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Abstract. A global robust M-estimation scheme for maximum a posteriori (MAP) image super-resolution which
efficiently addresses the presence of outliers in the low-resolution images is proposed. In iterative MAP image
super-resolution, the objective function to be minimized involves the highly resolved image, a parameter con-
trolling the step size of the iterative algorithm, and a parameter weighing the data fidelity term with respect to the
smoothness term. Apart from the robust estimation of the high-resolution image, the contribution of the proposed
method is twofold: (1) the robust computation of the regularization parameters controlling the relative strength of
the prior with respect to the data fidelity term and (2) the robust estimation of the optimal step size in the update of
the high-resolution image. Experimental results demonstrate that integrating these estimations into a robust
framework leads to significant improvement in the accuracy of the high-resolution image. © 2014 SPIE and
IS&T [DOI: 10.1117/1.JEI.23.4.043016]
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1 Introduction
Image super-resolution (SR) is a technique for enhancing the
quality and the resolution of an image. The objective is to
improve the spatial resolution by using information from
a set of several different low-resolution (LR) images to pro-
duce an image with more visible detail in the high spatial
frequency features. The LR images may experience different
degradations, such as motion, point spread function blurring,
subsampling, and additive noise. The reconstructed high-
resolution (HR) image can be successfully estimated if
subpixel shifts exist between the LR images. In this manner,
each frame of the LR sequence brings complementary infor-
mation to the original HR image.

Researchers studying the direct inverse solution recog-
nized the limitations of the problem which is ill-posed
due to interpolation, motion compensation, inverse filtering,
and additive noise.1–3 Even in the cases of perfect motion
registration and accurate knowledge of the point spread func-
tion of the acquisition system, a significant dependence of
the estimation of the HR image on degradation conditions
is observed. A large family of SR methods is based on a sto-
chastic formulation of the problem, which imposes a prior
distribution on the image to be reconstructed and provides
estimates in a maximum a posteriori (MAP) framework
where the posterior distribution of the HR image is maxi-
mized.1–9 In the same context, Bayesian approaches have
also been proposed in the literature.7,10–14

More recent approaches have shown great potential in
recognizing a human face by applying SR techniques. The
work of Bilgazyev et al.15 recognizes human faces by learn-
ing the high-frequency components of facial images and
applying them to the LR images in order to create an HR
image. Baker and Kanade16 use a prior on a spatial distribu-
tion of facial images in order to produce an HR image. A
Bayesian approach for image SR from a single image is pro-
posed by Tappen and Liu.17 This method is an alignment-

based approach that leverages facial LR images.
A novel approach that models super-resolved faces in
three-dimensional (3-D) space is presented by Berretti et al.18

3-D scans of LR images are aligned in order to produce an
HR 3-D face model called “superface.”

Violations of the assumptions of data fidelity to the
assumed model are also likely to occur because SR methods
are very sensitive to inaccuracies of their parameters.
However, little has been reported about suppressing the
outlier artifacts (i.e., salt and pepper noise, misregistration
errors, and occlusion). For instance, median filters have
been efficiently used to treat the SR problem19 where robust-
ness is introduced by applying a median filter in each term of
a backprojected difference image.

In the same context, a robust color image SR algorithm
has previously shown great potential for estimating HR
images with crisp details.20–22 A comparative study of
M-estimators for image SR was presented by El-Yamany
and Papamichalis.20 The main concern of this study is to pro-
vide a comparison of the trade-off between the estimator
robustness and the edge preservation of the highly resolved
image. In a preliminary work, a robust image SR estimation
was introduced. The use of an L1 error norm in the objective
function provides a good framework for removing the out-
liers from the LR images. The work of El-Yamany and
Papamichalis22 introduced a robust error norm in the objec-
tive function. The iterative reconstruction process is repeated
for every LR image, suppressing the outliers without the
use of a regularization term in the objective function. An
independent effort for reducing the aliasing artifacts in a
multiframe SR framework using deblurring algorithms is
proposed by Robinson et al.23

Much research has focused on stochastic techniques in an
MAP framework.24,25 Patanavijit et al.25 used a Huber error
norm for measuring the difference between the estimation of
an HR image and each LR image. A factor that affects the
SR quality is also the Tikhonov regularization term, which is
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used to remove artifacts from the final solutions. Based on a
stochastic Bayesian approach, the work of Patanavijit et al.24

performs image SR by minimizing a cost function. The
Lorentzian error norm is utilized in order to measure the dif-
ference between the estimated HR image (projected onto
the LR grid) and each LR image. The authors combine
the Tikhonov and the Lorentzian error norms and use the
combiination as a regularizer to remove artifacts from the
final solution and improve the convergence rate.

