of a video (features 21 to 32 in Table 1).
Except for the features 13 to 20 and 31 to 32, which are first
proposed in this study, the others have been used in Ref. 31.

Driven by the fact that a packet loss is significantly less
visible in still video scenes,34 we propose the use of feature
33, in order to define if a video slice includes motion or not.
Using the motion vector magnitude values, as they were
computed by feature 28, we assume that a slice includes
motion (NotStill = 1), if its magnitude value is greater than
1/10th of the highest magnitude value of all slices. Similarly,
we assume that a slice includes high levels of motion (feature
34) if its magnitude value is greater than 8/10th of the highest
magnitude value of all slices. Additionally, features 35 to 36
represent the maximum and mean residual energy over all
the MBs of a slice, in which the residual energy for an MB
is computed as the sum of squares of its transform coeffi-
cients. These additional parameters are used in order to val-
idate whether the calculated motion vectors represent the
underlying scene motion well or not. A higher residual
energy value implies that the motion vectors probably do not
represent the actual scene motion well. If a slice is lost, then
even after applying a concealment strategy in order to accu-
rately estimate the lost motion vectors, the resultant slice still
differs from the original. Thus, residual energy is one way to
assess the magnitude of this difference.33

Continuing with the features 37 to 45 in Table 1, they cap-
ture the effect of a packet loss in a video sequence, under vari-
ous aspects. They are all computed from the lossy bitstream,
except for feature 45, which is calculated from the recon-
structed video sequence after error concealment. Specifically,
features 37 to 4234 model the impact of a packet loss based on
its frequency, location, duration, and so on. The use of feature
37 is proposed for the first time as a means of quantifying the
severity of distortion introduced within a frame due to the pos-
sible slice losses. The vertical location of the lost slice in a
frame is represented by feature 38, where its use for quality
estimation is motivated by the fact that a lost slice in the
middle of a frame can have a different perceptual impact as
compared to a lost slice in the top or bottom of a video frame.

Except for feature 38, another content-independent
feature that is used to characterize the duration of time an
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Table 1 Description of the examined features.

Feature Description Type

1. Intra (%) The percentage of I coded MBs in a slice. NR

2. I4 × 4 inIslice (%) The percentage of MBs of size 4 × 4 in an I slice. NR

3. I16 × 16 inIslice (%) The percentage of MBs of size 16 × 16 in an I slice. NR

4. IinPslice (%) The percentage of I coded MBs in a P slice. NR

5. P (%) The percentage of P coded MBs in a slice. NR

6. PSkip (%) The percentage of P MBs coded as PSkip in a slice. NR

7. P16 × 16 (%) The percentage of P MBs coded with no subpartition of MBs in a slice. NR

8. P8 × 16 (%) The percentage of P MBs coded with 8 × 16 and 16 × 8 partitions of MBs in a slice. NR

9. P8 × 8 (%) The percentage of P MBs coded with 8 × 8 partition of MBs in a slice. NR

10. P8 × 8 sub (%) The percentage of P MBs coded with 8 × 8 in a subpartition of MBs in a slice. NR

11. P4 × 8 (%) The percentage of P MBs coded with 4 × 8 and 8 × 4 subpartitions of MBs in a slice. NR

12. P4 × 4 (%) The percentage of P MBs coded with 4 × 4 subpartition of MBs in a slice. NR

13-20. B modes B modes that correspond to the same features as given in features 5 to 12,
but for B coded MBs.

NR

21-22. ΔMVx , ΔMVy The average measures of motion vector difference values for x and y directions in a slice. NR

23-24. avgðMVx Þ, avgðMVy Þ The average measures of motion vector values for x and y directions in a slice. NR

25. MV0 (%) The percentage of motion vector values equal to zero for x and y directions in a slice. NR

26. ΔMV0 (%) The percentage of motion vector difference values equal to zero in a slice. NR

27. Motion Intensity 1 Defined as:
PM

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MV2

x i
þMV2

y i

q
where MVa, a ∈ ½x; y � represents the average value of

motion vector in an MB in a-direction and M is the total number of MBs in a slice.

NR

28. Motion Intensity 2 Defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
avgðMVx Þ2 þ avgðMVy Þ2

q
. NR

29-30. javgðMVx Þj, javgðMVy Þj The average measures of absolute value of motion vector for x and y directions in a slice. NR

31. Motion intensity 3 Defined as:
PM

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðMVx Þj2i þ jðMVy Þj2i

q
where MVa, a ∈ ½x; y � represents the average value of

motion vector in an MB in a-direction and M is the total number of MBs in a slice.

NR

32. Motion intensity 4 Defined as:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
javgðMVx Þj2 þ javgðMVy Þj2

q
. NR

33. NotStill Boolean. True, if a slice includes motion. NR

34. HighMot Boolean. True, if a slice includes a high motion level. NR

35-36. MaxResEngy,
MeanResEngy

The maximum and mean residual energy over all the MBs of a slice. NR

37. LostSinFrm Number of lost slices in a frame. NR

38. Height Vertical location of the lost slice within a frame. NR
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error persists is feature 39, and features 40 to 42 are also
video content-independent and are used since intuitively,
they may help in better describing the effect of losing con-
secutive slices. Moreover, features 43 to 44 are related to the
concealment strategy applied to the decoder and particularly,
they deal with the distance from the frame that is used as
reference for the concealment of a frame impaired with a slice
loss. Thus, these features take into account the considered
group of pictures (GOP) structure and size. The motivation
behind extracting the specific features lies in the fact that
when the concealment image is temporally closer to the cur-
rent image, fewer temporal artifacts occur and thus, reduced
impairment visibility is observed compared to the case in
which the concealment image is far away from the current
image.53

As it was discussed earlier, even after applying an
error concealment technique, imperfections in the concealed
parts of a video cannot be avoided. Thus, when a slice loss
occurs, we may have temporal and horizontal discontinuities
between the correctly received and concealed slices, which
increase the visibility of the impairment.34 In this work, hav-
ing detected the location of the lost slice, we applied the
slice boundary mismatch metric (feature 45 in Table 1),
as it is described in Ref. 53, with the goal of capturing the
mismatch on the boundaries between correctly received and
concealed slices in the decoded frames, on a pixel-by-pixel
basis.

Last, features 46 to 51 in Table 1 are calculated on a pixel-
by-pixel basis. Particularly, features 46 to 47 are computed
from the compression-and-network-impaired videos, while
features 48 to 51 are from the compression-impaired and
compression-and-network-impaired versions of a video.
The magnitude of distortion induced by a slice loss is also
influenced by the presence of luminance masking, that is, the
sensitivity of the human visual system to the distortion intro-
duced in darker and brighter image areas. For this purpose,

we utilized features 46 to 47 in order to model the mean and
variance of the luminance of the signal.

Features 48 to 51 model the mean squared error (MSE) and
SSIM metrics, which are commonly used in order to charac-
terize the error amplitude and perceptual quality. In the current
study, we precompute the MSE and SSIM values for eachMB
at the server side. Since it is considered that human attention is
mostly drawn to the worst-case errors, in addition to the mean
MSE and SSIM values, we also keep the maximum MSE and
minimum SSIM values over all MBs in a slice. Afterward, all
MSE and SSIM block values are averaged to obtain a repre-
sentative value for each of them over each slice, and the result-
ing values, along with the maximum MSE and minimum
SSIM for each slice, are next sent to the client’s side. Thus,
once it is known which slices are actually lost, we are able to
know the corresponding MSE and SSIM values. This process
of precomputing and transmitting the values from the server to
the client renders these features of RR type.34

However, both MSE and SSIM metrics, which in the cur-
rent work play the role of the RR features used for the mod-
el’s development, present a number of weaknesses.53 MSE
cannot quantify the spatio-temporal characteristics of the
error and it implicitly calculates the error size and dura-
tion, being unable to capture any information about error
location or pattern. Moreover, MSE captures the error
between the compression-impaired and compression-and-
network-impaired versions of a video, but it does not give
any information about the encoded and decoded signals indi-
vidually. Similarly to MSE, SSIM does not offer any infor-
mation about the error size or duration. Although it gives an
intuition about the signal at the location of the impairment, it
does not directly measure the decoded impairment attributes.
Therefore, we confirm that the extraction of each of the net-
work-error-related features presented in Table 1 is prudent,
as each of them focuses on a different aspect of the effect
incurred by a lost slice.

Table 1 (Continued).