The work of Tanaka et al.26 addresses the problem of esti-
mating an HR image in a robust framework. The authors
provide an accurate algorithm for extracting single-motion
regions and their registration parameters, where the whole
algorithm is executed in three steps. In the first step, the algo-
rithm estimates the motion parameters between the LR
images and the reference (current HR estimation) image.
Then, the region associated with the registration parameters
is extracted, and finally, the algorithm defines the registration
parameters inside the motion region.

Robust image SR algorithms are usually sensitive to their
assumed model of data and noise. The work of Farsiu et al.27

introduces an L1 norm minimization approach for robust
image SR using a bilateral prior as a regularizer in order
to deal with different data and noise models. This approach
preserves the edges of the highly resolved image, however,
it is fast but is prone to motion errors, blur, and outliers.

The main contribution of this work is the employment of a
fully robust image SR technique combined with an MAP
framework. The objective function to be minimized employs
a regularization term, which controls the smoothness of the
reconstructed highly resolved image. The regularization
parameters and the optimal step size of the update equation
are computed using robust M-estimators in contrast to pre-
vious works,22,24 which employ robust M-estimators only in
the estimation of the HR image. Both the regularization
parameters and the optimal step size are computed in
a closed form from the input data, thus providing more
robustness to the estimation of the highly resolved image
by retaining crisp details and fully removing the outliers.
The proposed method can efficiently reconstruct an HR
image from several LR images, which suffer from salt and
pepper noise, speckle noise, large misregistration errors, and
occlusion. A four-page summary of this work was presented
by Vrigkas et al.28 Experiments show that the reconstructed
HR image is of higher quality than that in the standard MAP-
based methods22,24 employing robust estimation only for
the estimation of the HR image.

2 Image Formation Model
The image degradation process3 is modeled by motion (rota-
tion and translation), a linear blur, and subsampling by pixel
averaging along with additive Gaussian noise. We assume
that p LR images, each of size M ¼ N1 × N2, are obtained
from the acquisition process. The following observation
model is assumed, where all images are ordered lexico-
graphically

y ¼ Wzþ n: (1)

The set of LR frames is described as
y ¼ ½yT1 ; yT2 ; : : : ; yTp�T , where yk, for k ¼ 1; : : : p, are the
p LR images. The desired HR image z is of size

N ¼ l1N1 × l2N2, where l1 and l2 represent the upsampling
factors in the horizontal and vertical directions, respectively.
The term n represents zero-mean additive Gaussian noise.
In Eq. (1), the degradation matrixW ¼ ½WT

1 ;W
T
2 ; : : : ;W

T
p�T

performs the operations of motion, blur, and subsampling.
Thus, matrix Wk, for the k’th frame, may be written as

Wk ¼ DBkMðskÞ; (2)

where D is the N1N2 × N subsampling matrix, Bk is the N ×
N blurring matrix, and MðskÞ is the N × N rigid transforma-
tion matrix with parameters (rotation angle and translation
vector) denoted by sk for the k’th frame. Finally, n is additive
Gaussian noise.

A regularized approach using the image prior information
of the HR image (Gaussian assumption) can be used to make
the inverse problem well-posed. Considering that each LR
image may result from a different degradation process,
which implies that a different weighting should be given
to it in the desired solution, the following channel-weighted
cost function is proposed:2

Lðz; sÞ ¼
Xp
k¼1

kyk −WkðskÞzk2 þ αkðzÞkQzk2; (3)

where Q is a matrix applying a high-pass filter (in our
case the Laplacian) and penalizes discontinuities in the
final solution. The regularization parameters αkðzÞ control
the relative contribution between the error term for the
k’th LR image (residual norm jjyk −WkðskÞzjj2) and the
smoothness norm jjQzjj2. In Eq. (3), it is implied that the
registration sk parameters are collected in s in this type of
formulation.

3 Robust Image Super-Resolution
In our previous work,2 it has been shown that the regulari-
zation parameters αkðzÞmay be obtained in closed form from
the images.

αkðzÞ ¼
jjyk −Wkzjj2

2jjykjj2 − jjQzjj2 ; (4)

where we have omitted the dependence of matrix Wk on the
registration parameters sk to simplify the notation.

Estimation of the registration parameters s and the HR
image z may be obtained by an alternating optimization
scheme.1–3 In a first step, the registration parameters may
be computed by a variety of methods involving block match-
ing schemes1–3 or algorithms combining feature extraction
and mutual information.8 Having fixed the registration
parameters, we may use a gradient descent method with a
properly calculated step size to minimize Eq. (3) with respect
to the HR image.

ẑnþ1 ¼ ẑn − εngðẑÞn;

ẑnþ1 ¼ ẑn −
Xp
k¼1

εnkW
T
k ðWkẑn − ykÞ þ αkðzÞ

��Qz
��2: (5)

The parameter εn is the step size at the n’th iteration,
which may be obtained in closed form directly from the
image data1 by
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εnk ¼
PpM

m¼1 ½Wg�m½ðWkz − ykÞ�m þ Pp
k¼1 αkðzÞ

P
N
i¼1 ½QgðzÞ�i½Qz�iPpM

m¼1 ½Wg�2m½ðWkz − ykÞ�2m þ Pp
k¼1 αkðzÞ

PN
i¼1 ½QgðzÞ�i

; (6)

where the operator ½·�i takes the i’th element of the vec-
torized matrix inside the brackets.

SR reconstruction is an ill-posed inverse problem due to
the existence of the additive noise. In order to stabilize the
inversion process in cases of non-Gaussian noise, we intro-
duce an SR algorithm that uses robust error norm in the data
fidelity term of the objective function. This approach is based
on the class of robust M-estimators. The objective function
uses a regularization term that can help the SR algorithm to
remove any artifacts from the final solution. We are inter-
ested in estimators whose influence function is differentiable
and bounded, such as the Lorentzian estimator, defined as

ρðx; σÞ ¼ log

�
1þ 1

2

�
x
σ

�
2
�

ψðx; σÞ ¼ 2x
2σ2 þ x2

; (7)

where σ is the scale factor and ψ is the influence function,
defined as the first derivative of the robust estimator ρ.

The scale factor controls a threshold beyond which all
points are considered to be outliers. Violations in the math-
ematical model in Eq. (1) and, consequently, in the data term
in Eq. (3) may yield large errors, which can severely influ-
ence the reconstruction process. The choice of the scale fac-
tor σ plays a crucial role in controlling the outliers. Errors
falling beyond that threshold are assigned smaller weights
and the corresponding outlying measures are suppressed.
For small values of the scale factor, the influence function
decreases faster, assigning smaller weights to errors that out-
strip the value of this parameter. If the value of σ is relatively
small, the contribution of the LR frames will be canceled,
leading to a bad estimation of the HR image due to the insuf-
ficient information provided by the LR frames. On the other
hand, if the value of the scale factor is chosen to be arbitrarily
large, outliers will significantly contribute to the estimation
of the HR image. El-Yamany and Papamichalis22 have pre-
sented a method for calculating the outlier threshold which is
based on the similarity between a reference LR frame and the
k’th motion-compensated LR frame.

Formulating the observation model of Eq. (1) in an M-
estimation framework, the solution for the HR image is
obtained by the following minimization problem:

z� ¼ arg min
z

(XM
i¼1

½ρðWkz− yk;σkÞ�i þ αkðzÞkQzk2
)
: (8)

Note that in Eq. (8) different outlier thresholds are
assigned to different LR frames.

Following the calculation of the regularization term in
Eq. (4), the robust regularization parameter determining
the trade-off between the fidelity of the observed data and
the image prior now becomes

αkðzÞ ¼
P

M
i¼1 ½ρðyk −Wkz; σkÞ�2i
2kykk2 − kQzk2 : (9)

To obtain a robust solution of Eq. (8), the gradient descent
scheme of Eq. (6) is transformed to its robust counterpart.

ẑnþ1 ¼ ẑn −
Xp
k¼1

εnkW
T
kψðWkẑn − yk; σkÞ þ αkðzÞkQzk2;

(10)

where the influence function ψ of the robust estimation is
now involved.

It must be noted that the choice of the step-size parameter
εnk plays an important role in the behavior of the gradient
descent method. This parameter must be small enough to
prevent divergence and large enough to provide fast conver-
gence. A constant step size could be the easiest solution, but
this is an inappropriate approach for most of the robust image
SR problems. After some manipulation, following the spirit
of the approach,1 a robust closed form solution of the optimal
step size may be obtained.

εnk ¼
PpM

m¼1 ½Wg�m½ψðWkz − yk; σkÞ�m þ Pp
k¼1 αkðzÞ

P
N
i¼1 ½QgðzÞ�i½Qz�iPpM

m¼1 ½Wg�2m½ρðWkz − yk; σkÞ�2m þ Pp
k¼1 αkðzÞ

P
N
i¼1 ½QgðzÞ�i

: (11)

Note that both the robust estimator ρ and its influence
function ψ appear in Eq. (11).