Feature Description Type

39. TMDR Number of frames affected by a lost slice. NR

40. SpatialExtend Number of consecutive lost slices in a frame. NR

41. SpatialExtend2 Boolean. True, if SpatialExtend = 2. NR

42. Error1Frm Boolean. True, if TMDR = 1. NR

43. DistToRef Distance in frames between the current frame and the reference frame used for concealment.
Based on the considered GOP pattern, P frames are concealed using images three frames ago,
while both I frames and B frames are concealed using images one frame ago.

NR

44. FarConceal Boolean. True if jDistToRefj ≥ 3. NR

45. Slice boundary mismatch Impact of the impairment on slice boundaries. NR

46-47. SigMean, SigVar The mean and variance of the slice luminance. NR

48-49. MeanMSE, MaxMSE The mean and maximum MSE, over all MBs of a slice. RR

50-51. MeanSSIM, MinSSIM The mean and minimum SSIM, over all MBs of a slice. RR
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With regard to comparison of the proposed approach of
RR-based VQA, our method has some advantages over the
standardized RR model called ITU-T J.34254 in the follow-
ing ways. J.342 is based on the edge PSNR measurement,
which is performed on the edge pixels of the video being
transmitted over the ancillary channel. In our case, it is
required to transmit a single MSE and a single SSIM value
for the whole sequence, and hence, it may require less band-
width. Our RR features are not dependent on the video con-
tent; on the other hand, edge pixels may vary for different
contents (spatial details, frame resolution, and so on), requir-
ing less or more bandwidth.

In the used test-stimuli, a slice of a video frame corre-
sponds to a packet. Therefore, considering the impact of a
packet loss in terms of data loss on the test-stimuli, it is
noted that an integral number of slices are lost as a result
of a packet-loss event. In light of this, in this study, the fea-
tures that are related to the occurrence of a packet loss were
computed at the slice level. On the other hand, some features,
such as those related to motion vectors, are more suitably
computed at the MB level. Hence, we found it reasonable to
follow a bottom-up approach for computing most of these
features at the MB level and subsequently, an average value
was obtained at the slice level. Henceforth, we computed the
average values of the slice level features to obtain their values
at the frame level. Moreover, the frame-level feature values
were averaged further to obtain their values at the video
sequence level. For frame-level data to video-level data con-
version, we tried Minkowski summation55 by investigating a
large number of Minkowski exponents. However, we con-
firmed that the overall performance of the estimation models
was not significantly improved, and thus, we eventually
employed the simple arithmetic mean.

4 Video Quality Estimation Using Linear
Regression

The problem of perceptual video quality estimation based on
a set of quality-relevant features is solved by building com-
putational models that take the given set of feature values as
input and produce appropriate quality estimates. The choice
of a particular solution to be used for regression, linear or
nonlinear, depends upon the requirements of the problem
under consideration as well as the tradeoff preferences
between the complexity and performance of a method.
However, the theory associated with linear regression is well
understood and allows for the construction of different types
of easily interpretable, stable, and sparse regression models.
In the current study, we propose the use of the LASSO13–15

regression method.

4.1 Least Absolute Shrinkage and Selection
Operator

LASSO is a regression method that can be used for both fea-
ture selection and computation of regression coefficients.
Feature selection is useful when a collection of input features
is available, from which we expect to select a small subset for
the efficient estimation of a response variable, e.g., the per-
ceptual quality of a video. The particular regression tech-
nique is able to effectively address possible issues that arise
when the matrix of observations is not of full rank and thus, it
is infeasible to be inverted using the ordinary least squares
(OLS) method.16 In addition, LASSO has the benefit of not

only shrinking some coefficients close to zero but also set-
ting some others equal to zero, offering feature selection and
producing interpretable models. Thus, it combines the stabil-
ity of ridge16–18 and interpretability of subset selection, at the
same time.

Practically, it minimizes the residual sum of squares sub-
ject to the sum of the absolute value of the coefficients being
less than a constant. Therefore, it solves the following min-
imization problem:

EQ-TARGET;temp:intralink-;e001;326;653min
w

�
1

2

Xn
i¼1

½yi − w⊤ϕðxiÞ�2 þ
λ

2

Xm
j¼1

jwij
�
: (1)

In this equation, the vector y includes the measured quality
values for all n observations, which is the total number of
videos of the test-stimuli, and w is an m × 1 vector of
regression coefficients, including the intercept. The basis
function ϕðxiÞ is an m × 1 vector at observation xi, which
includes the values for all examined features for a particular
video sequence. The shrinkage parameter λ is a positive
parameter that controls the amount of the regularization.
As λ is increased, an increasing number of regression
coefficients becomes equal to zero, while for λ ¼ 0, no
shrinkage is obtained. For the LASSO methodology, the
regression coefficients w have no closed form and the solu-
tion involves quadratic programming techniques using con-
vex optimization.

4.2 Model Learning
The set of features described in Sec. 3 was extracted from the
test-stimuli of the Ecole Polytechnique Fédérale de Lausanne
(EPFL) and Politecnico di Milano (PoliMi) database.52 The
original SouRCe (SRC) videos were selected for the repre-
sentation of a variety of spatiotemporal perceptual informa-
tion, as suggested by ITU-T Rec. P.910.56 The selected SRCs
were in raw progressive format sampled at 4∶2∶0 ratio of
luma and chroma components and were encoded using
the H.264/AVC reference software, version JM 14.2,57

with high profile setting. A GOP structure of IBBP with
size 16 was used, while each video had a duration of 10 sec-
onds in length.

The video sequences comprising the EPFL-PoliMi’s data-
base of common intermediate format (CIF) resolution are
“Mother,” “Foreman,” “Paris,” “News,” “Mobile,” and
“Hall,” each of 298 frames at 30 frames per second (fps)
and of 4CIF resolution are “Harbour” and “Soccer” of
298 frames at 30 fps, “Parkjoy,” “Crowdrun,” and
“Duckstakeoff” of 250 frames at 25 fps, and “Ice” of 238
frames at 30 fps. For each video sequence, a full row of MBs
was coded as a separate slice, while the bitstreams of the
coded videos were impaired by a PLR of 0.1%, 0.4%, 1%,
3%, 5%, and 10%. For each PLR and content, two decoded
video sequences were obtained, by reading an error pattern
from a different starting point. At the decoder, motion com-
pensated error concealment was applied. It should be noted
that this database also includes the MOS values as they were
collected after subjective experiments separately conducted
at EPFL and PoliMi. Further details on the generation of this
dataset as well as the testing conditions can be found in
Ref. 52.

Before building our model, first, we standardized the val-
ues of the input features by calculating their “zscore” values;
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that is, we subtracted the “mean” from each feature vector
and the obtained values were divided by the “standard
deviation” of the particular feature vector. The available data
used for the model training and testing consisted of 144
sequences. Specifically, for each of the 12 SRC videos,
12 different realizations of a packet-loss environment were
simulated, as mentioned above.

In order to validate the robustness of our estimation mod-
els, we ensured a clear distinction between the training and
test data such that no content is common between the sets
and we followed two slightly different modeling approaches.
In the first case, the test set comprised all distorted versions
of one SRC sequence (12 sequences) and the training set
comprised of the data of test-stimuli generated from the dis-
torted versions of 11 SRCs (132 sequences). This process of
splitting the dataset into training and test sets was iterated
such that each impaired sequence set from each SRC
takes its place on the test set. This procedure is the well-
known k-fold cross validation (CV)58 (in our case, 12-fold
CV), in which data are partitioned into k equally sized sub-
sets and an iterative procedure is repeated k times such that
k − 1 subsets are used for training and the remaining one
subset is used for testing (validation). In the second case, we
considered a 3∶1 ratio between the training and test sets,
with the sequences “Mother,” “Foreman,” “News,” “Mobile,”
“Hall,” “Harbour,” “Soccer,” “Crowdrun,” and “Duckstakeoff,”
comprising the training set and “Paris,” “Ice,” and “Parkjoy”
the test set. Therefore, 108 sequences were used for training
and the remaining 36 sequences were used for testing.

Once the training data were selected, the next important
step was the initialization of the regularization parameter λ in
Eq. (1). For both approaches, a number of 100 different λ
values slightly above 0 were tested, in which each different
λ results in a different number of selected features. Also, the
MSE between the subjective and estimated MOS values was
calculated. Therefore, by simultaneously examining the spar-
sity, i.e., the number of features that are assigned zero regres-
sion coefficients, as well as the estimation accuracy in terms
of MSE, we selected the λ value among all 100 values of λ
that gives the best tradeoff of these conditions. Thus, using
the chosen λ value, we trained our models and we obtained
the values for the regression coefficients.