This optimal step size [Eq. (11)] is calculated for every
single LR image. Having an adaptive step size provides
a better convergence and also keeps the algorithm from
trapping into erroneous solutions.

In robust image SR reconstruction, it is necessary to
define a process for automatically computing the value of
the outlier threshold parameter. In statistics, the median
absolute deviation (MAD) criterion29 is considered to be
one of the most accurate robust measures of the variability
of a univariate sample of quantitative data. For the k’th LR
image,

MADn
k ¼ median

i
fjrnk;ið½Wkz

n−1; yk�iÞ
−median

j
ðrnm;jð½Wmz

n−1; ymÞ�jÞjg; (12)

where n ¼ 0;1; 2; : : : refers to the n’th iteration of the algo-
rithm and

rnk;iðWkzn−1; ykÞ ¼ ½Wkzn−1 − yk�i (13)

is the residual error of the i’th datum between the estimation
of the degraded HR image and the k’th LR frame. MAD is a
measure of statistical dispersion. It is a robust statistic, being

Journal of Electronic Imaging 043016-3 Jul∕Aug 2014 • Vol. 23(4)

Vrigkas, Nikou, and Kondi: Robust maximum a posteriori image super-resolution



more resilient to outliers in a data set. In order to use MAD
criterion as a consistent estimator for the estimation of
the scale factor, we consider σnk ¼ K · MADn

k, where K is
a constant that depends on the distribution. For normally dis-
tributed data with standard deviation 1, K ¼ 1∕Φ−1ð3∕4Þ≈
1.4826, where Φ−1 is the inverse of the cumulative distribu-
tion function for the standard normal distribution.29 In that
case, for the k’th LR frame, the scale factor σk is computed
as follows:

σnk ¼ 1.4826 · MADn
k; k ¼ 1;2; · · · ; p: (14)

The scale factor σnk is obtained in an automatic way
according to Eq. (14) from all the LR frames. In general,
the estimation of σnk depends on the similarity between
the k’th LR frame and the degraded estimation of the HR
image at the n’th iteration. Thus, the scale factor is computed
as the median of the residuals. The overall algorithm is sum-
marized in Algorithm 1.

Following a similar approach, El-Yamany and
Papamichalis22 introduced the Lorentzian estimator [Eq. (7)]
to minimize the objective function and estimate the HR image.
They developed a heuristic way of computing the scale factor
as a function of the ground truth image and the estimated
highly resolved image. Moreover, their step size was defined
to be half of the scale factor value. The Tikhonov regulari-
zation has also been used in order to obtain a fine solution for
the three channels of color.

The Lorentzian M-estimator is a very popular estimator
among image reconstruction techniques. The work of
Patanavijit et al.24 combines the Lorentzian estimator with
a Laplacian regularization function in order to find a solution
to the problem of SR. In their work, the choice of the scale
factor, the step size, and the regularization parameter is
heuristic.

4 Experimental Results
In order to evaluate the proposed methodology, four different
sets of experiments were conducted on synthetic data sets.
Sequences of LR images were created by blurring, down-
sampling, and degrading by noise an original image. At first,
the images were downsampled by a factor of 2 (4 pixels to 1).
Then, a point spread function of a 5 × 5Gaussian kernel with
standard deviation of 1 was applied and the resulting images
were degraded by white Gaussian noise in order to obtain
a signal-to-noise ratio of 30 dB.

To highlight the importance of the proposed fully robust
ST scheme we compared it with approaches that employ a
robust estimator only in the HR image update and integrate
a heuristic scheme for the step size.22,24 We also compared
several robust estimators in that framework: the truncated least
squares (TLS), the Geman-McClure, and the Lorentzian
error norms.

In all experiments, in order to have a first estimate of the
HR image, an LR image was chosen at random and it was
upscaled by bicubic interpolation. Convergence of the SR
algorithm was achieved when kẑnþ1 − ẑnk∕kẑnk < 10−5 or
until 20 iterations were reached. The convergence of the iter-
ative algorithm is guaranteed by the contraction mapping
theorem.30 According to this theorem, the iterative model

Algorithm 1 Robust super-resolution image reconstruction
algorithm.

Input: Low-resolution images yk ; k ¼ 1;2; · · · ; p.

Output: High-resolution image estimate ẑn .

• First estimate of the HR image ẑ0 using Eq. (10).

• Initial estimate of scale factor σ0k with the median of the residual
errors for k ¼ 1;2; · · · ; p.