The obtained regression coefficient values were applied to
the data of the test set in order to get the MOS estimations.
Using the estimated values, we were able to evaluate models’
performance in comparison with the subjective MOS values.
Algorithm 1 summarizes the methodology adopted in this
work for the k-fold case in order to develop our proposed
models. A similar procedure is also followed for the fixed
dataset partition into training and test sets, with the differ-
ence that this process is followed just once as there is a single
training set.

In addition, it is worth mentioning that the use of LASSO
avoids the problem of overfitting because: (1) it builds a sim-
ple model and (2) it performs regularization. It is generally
admitted that too complex models are prone to overfitting
and thus, they give poor estimations. In this context, LASSO
regression is able to autonomously perform feature selection
within its learning process, producing estimations at the
same time. Also, apart from feature selection, the specific
method is able to perform L1 regularization. Regularization
works well when we have a lot of features, each of which

contributes a bit to the response variable estimation and it
deters overfitting since the magnitude of the regression coef-
ficients is reduced and thus, a smoother curve for fitting the
data is obtained.

5 Experimental Results
In this section, we present an analysis of the obtained results
in order to evaluate the performance of the RR and NR
LASSO models. Moreover, for the sake of comparison
with the MOS estimations given by LASSO, we applied
ridge regression,16–18 which does not perform any kind of
feature selection in its standard form. Ridge is an extension
of the OLS regression method16 and is able to improve the
OLS estimates by allowing a little bias in order to reduce the
variance of the estimated values, offering a good generaliza-
tion capability to unseen data. Practically, it solves the fol-
lowing minimization problem:

EQ-TARGET;temp:intralink-;e002;326;237min
w
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1

2

Xn
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λ

2
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�
: (2)

Therefore, ridge attempts to tradeoff the goodness-of-fit, as it
is described by the first term of the above equation, and the
penalty, as it is described by the second term of the same
equation.

As no feature selection is performed using the aforemen-
tioned regression method, this implicates the risk of harming
the estimations, when irrelevant or noisy features are
employed. Due to this, a feature selection procedure19 pre-
ceded ridge so as to keep only those features that are the most
influential toward making MOS estimations. Specifically,
we performed SFS and particularly forward feature selection

Algorithm 1 Model development.

loop

if (a SRC is not tested) then

Split the dataset into training set and test set, such that the test
set includes all impaired versions of the same SRC.

Execute exclusively on the training set.

a. Perform LASSO regression.

b. Determine the optimal λ value of Eq. (1).

c. Using the optimal λ value, train the whole training set of
LASSO model.

d. Get regression coefficient estimates.

Apply regression coefficient estimates on the test set.

Get video quality estimations.

Evaluate performance.

end if

end loop
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Table 2 Performance of LASSO, ridge and reference FR metrics using MOS collected by PoliMi for both training and test for the k -fold case.52

CIF 4CIF

Method Test Sequence λ # Features PCC SROCC RMSE Test Sequence λ # Features PCC SROCC RMSE

NR ridge Foreman 1e − 05 9 0.977 0.958 0.297 Crowdrun 1e − 05 11 0.981 0.972 0.223

NR LASSO 0.2674 2 0.979 0.972 0.284 0.2677 3 0.969 0.986 0.283

RR ridge 1e − 05 9 0.986 0.986 0.230 1e − 05 10 0.988 0.986 0.179

RR LASSO 0.7014 2 0.985 0.986 0.243 0.7178 2 0.987 0.986 0.187

PEVQ — — 0.983 0.963 0.792 — — 0.966 0.986 0.317

VQM — — 0.971 0.979 1.548 — — 0.991 0.986 0.343

NR ridge Hall 1e − 05 8 0.945 0.937 0.420 Duckstakeoff 1e − 05 4 0.968 0.993 0.313

NR LASSO 0.2711 3 0.965 0.979 0.337 0.2714 2 0.973 1.000 0.289

RR ridge 1e − 05 11 0.976 0.923 0.278 1e − 05 6 0.996 1.000 0.113

RR LASSO 0.7099 2 0.980 0.944 0.258 0.7070 2 0.991 1.000 0.163

PEVQ — — 0.944 0.818 0.753 — — 0.994 0.996 0.329

VQM — — 0.940 0.895 1.064 — — 0.988 0.996 0.489

NR ridge Mobile 1e − 05 5 0.960 0.979 0.356 Harbour 1e − 05 6 0.978 0.916 0.203

NR LASSO 0.2697 2 0.979 0.972 0.259 0.2754 2 0.978 0.930 0.204

RR ridge 1e − 05 7 0.993 0.965 0.153 1e − 05 5 0.973 0.923 0.224

RR LASSO 0.7070 2 0.993 0.979 0.153 0.7239 1 0.981 0.930 0.186

PEVQ — — 0.969 0.937 0.404 — — 0.960 0.930 0.419

VQM — — 0.979 0.972 0.575 — — 0.974 0.930 0.509

NR ridge Mother 1e − 05 7 0.945 0.937 0.318 Ice 1e − 05 14 0.962 0.958 0.338

NR LASSO 0.2757 3 0.929 0.937 0.359 0.2706 3 0.970 0.965 0.303

RR ridge 1e − 05 16 0.962 0.965 0.265 1e − 05 10 0.977 0.979 0.267

RR LASSO 0.7381 2 0.966 0.944 0.252 0.7133 2 0.979 0.979 0.256

PEVQ — — 0.967 0.944 0.803 — — 0.977 0.972 0.368

VQM — — 0.963 0.930 2.003 — — 0.975 0.972 0.633

NR ridge News 1e − 05 14 0.965 0.965 0.345 Parkjoy 1e − 05 6 0.954 0.951 0.317

NR LASSO 0.2704 1 0.969 0.972 0.328 0.2749 2 0.972 0.965 0.247

RR ridge 1e − 05 9 0.987 0.979 0.212 1e − 05 3 0.975 0.979 0.234

RR LASSO 0.7093 2 0.992 0.979 0.164 0.7180 2 0.984 0.979 0.188

PEVQ — — 0.976 0.972 0.343 — — 0.979 0.972 0.446

VQM — — 0.980 0.979 1.078 — — 0.981 0.979 0.550
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(FFS) (“sequentialfs” function in MATLAB) in order
to select the appropriate subsets of features from the initial
RR and NR sets, respectively, that best estimate the actual
MOS. Starting from an empty feature set, candidate subsets
are created by sequentially adding each of the features not
yet selected, in order of importance. For each candidate fea-
ture subset, ridge regression was applied in order to estimate
the output values, and finally, the MSE between the actual
and estimated MOS was returned. This process continued
until adding more features did not further decrease MSE.
Thus, the specific RR and NR feature subsets that resulted
in minimum MSE were selected. Applications of FFS using
linear regression models in similar problems of video quality
estimation can be found in Refs. 59 and 60.

In addition, a comparison with related approaches is also
reported in this section. In order to evaluate the models’ per-
formance, the following measures, as recommended by
video quality experts group (VQEG)61 were used.

• Linearity: The Pearson linear correlation coefficient
(PCC) is used to describe the linearity of the estimation.

• Monotonicity: The Spearman rank order correlation
coefficient (SROCC) is used to describe the monoto-
nicity of the estimation.

• Accuracy: The root MSE (RMSE) is used to describe
the accuracy of the estimation.

The values of PCC and SROCC lie in the range ½−1;1�,
where values closer to 1 represent high positive correlation.

5.1 Results and Discussion
As a result of the test setup described in Sec. 3, a number of
simulations were performed for the RR and NR sets of video

features, using the MOS values collected by both PoliMi and
EPFL. It holds that subjective MOS values are usually com-
pressed at the ends of the rating scale (0 and 5), while this is
not the case for objective video quality models that are unable
to mimic this weakness of subjective data. Therefore, follow-
ing the VQEG report on validation of objective video quality
models,62 a third order monotonic mapping function was
applied on the estimated values of our models before the com-
putation of the performance measures.

Table 2 presents the obtained results for both RR and NR
models using ridge and LASSO, when the PoliMi MOS val-
ues are used in both the training and test phases. Besides the
performance measures, the chosen λ values and the number
of used features for the prediction of the quality value of each
test sequence using each proposed model are also mentioned.
It is to be noted that for ridge, we set λ ¼ 10−5 as being a
typical small positive value able to improve the conditioning
of the problem and reduce the variance of the MOS esti-
mates. Each cell of the table cites the results when 12
impaired versions of a specific SRC sequence are used as the
test dataset (the training dataset comprises the 132 impaired
sequences of the remaining 11 SRC sequences) and the bot-
tom cell shows the arithmetic mean (average) of the perfor-
mance over all the SRCs (of all cells) with resolution CIF and
4CIF separately. In the same table, the related performance
of PEVQ and VQM metrics is also mentioned. PEVQ is an
FR metric that is a part of the ITU-T Recommendation
J.247.50 VQM is also an FR metric that has been largely
adopted in the research community for taking quality esti-
mates.51 In our experiments, we calculated VQM using the
MSU video quality measurement tool, Version 4.3 Beta
Professional, available in Ref. 63. In an effort to be fair when
comparing the estimated and subjective MOS, we scaled

Table 2 (Continued).

CIF 4CIF

Method Test Sequence λ # Features PCC SROCC RMSE Test Sequence λ # Features PCC SROCC RMSE

NR ridge Paris 1e − 05 8 0.972 0.916 0.320 Soccer 1e − 05 4 0.991 0.979 0.162

NR LASSO 0.2677 2 0.978 0.944 0.286 0.2712 3 0.987 0.993 0.192

RR ridge 1e − 05 13 0.990 0.972 0.188 1e − 05 4 0.996 1.000 0.108

RR LASSO 0.7035 2 0.989 0.972 0.205 0.7120 2 0.996 0.993 0.103

PEVQ — — 0.976 0.951 0.587 — — 0.989 0.996 0.382

VQM — — 0.970 0.951 0.833 — — 0.991 0.986 0.672

NR ridge Average — 9 0.961 0.949 0.343 Average — 8 0.973 0.962 0.261

NR LASSO — 2 0.967 0.963 0.309 — 3 0.975 0.973 0.253

RR ridge — 11 0.982 0.965 0.221 — 6 0.984 0.978 0.188

RR LASSO — 2 0.984 0.967 0.213 — 2 0.986 0.978 0.181

PEVQ — — 0.969 0.930 0.614 — — 0.977 0.976 0.377

VQM — — 0.967 0.951 1.183 — — 0.983 0.975 0.533
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Table 3 Performance of LASSO and ridge models using MOS collected by PoliMi for training and MOS collected by EPFL for test for the k -fold
case.52

CIF 4CIF

Method Test Sequence λ # Features PCC SROCC RMSE Test Sequence λ # Features PCC SROCC RMSE

NR ridge Foreman 1e − 05 10 0.958 0.930 0.403 Crowdrun 1e − 05 6 0.948 0.951 0.337

NR LASSO 0.2674 2 0.982 0.979 0.266 0.2677 3 0.955 0.993 0.312

RR ridge 1e − 05 6 0.981 0.979 0.272 1e − 05 4 0.986 0.993 0.178

RR LASSO 0.7014 2 0.983 0.979 0.261 0.7178 2 0.986 0.993 0.178

NR ridge Hall 1e − 05 2 0.928 0.916 0.479 Duckstakeoff 1e − 05 6 0.942 0.986 0.420

NR LASSO 0.2711 3 0.939 0.958 0.442 0.2714 2 0.964 0.993 0.332

RR ridge 1e − 05 7 0.972 0.930 0.300 1e − 05 3 0.992 0.993 0.158

RR LASSO 0.7099 2 0.975 0.937 0.284 0.7070 2 0.991 0.993 0.166

NR ridge Mobile 1e − 05 10 0.940 0.986 0.487 Harbour 1e − 05 9 0.977 0.972 0.224

NR LASSO 0.2697 2 0.973 0.979 0.328 0.2754 2 0.969 0.972 0.262

RR ridge 1e − 05 5 0.993 0.986 0.174 1e − 05 9 0.976 0.944 0.231

RR LASSO 0.7070 2 0.992 0.972 0.186 0.7239 1 0.977 0.944 0.227

NR ridge Mother 1e − 05 8 0.961 0.965 0.257 Ice 1e − 05 3 0.952 0.965 0.376

NR LASSO 0.2757 3 0.936 0.930 0.329 0.2706 3 0.935 0.965 0.433

RR ridge 1e − 05 12 0.963 0.979 0.251 1e − 05 10 0.976 0.993 0.267

RR LASSO 0.7381 2 0.979 0.923 0.192 0.7133 2 0.979 0.993 0.248

NR ridge News 1e − 05 12 0.966 0.972 0.370 Parkjoy 1e − 05 5 0.959 0.972 0.298

NR LASSO 0.2704 1 0.952 0.993 0.440 0.2749 2 0.971 0.986 0.251

RR ridge 1e − 05 17 0.993 0.979 0.171 1e − 05 7 0.993 0.993 0.120

RR LASSO 0.7093 2 0.994 0.972 0.158 0.7180 2 0.993 0.993 0.124

NR ridge Paris 1e − 05 10 0.964 0.916 0.383 Soccer 1e − 05 10 0.983 0.965 0.217

NR LASSO 0.2677 2 0.972 0.944 0.337 0.2712 3 0.981 0.986 0.231

RR ridge 1e − 05 13 0.971 0.958 0.344 1e − 05 7 0.983 0.986 0.181

RR LASSO 0.7035 2 0.969 0.958 0.354 0.7120 2 0.991 0.986 0.155

NR ridge Average — 9 0.953 0.948 0.396 Average — 7 0.960 0.969 0.312

NR LASSO — 2 0.959 0.964 0.357 — 3 0.963 0.983 0.304

RR ridge — 10 0.979 0.969 0.252 — 7 0.985 0.984 0.189

RR LASSO — 2 0.982 0.957 0.239 — 2 0.986 0.984 0.183
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Table 4 Performance of LASSO and ridge models using MOS collected by EPFL for training and MOS collected by PoliMi for test52 for the k -fold
case.

CIF 4CIF

Method Test sequence λ # Features PCC SROCC RMSE Test Sequence λ # Features PCC SROCC RMSE

NR ridge Foreman 1e − 05 10 0.961 0.916 0.390 Crowdrun 1e − 05 9 0.973 0.972 0.264

NR LASSO 0.2222 3 0.981 0.972 0.272 0.2283 3 0.969 0.986 0.283

RR ridge 1e − 05 15 0.988 0.993 0.216 1e − 05 9 0.973 0.972 0.264

RR LASSO 0.5419 2 0.988 0.986 0.221 0.5576 2 0.985 0.986 0.120

NR ridge Hall 1e − 05 7 0.944 0.930 0.424 Duckstakeoff 1e − 05 12 0.993 1.000 0.152

NR LASSO 0.2253 3 0.965 0.979 0.337 0.2259 2 0.977 1.000 0.265

RR ridge 1e − 05 7 0.978 0.923 0.271 1e − 05 3 0.996 1.000 0.106

RR LASSO 0.5481 2 0.978 0.923 0.266 0.5473 2 0.995 1.000 0.119

NR ridge Mobile 1e − 05 12 0.985 0.979 0.362 Harbour 1e − 05 5 0.972 0.923 0.228

NR LASSO 0.2221 3 0.979 0.972 0.257 0.2280 3 0.978 0.930 0.202

RR ridge 1e − 05 10 0.990 0.972 0.178 1e − 05 12 0.983 0.930 0.177

RR LASSO 0.5408 2 0.993 0.979 0.154 0.5556 2 0.981 0.930 0.187

NR ridge Mother 1e − 05 5 0.920 0.923 0.381 Ice 1e − 05 5 0.961 0.965 0.345

NR LASSO 0.2295 3 0.929 0.937 0.360 0.2261 3 0.970 0.965 0.304

RR ridge 1e − 05 11 0.959 0.944 0.276 1e − 05 8 0.961 0.965 0.345

RR LASSO 0.5716 1 0.966 0.944 0.252 0.5507 2 0.979 0.979 0.255

NR ridge News 1e − 05 4 0.972 0.979 0.314 Parkjoy 1e − 05 15 0.975 0.951 0.234

NR LASSO 0.2225 3 0.970 0.972 0.324 0.2289 3 0.943 0.965 0.352

RR ridge 1e − 05 8 0.987 0.986 0.210 1e − 05 3 0.976 0.979 0.229

RR LASSO 0.5423 2 0.987 0.979 0.214 0.5539 2 0.986 0.979 0.176

NR ridge Paris 1e − 05 8 0.972 0.916 0.319 Soccer 1e − 05 8 0.989 0.979 0.176

NR LASSO 0.2217 3 0.976 0.944 0.296 0.2254 3 0.986 0.986 0.198

RR ridge 1e − 05 11 0.987 0.965 0.218 1e − 05 9 0.990 0.979 0.163

RR LASSO 0.5414 2 0.990 0.972 0.197 0.5501 2 0.996 0.993 0.107

NR ridge Average — 8 0.954 0.941 0.365 Average — 9 0.977 0.965 0.233

NR LASSO — 3 0.967 0.963 0.308 — 3 0.970 0.972 0.267

RR ridge — 10 0.982 0.964 0.228 — 7 0.980 0.971 0.214

RR LASSO — 2 0.983 0.964 0.217 — 2 0.987 0.978 0.174
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PEVQ and VQM values in the range [0, 5]. In addition, since
for the VQM, the smaller the value the better the video qual-
ity, we “reversed” these values to follow the trend of MOS. It
holds that comparing RR and NR models against FR metrics
is a challenging task, as FR metrics have far more data to
process for estimating quality. Nonetheless, as it turns out,
the proposed models perform equally well, or somewhat bet-
ter than the considered FR metrics. The advantage of our pro-
posed models is more evident mainly in terms of fairly lower
values of estimation error (RMSE).

The same information for the obtained results of both RR
and NR models using ridge and LASSO is also provided in
Tables 3 and 4. Specifically, in Table 3, we cite the results
when the MOS obtained by PoliMi is used for models train-
ing and the MOS collected by EPFL is used in order to test
the models. The opposite comes true for the results in
Table 4, i.e., the MOS from EPFL is used to train the models
and the MOS from PoliMi is used for models testing. In addi-
tion, in these tables, the values for the PEVQ and VQM val-
ues are omitted. Apparently, they are the same as presented

Table 5 Regression coefficient values for the k -fold case.

NR LASSO RR LASSO

Intercept B (%) TMDR SpatialExtend Intercept TMDR MinSSIM

PoliMi CIF Foreman 2.5776 0.0163 −0.7980 — 2.5768 −0.0481 0.3849

Hall 2.5705 0.0205 −0.6572 −0.1567 2.5760 −0.0710 0.3639

Mobile 2.5519 — −0.6574 −0.1652 2.5534 −0.0102 0.4221

Mother 2.5729 0.0132 −0.7344 −0.0971 2.5966 −0.0427 0.3908

News 2.5523 — −0.8205 — 2.5619 −0.0769 0.3603

Paris 2.5640 0.0127 −0.8143 — 2.5759 −0.0054 0.4253

4CIF Crowdrun 2.5694 0.0068 −0.7737 −0.0510 2.5547 −0.0364 0.3837

Duckstakeoff 2.5819 0.0473 −0.7902 – 2.5768 −0.0402 0.3824

Harbour 2.5244 – −0.7072 −0.1320 2.5235 – 0.4323

Ice 2.5619 0.0052 −0.8038 −0.0156 2.5472 −0.0560 0.3686

Parkjoy 2.5845 – −0.8132 −0.0266 2.5792 −0.0534 0.3706

Soccer 2.5677 0.0075 −0.7207 −0.0982 2.5635 −0.0497 0.3708

EPFL CIF Foreman 2.2503 0.0456 −0.7269 −0.0957 2.2539 −0.0430 0.5597

Hall 2.2360 0.0403 −0.6865 −0.1589 2.2424 −0.0460 0.5609

Mobile 2.2248 0.0235 −0.6404 −0.2027 2.2297 −0.0526 0.5501

Mother 2.2547 0.0499 −0.6519 −0.2015 2.3005 — 0.6245

News 2.2175 0.0199 −0.7574 −0.0870 2.2398 −0.0313 0.5684

Paris 2.2311 0.0380 −0.7861 −0.0518 2.2439 −0.0303 0.5695

4CIF Crowdrun 2.2506 0.0386 −0.8327 −0.0227 2.2235 −0.0151 0.6098

Duckstakeoff 2.2286 0.2054 −0.7126 — 2.2382 −0.0599 0.5670

Harbour 2.2130 0.0145 −0.6804 −0.1922 2.2114 −0.0492 0.5699

Ice 2.2491 0.0428 −0.7944 −0.0474 2.2257 −0.0279 0.5960

Parkjoy 2.2673 0.0202 −0.7613 −0.1125 2.2574 −0.0800 0.5434

Soccer 2.2476 0.0365 −0.6905 −0.1536 2.2412 −0.446 0.5768
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in Table 2, due to the fact that they do not depend on the
considered training set. Also from these tables (Tables 3
and 4), we confirm that the proposed models present a sim-
ilar performance with that of Table 2, while their strong point
against the FR metrics is also the much better estimation
accuracy they provide in terms of RMSE.

One salient aspect of comparing the performance of ridge
and LASSO is the level of accuracy and sparsity offered
by each solution. Observing the performance results in
Tables 2–4, we do not confirm an advantage of a particular
regression method over the other, since their statistics are
similar in both CIF and 4CIF resolutions. However, for all
examined cases (with only one isolated exception), it can be
construed that LASSOmodels use far less features than those
employed by ridge for making quality estimations.

In fact, the values of the regression coefficients are con-
sidered as an indication of feature selection or not. If the

coefficient associated with a certain feature acquires a zero
value, this means that the specific feature is excluded from
the estimation process. On the contrary, a feature is selected,
if it is assigned a nonzero regression coefficient value. As the
values of the input features are normalized to the same scale,
a higher value of a coefficient implies higher significance of
the related feature, and vice versa. Moreover, the features
that are associated with positive-signed coefficients are con-
sidered to cause an increase in quality if their values are
increased. By contrast, the features associated with nega-
tive-signed coefficients are considered to decrease quality
if their values are increased.

From the investigation of the results in Tables 2 and 3, we
observe that the selected λ values as well as the number of
selected features, for each corresponding test sequence,
for both the NR and RR LASSO models, are the same.
This is a reasonable conclusion as our models, in both cases
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Fig. 2 Overall performance of NR LASSO and RR LASSO (a, b) for CIF and (c, d) for 4CIF, using MOS
collected by PoliMi for both training and test, for the k -fold case.
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in Tables 2 and 3, have been trained on the same dataset. On
the other hand, this does not hold for the RR and NR ridge
models. Although we have set the same λ values, we notice
that a different number of features is selected for each sep-
arate test sequence. This is attributed to the fact that the fea-
ture selection method we have used takes into account the
considered test set at each time. In this context, Table 5
below presents the regression values that are assigned to each
feature for each of the RR and NR LASSO models, when the
MOS results from both the PoliMi and EPFL are employed
for models’ training. The features that do not appear on
this table are assigned a zero regression coefficient value.
Furthermore, on the same table, we present the correspond-
ing intercept values.

A close inspection of the results provided by Table 5
reveals that for the NR LASSO models, three features (at the
worst case) out of the 45 initially extracted ones are enough
to make extremely precise MOS estimations, while for the

RR LASSO models, this number shrinks to two features
(at the worst case) out of the 51 in total, offering equally
high prediction efficiency, for both CIF and 4CIF resolu-
tions, and regardless of the considered MOS values used for
models’ training. Furthermore, it is intriguing to examine the
specific features that are actually selected. As it can be seen
from the same table, for the NR case, the selected features are
B[%], TMDR, and SpatialExtend, while for the RR case, this
list includes TMDR and MinSSIM. Features TMDR and
SpatialExtend are closely related to the error propagation; the
first captures the error propagation to the frames that depend
on it, while the second one checks for impairments inside the
same frame. In addition B[%], which describes the number
of MBs coded as bipredictive in a slice also has a great sig-
nificance in MOS estimation as it gathers information about
the internal coding structure of the sequences. Among the
features selected by the NR models, TMDR is definitely the
most important one as it is selected by all different training
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Fig. 3 Overall performance of NR LASSO and RR LASSO (a, b) for CIF and (c, d) for 4CIF, using MOS
collected by PoliMi for training and MOS collected by EPFL for test, for the k -fold case.
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sets; either the MOS from PoliMi or EPFL have been used
for models’ training.

For the RR LASSO models, TMDR is the one of the
two selected features (interestingly, TMDR is selected by
both the NR and RR models) and also MinSSIM is always
selected in all cases presented in Table 5. In fact, MinSSIM
keeps information about the error at the specific location of
the loss and is able to describe the spatial extent of the error.

Commenting on the values of the regression coefficients,
we observe that all employed features are assigned regres-
sion coefficient values that are very close to zero. In addition,
TMDR has a negative impact toward MOS quality estima-
tion as opposed to the other selected features. From Table 5,
we can see that B[%] and SpatialExtend take almost zero
values in most of the cases, while higher are the values
assigned to TMDR, meaning that this feature affects more on
the MOS estimation process. On the other hand, TMDR is
assigned smaller values when it comes to the RR LASSO

models. In this case, the MinSSIM feature is dominant, as
it is assigned much higher values (with regards to its absolute
value) than TMDR. Lastly, looking at the intercept values,
we confirm that for both the NR and RR models, for each
test sequence, they are almost identical, especially in the case
of using the MOS values from the same institution for mod-
els’ training.

Regarding the case in which ridge along with FFS is
applied, the number of selected features, when each different
SRC is tested, ranges between 2 and 15 for the NR case and
between 3 and 17 for the RR case, examining all Tables 2–4.
The corresponding list with all different selected features for
the NR case includes the features 1 to 4, 6 to 10, and 12 to 45,
which means that 43 out of 45 features in total are selected,
excluding from the list features 5 and 11. Similarly for the
RR case, the list with the selected features includes the fea-
tures 1 to 3, 5 to 8, 10 to 28, 30, 34 to 43, and 45 to 51, i.e.,
44 out of 51 features are selected, excluding the features 4, 9,
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Fig. 4 Overall performance of NR LASSO and RR LASSO (a, b) for CIF and (c, d) for 4CIF, using MOS
collected by EPFL for training and MOS collected by PoliMi for test, for the k -fold case.
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29, 31, 32, 33 and 44. The presentation of the individual
regression coefficients values as they result after applying
ridge are beyond the scope of this paper and for this purpose,
we omit them from here. Also, it is interesting to observe that
using the NR or the RR ridge models, all of the features pre-
sented in Table 1 contribute to the estimation of MOS, as the
features excluded from NR ridge are included in RR ridge
and vice versa.

Therefore, we confirm that using LASSO, we are able to
reject a large number of features in order to achieve a desired
level of sparsity, maintaining a high level of accuracy at the
same time. LASSO keeps the advantage of providing much
more sparse solutions as compared to ridge combined with
FFS, and the same three and two specific features (at the
worst case) that are selected in the NR and RR cases, respec-
tively, are able to estimate quality with high precision, irre-
spective of the considered training set. On the other hand,
when ridge with FFS is applied, a much larger number of

the initially extracted features are kept, and overall, all of
the features of Table 1 are employed for the MOS estimation
of all of the examined video sequences, justifying our belief
that the features we propose have an obvious impact on per-
ceptual video quality. Additionally, it is interesting to high-
light that all three features selected by NR LASSO are
extracted from the lossy bitstream and do not require its
decoding. Therefore, the lower computational complexity of
LASSO is another benefit over ridge using FFS and hence, it
can be used as an efficient solution for video quality estima-
tion as well as feature selection, maintaining impressively
good performance statistics.

Regarding the performance comparison of the RR and
NR models, from the individual results of each SRC in
Tables 2–4, it is observed that the RR models have slightly
better performance than the corresponding NR models, as
indicated through the correlation coefficients as well as the
estimation errors, regardless of the regression method used.
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Fig. 5 Overall performance of PEVQ (a, c) for CIF and (b, d) for 4CIF, as compared to MOS collected by
PoliMi and EPFL, respectively, for the k -fold case.
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This inference about the effectiveness of the RR models is
also verified by the average results, depicted on the bottom
cells of the same tables. However, we have to mention
that the estimation accuracy in NR cases is very promising
as well and hence, the proposed list of NR features (see
Table 1) presents an acceptable solution for reference-
free quality estimation of video transmissions over lossy
networks.

In addition to the earlier mentioned statistics in Tables 2–
4, the overall performance of RR LASSO and NR LASSO
models for each corresponding case of the aforementioned
tables is shown as scatter plots in Figs. 2–4, for both CIF and
4CIF resolutions. The values of the “overall” performance, as
indicated in these plots, are obtained by comparing the val-
ues of estimated and subjective MOS, when all examined
sequences of a specific spatial resolution are considered as
a whole. The scatter plots not only indicate a very high
overall performance in each case but also highlight the

superiority of RR models over the corresponding NR
ones, which are able to manage the MOS estimation in a bet-
ter way. For instance, from all these figures, we notice that
the quality estimation of “Mother” CIF sequence or “Ice”
4CIF sequence seems to be difficult for NR LASSO in all
examined cases, while RR LASSO manages their estimation
more effectively. One plausible reason behind this behavior
could be that both of these video sequences have low spa-
tiotemporal information indices52 and the additional features
selected by the RR approach could better represent percep-
tual quality of such videos. Thus, the slight advantage of
using an RR model over an NR one in terms of performance
is more obvious from these plots, at the cost of maintaining
an ancillary channel and the risk of a possible failure in RR
data delivery to the receiver’s end.

Figures 5 and 6 below show the “overall” performance of
PEVQ and VQM, respectively, and how they correlate with
the subjective MOS. We present separate plots for each
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Fig. 6 Overall performance of VQM (a, c) for CIF and (b, d) for 4CIF, as compared to MOS collected by
PoliMi and EPFL, respectively, for the k -fold case.
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specific resolution and we examine both cases of using the
MOS from both PoliMi and EPFL. Comparing the perfor-
mance of PEVQ and VQM with the proposed LASSO mod-
els, we infer that both NR and RR LASSO models far exceed
these FR metrics under the “overall” context, especially in
the cases of CIF resolution, where PEVQ and VQM are rel-
atively weak in producing accurate MOS predictions.

In the next part of this section, we present the correspond-
ing results for the case in which a specific set of sequences is
always used for models’ development and thus, the rest of
the sequences of the database are used for testing the models.
Specifically, Tables 6–8 present the results for both RR and
NR models using both ridge and LASSO. In Table 6, the
models have been trained and tested on MOS collected by
PoliMi; in Table 7, the MOS collected by PoliMi have been
used in the training set and the MOS collected by EPFL have
been used in the test set; and last, in Table 8, the MOS col-
lected by EPFL have been used in the training set and the
MOS collected by PoliMi have been used in the test set.
Moreover, the same tables provide information about the
chosen λ values and the number of used features for each

test sequence and proposed model. Last but not least,
Table 6 at the bottom cell presents the average performance
over all tested sequences for PEVQ and VQM.

Next, Table 9 shows the regression coefficient values that
are assigned to the features that contribute to the MOS esti-
mation. The features that are missing from this table are
assigned zero regression coefficient values. The same table
also presents the intercepts that are employed by each model,
when both the MOS values from the PoliMi and EPFL are
employed for the training of the models. From this table, we
confirm that the same features that were employed by each
separate test sequence in Table 5 are also used in this case,
highlighting their significance in MOS estimation. Also, it is
interesting to note that the specific values do not depend on a
specific training set and are universal; thus, they can be used
for the prediction of MOS of other databases. In addition,
these values present a very slight variation depending on
if the considered MOS values used to train the model are
those of the PoliMi or the EPFL institutions.

The conclusions that arise by examining the results of this
table are aligned with the conclusions derived by the results
in Table 5. The only difference is that for the NR LASSO
model of fixed training and test sets, the SpatialExtend fea-
ture is not selected, as in the present case we emphasized
more obtaining an even sparser prediction model.

Table 6 Performance of LASSO and ridge models using MOS col-
lected by PoliMi for both training and test,52 for fixed training and test
sets.

Method
Test

sequence λ
#

Features PCC SROCC RMSE

NR ridge Paris 1e − 05 6 0.982 0.951 0.259

NR LASSO 0.2242 2 0.975 0.944 0.301

RR ridge 1e − 05 3 0.985 0.965 0.233

RR LASSO 0.7065 2 0.990 0.972 0.194

NR ridge Ice 1e − 05 6 0.965 0.972 0.326

NR LASSO 0.2242 2 0.970 0.965 0.303

RR ridge 1e − 05 3 0.977 0.979 0.266

RR LASSO 0.7065 2 0.980 0.979 0.249

NR ridge Parkjoy 1e − 05 6 0.962 0.951 0.288

NR LASSO 0.2242 2 0.973 0.965 0.246

RR ridge 1e − 05 3 0.975 0.979 0.234

RR LASSO 0.7065 2 0.986 0.979 0.177

NR ridge Average — 6 0.970 0.958 0.291

NR LASSO — 2 0.973 0.958 0.283

RR ridge — 3 0.979 0.974 0.244

RR LASSO — 2 0.985 0.977 0.207

PEVQ — — 0.977 0.965 0.467

VQM — — 0.975 0.967 0.672

Table 7 Performance of LASSO and ridge models using MOS col-
lected by PoliMi for training and MOS collected by EPFL for test,52 for
fixed training and test sets.

Method
Test

sequence λ
#

Features PCC SROCC RMSE

NR ridge Paris 1e − 05 5 0.963 0.951 0.387

NR LASSO 0.2242 2 0.970 0.944 0.347

RR ridge 1e − 05 3 0.964 0.958 0.380

RR LASSO 0.7065 2 0.965 0.958 0.377

NR ridge Ice 1e − 05 5 0.932 0.965 0.444

NR LASSO 0.2242 2 0.935 0.965 0.433

RR ridge 1e − 05 3 0.979 0.993 0.250

RR LASSO 0.7065 2 0.978 0.993 0.254

NR ridge Parkjoy 1e − 05 5 0.953 0.972 0.317

NR LASSO 0.2242 2 0.968 0.986 0.262

RR ridge 1e − 05 3 0.993 0.993 0.122

RR LASSO 0.7065 2 0.993 0.993 0.124

NR ridge Average — 5 0.949 0.963 0.383

NR LASSO — 2 0.958 0.965 0.347

RR ridge — 3 0.979 0.981 0.251

RR LASSO — 2 0.979 0.981 0.252
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From the provided results in Tables 6–8, one can notice
that the λ values for the NR LASSO models are always the
same, regardless of the sequence that is tested each time. The
same holds also for the corresponding RR LASSO models.
This is attributed to the fact that the λ values have been deter-
mined just once for a fixed training set and can be used for
the prediction of MOS of every sequence. Specifically, for
Tables 6–8, the MOS values from PoliMi have been used
for models’ training. By contrast, for Table 8, the MOS val-
ues from EPFL have been employed in the training phase of
the models, and therefore, a different selection for the λ
values of both the NR and RR LASSO models has been
performed.

For this set of experiments, we have employed even
sparser NR LASSO solutions. In more detail, from all
Tables 6–9, we notice that just two features for both the NR
and RR LASSO models are capable of producing extremely
high MOS estimations. Although fewer features are employed
as compared to the corresponding NR and RR ridge models
preceded by FFS, the performance of the proposed LASSO
models is usually marginally better, as it appears from both
the separate test sequence results as well as the average
results at the bottom cells of Tables 6–8. Similarly, with
Tables 2–4, the slight advantage of the RR models over the
corresponding NR ones is also evident from Tables 6–8 in

terms of all examined measures of performance. More-
over, Table 6 at the bottom cell mentions the average perfor-
mance of PEVQ and VQM metrics, over all the considered
test sequences. We observe that our RR LASSO models keep
a higher performance in terms of all examined measures of
performance, while our NR LASSO models guarantee far
smaller RMSE as compared to the corresponding values
of PEVQ and VQM. Similarly, with the k-fold case, we
omit the presentation of the average PEVQ and VQM results
from Tables 7 and 8 as they are the same, due to the fact that
they do not depend on the considered training set.

In the following, Figs. 7–9 illustrate better the advantage
of the RR LASSO models over the NR ones, as it was men-
tioned in the previous paragraph. In these figures, the values
of the “overall” performance are obtained by comparing the
values of estimated and subjective MOS, when all sequences
of the test set are considered as a whole. Each of these figures
corresponds to a different consideration for the employed
MOS at each time, i.e., either they have been collected by
PoliMi or EPFL. As it is shown, the RR LASSO estimations
are closer to the actual MOS measurements as compared to
the corresponding NR LASSO ones, although the solutions
provided by the NR LASSO models are strongly efficient
and thus acceptable. Last, Figs. 10 and 11 present the cor-
relation of the PEVQ and VQMmetrics with the actual MOS
from both PoliMi and EPFL. A comparison between the effi-
ciency of our proposed NR models and that of PEVQ and
VQM reveals that when the MOS from the same institution
is used for testing, both our RR and NR models are superior
to both PEVQ and VQM. We could also say that PEVQ is
able to produce measurements that are closer to the actual
MOS ratings as compared to the corresponding measure-
ments from VQM.

5.2 Comparison with Related Work
In this part of the article, we compare the results produced in
this study for the k-fold case, with the results of existing pub-
lications that address video quality estimation problems in FR,
RR, and NRmodes. It is to be noted that Table 10 includes the
results of the performance measures as they were calculated in
“overall” fashion, that is considering estimated and subjective
MOS values for all examined sequences as a whole, for each
particular resolution. Also, the same table gives an intuition
about the average number of features required by each
employed model for the estimation of MOS.

From Fig. 8(b) of the work presented in Ref. 42, we observe
that the PCC and SROCC values using the EPFL-PoliMi

Table 9 Regression coefficient values for fixed training and test sets.

NR LASSO RR LASSO

Factors

Coefficients

Factors

Coefficients

PoliMi EPFL PoliMi EPFL

Intercept 2.5828 2.2677 Intercept 2.5740 2.2553

B (%) 0.0266 0.0310 TMDR −0.0585 −0.0317

TMDR −0.8592 −0.8622 MinSSIM 0.3737 0.4707

Table 8 Performance of LASSO and ridge models using MOS col-
lected by EPFL for training and MOS collected by PoliMi for test,52 for
fixed training and test sets.

Method
Test

Sequence λ
#

Features PCC SROCC RMSE

NR ridge Paris 1e − 05 17 0.960 0.944 0.384

NR LASSO 0.2259 2 0.975 0.944 0.301

RR ridge 1e − 05 9 0.988 0.965 0.212

RR LASSO 0.6561 2 0.990 0.972 0.196

NR ridge Ice 1e − 05 17 0.969 0.986 0.306

NR LASSO 0.2259 2 0.970 0.965 0.303

RR ridge 1e − 05 9 0.974 0.979 0.279

RR LASSO 0.6561 2 0.979 0.979 0.253

NR ridge Parkjoy 1e − 05 17 0.941 0.951 0.358

NR LASSO 0.2259 2 0.973 0.965 0.246

RR ridge 1e − 05 9 0.925 0.979 0.400

RR LASSO 0.6561 2 0.986 0.979 0.175

NR ridge Average — 17 0.957 0.960 0.349

NR LASSO — 2 0.973 0.958 0.283

RR ridge — 9 0.962 0.974 0.297

RR LASSO — 2 0.985 0.977 0.208
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video database52 are between 0.85 and 0.95, for all proposed
Q-mentioned FR metrics (Qvector, Qcsiq, Qtid, Qlive). These
results were generated by using the singular values and vec-
tors so as to quantify the visual distortions. Despite the fact
that we propose RR and NR models, and thus, the task of
making estimations is more challenging as compared to a
FR model, from Table 10, we infer that our NR LASSO
model offers PCC values equal to or higher than 0.960 and
SROCC values equal to or higher than 0.970, and our RR
LASSO model offers 0.981 and 0.974 as the least values of
PCC and SROCC.

Moreover, the performance of the Fourier trans-
form-based RR model proposed in Ref. 43 for its variant
Qcombined that offers the best results is compared against

our proposed models in the same table (Table 10). In
Ref. 43, the basic idea is the comparison of the phase and
magnitude of the reference and distorted images so as to
compute the quality score. From the provided experimental
results, we confirm the superiority of the RR LASSO model
that we propose in all examined measures of performance.
Interestingly, the estimation error of our model is nearly
equal to half of the corresponding amount of Qcombined using
on average over all tested sequences the same number of fea-
tures (two) with the features used for the development of
Qcombined. In addition, Table 10 also depicts the results of
the RR ridge model when FFS is preceded. In this case,
we can see that ridge achieves marginally (negligibly) better
performance as compared to LASSO, but it requires six
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Fig. 7 Overall performance of (a) NR LASSO and (b) RR LASSO, using MOS collected by PoliMi for both
training and test, for fixed training and test sets.
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Fig. 8 Overall performance of (a) NR LASSO and (b) RR LASSO, using MOS collected by PoliMi for
training and MOS collected by EPFL for test, for fixed training and test sets.
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times more features as compared with the corresponding
LASSO case. It is to be noted that the experiments in
Refs. 42 and 43 were performed such that the proposed mod-
els were trained on a database different from what they used
for validation of these models. However, the following refer-
ences used the same database for training and validation.
Furthermore, another work that utilizes the EPFL-PoliMi
database52 and specifically, the CIF resolution sequences
to assess the performance of the proposed NR metric is
the one presented in Ref. 44. In that work, the MOS values
collected by PoliMi are used, while the best proposed model
is called “frame-type and error pattern dependent packet-loss
model,” as denoted by “FE-PLM” in Table 10, which uses
five features in total for making perceptual quality estima-
tions. It can be seen that our proposed NR LASSO model

is better in terms of all examined statistics compared to
those of Ref. 44. One of the underlying reasons behind
this difference in performance can be the fact that we use
a variety of features to capture various characteristics of a
video including the impact of packet losses. On the other
hand, the models in Ref. 44 are based on the assumption
that visual quality can always be exponentially related to the
PLR which, in practice, may not hold in varying bitrates and
different contents.64 Also in this case, the proposed NR
LASSO model not only gathers better performance statistics
as compared to the FE-PLM model but also it requires on
average less than half the number of the features required
by FE-PLM. Moreover, it is worth mentioning that the NR
ridge model combined with FFS also gathers better statistics
as compared to the FE-PLM model, but it requires many
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Fig. 9 Overall performance of (a) NR LASSO and (b) RR LASSO, using MOS collected by EPFL for
training and MOS collected by PoliMi for test, for fixed training and test sets.
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Fig. 10 Overall performance of (a) PEVQ and (b) VQM, as compared to MOS collected by PoliMi.
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more features for making estimations. By contrast, NR
LASSO outperforms NR ridge in terms of both performance
and number of features used for estimating video quality.

Similarly, the NR model presented in Ref. 45 was evalu-
ated using MOS values collected at PoliMi.52 In order to
design the model, the authors assumed that PLR and MOS
can be characterized by a two-region piecewise linear rela-
tionship. Based on this assumption, a number of variants of
the basic NR model was proposed, which differ mainly on
the type of data used for estimating losses introduced by the
network. The results that we considered from Ref. 45 are

based on the quality estimation using the SLRIP þ SLRB

model variant (based on slice loss rate of I/P slices and B
slices) that offers the best results. The conclusion derived
after looking at the results is that also in this case, the NR
LASSO model achieves better performance in terms of all
measures of performance. However, it is to be noted that
LASSO utilizes one feature more for making estimations as
compared to the model proposed in Ref. 45. On the other
hand, we should notice that in this study, we propose a one-
region linear model in contrast to Ref. 45, where a two-
region piecewise linear model is employed. Similarly, the

1 2 3 4

1

2

3

4

PEVQ

S
u

b
je

ct
iv

e 
M

O
S

 

Overall Pearson Correlation Coefficient: 0.955

Fit
45−degree
Paris
Ice
Parkjoy

(a)

1 2 3 4

1

2

3

4

VQM

S
u

b
je

ct
iv

e 
M

O
S

 

Overall Pearson Correlation Coefficient: 0.941

Fit
45−degree
Paris
Ice
Parkjoy

(b)

Fig. 11 Overall performance of (a) PEVQ and (b) VQM, as compared to MOS collected by EPFL.

Table 10 Comparison of the overall performance of the proposed models with ridge models and other related works for the k -fold case.

Based on MOS values by PoliMi Based on MOS values by EPFL

CIF resolution

Metric NR ridge NR LASSO FE-PLM44 RR ridge RR LASSO QCombined
43

PCC 0.963 0.970 0.95 0.983 0.981 0.944

SROCC 0.957 0.970 0.95 0.978 0.974 0.930

RMSE 0.345 0.311 0.43 0.244 0.259 0.446

Ave. Feat. Num 9 2 5 12 2 2

4CIF resolution

Metric NR ridge NR LASSO G.1070E46 SLRIP þ SLRB
45 NR ridge NR LASSO G.1070E46

PCC 0.973 0.976 0.93 0.963 0.962 0.960 0.926

SROCC 0.974 0.977 0.91 — 0.970 0.976 0.93

RMSE 0.268 0.256 0.373 0.337 0.314 0.325 0.533

Ave. Feat. Num 8 3 3 2 6 2 3

Journal of Electronic Imaging 053012-23 Sep∕Oct 2016 • Vol. 25(5)

Shahid et al.: Perceptual quality estimation of H.264/AVC videos using reduced-reference and no-reference models



NR ridge model is able to estimate video quality more accu-
rately, as compared to Ref. 45, while it requires significantly
more features for making estimations. Therefore, also in this
case, the NR LASSO model’s advantage is obvious.

An enhanced version of the ITU-T Recommendation
G.1070: Opinion model for video-telephony applications,47

called G.1070E, can be found in Ref. 46. The estimation
accuracy of the G.1070E model is validated using the
4CIF resolution sequences of the database presented in
Ref. 52, with the MOS data collected from the subjective
tests, conducted both at the EPFL and PoliMi institutions.
Specifically, in Ref. 46, the estimation models take into
account the video bit rate, frame rate, and PLR so as to mea-
sure video quality and they were trained on a large variety of
CIF resolution sequences, other than those included in the
EPFL-PoliMi’s database, which were compressed at various
bitrates and were impaired with different PLRs. Comparing
the performance of the proposed NR LASSO model with the
G.1070E46 model, we easily perceive a clear advantage of
LASSO and considerably better performance in terms of all
presented measures of performance; either the PoliMi or the
EPFL MOS values are used. Especially for the case when the
EPFL MOS is employed, our proposed model is able to pro-
duce better performance statistics, requiring on average
fewer features compared to G.1070E, at the same time.
Regarding the NR ridge model, it also surmounts in perfo-
mance the model proposed in Ref. 46 but it has the disad-
vantage of requiring a much larger number of features as
compared to Ref. 46. Therefore, the advantage of LASSO
is prominent also in this case, despite the fact that for
the case of EPFL, output ridge offers slightly better MOS
estimations.

Lastly, we studied the performance achieved by a genetic
programming-based NR regression model presented in
Ref. 48. In that work, the authors validated the performance
of their proposed model, exploiting eight different features
that are influential for modeling perceptual video quality,
by considering the video quality estimates and subjective
MOS values together, for both the CIF and 4CIF resolution
sequences of the EPFL-PoliMi’s database.52 Accordingly in
this case, our NR LASSO model offers PCC and SROCC
values equal to 0.973 and 0.975, respectively, as compared
to the corresponding values offered by Ref. 48, which are
equal to 0.881 and 0.883, respectively. Besides the better sta-
tistics achieved by our proposed model, it is important to
point out that NR LASSO uses less than half the number
of the features employed by the model of Ref. 48.

Despite the fact that our proposed models gather a number
of advantages and are able to surmount other related works,
in our future plans, we aim to extend their use on a broader
set of databases with different characteristics than the one
used in this work. In this context, we plan to examine the
generalization capabilities of our models in sequences
with other resolutions than CIF and 4CIF, for various
frame rates, as well as to investigate their performance
when a different GOP structure and length is utilized.
Interesting would also be the case of observing the models’
behavior when different packet sizes are taken into account.

6 Conclusions
In this study, we investigated a fairly large variety of video
features for estimating video quality. These features include

different attributes related to perceptual quality and encom-
pass the impacts of coding and network impairments on
H.264/AVC encoded sequences. The vast majority of these
features can be computed without any access to the original
video and hence, they are applicable to design an NR model
of quality estimation. The rest of the features can be precom-
puted and sent to the client’s end for providing RR informa-
tion of the original video. Based on these features, we
propose RR and NR linear models of quality estimation, by
employing the LASSO regression method. LASSO was
investigated for its capability to make MOS estimations as
well as feature selection at the same time. For comparison
purposes, we applied sequential FFS using Ridge as the
regression method, so as to get a baseline performance. The
simulation results reveal that LASSO is able to achieve
exceptionally high and marginally better performance statis-
tics as compared to ridge using FFS, utilizing just two fea-
tures, for both the RR and NR cases. Interestingly, both of
the features required by the NR LASSO model for estimating
MOS are extracted from the lossy bitstream, without the
need for decoding. This means that significantly less com-
putational complexity is involved in the feature extraction
process, rendering the model practical for real-time applica-
tions. In addition, the proposed LASSO models outperform a
number of existing FR, RR, and NR techniques used for
video quality estimation, in terms of both performance
statistics and required features. In the future, we aim to
test the generalization capabilities of our models in more
diverse databases with different encoding and transmission
characteristics.
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