• Register the upscaled yk to ẑ0; k ¼ 1;2; · · · ; p;8n :¼ 1;

• do

- do

* Random selection of an LR image yk .

* if yk is visited

• Compute the robust regularization parameter αk ðẑnÞ
using Eq. (9).

• Estimate the optimal step size εnk according to Eq. (11).

• Compute scale factor σnk given in Eq. (14).

• Update ẑn using Eq. (10).

* end

* Declare yk visited.

- until all yk are visited.

- n :¼ n þ 1;

- Declare all yk , k ¼ 1; : : : p unvisited.

• until or a predefined number of iterations is reached.

Fig. 1 Representative frames of low-resolution images for (a) Susie, (b) Claire, (c) Helmet, and (d) Clock
sequences.
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Fig. 2 Reconstructed high-resolution images for 20 frames of the Susie sequence, with salt and pepper
noise at 5%. (a) Robust parameters εk and αk ðzÞ and (b) no robust parameters.

Fig. 3 Reconstructed high-resolution images for 20 frames of the Susie sequence, with salt and pepper
noise at 10%. (a) Robust parameters εk and αk ðzÞ and (b) no robust parameters.

Table 1 Performance evaluation of the compared robust image super-resolution methods with respect to the peak signal-to-noise ratio (PSNR) (in
decibels) for the reconstructed image Susie, with salt and pepper noise at 5 and 10%.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Salt and pepper at 5%

Lorentzian 22.1 0.4 22.2 25.2 0.2 25.3 26.6 0.5 26.8 27.2 0.5 26.9

TLS 11.1 0.4 10.9 13.9 0.1 13.8 22.3 0.6 22.4 26.7 0.3 26.8

Geman 21.4 0.8 22.1 22.0 0.1 22.0 25.6 0.7 25.4 26.6 0.1 26.5

Salt and pepper at 10%

Lorentzian 22.1 0.8 21.9 25.1 0.2 25.0 26.0 0.7 26.3 26.9 0.4 26.9

TLS 11.3 0.4 11.0 14.0 0.0 14.0 20.6 0.5 20.7 25.9 0.5 26.0

Geman 22.2 0.6 22.0 22.1 0.1 22.1 25.7 0.3 25.8 25.4 0.4 25.3

Note: TLS, truncated least squares.
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[Eq. (5)] converges to a unique solution ẑ. Therefore, our
algorithm always converges.

A quantitative evaluation of the obtained HR images is
given by the peak SNR (PSNR) defined by

PSNR ¼ 10log10
2552

kz − ẑk ; (15)

where ẑ is the estimated HR image and z is the ground truth.
The structural similarity measure index (SSIM)31 is a met-

ric that represents a visual distortion between a reference
image and the observe LR image. SSIM is regarded as a
function between two images z and ẑ and it is expressed as

SSIMðz; ẑÞ ¼ ð2μzμẑ þ C1Þð2σzẑ þ C2Þ
ðμ2z þ μ2ẑ þ C1Þðσ2z þ σ2ẑ þ C2Þ

; (16)

where μz and μẑ denote the mean intensity of the ground truth
and the estimated HR image, respectively. σz and σẑ are the
standard deviations of the two images and C1 and C2 are
constants added to avoid instability.

Finally, we have further used the visual information
fidelity measure (VIF)32 in order to assess the quality of the
estimated HR image. It is a measure of statistical modeling
that could ideally be extracted by the eye–brain system from
nonoverlapping blocks in a wavelet subband in the HR and
the reference images.

Table 2 Performance evaluation of the compared robust image super-resolution methods with respect to the structural similarity (SSIM) statistics
for the reconstructed image Susie, with salt and pepper noise at 5 and 10%.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Salt and pepper at 5%

Lorentzian 0.7 0.0 0.7 0.7 0.0 0.7 0.6 0.0 0.6 0.9 0.0 0.9

TLS 0.2 0.0 0.2 0.4 0.0 0.4 0.7 0.0 0.7 0.9 0.0 0.9

Geman 0.6 0.1 0.6 0.7 0.0 0.7 0.7 0.0 0.7 0.9 0.0 0.9

Salt and pepper at 10%

Lorentzian 0.7 0.0 0.7 0.8 0.0 0.8 0.6 0.0 0.6 0.9 0.0 0.9

TLS 0.3 0.0 0.3 0.4 0.0 0.4 0.7 0.1 0.8 0.9 0.0 0.9

Geman 0.7 0.0 0.7 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

Table 3 Performance evaluation of the compared robust image super-resolution methods with respect to the visual information fidelity (VIF)
statistics for the reconstructed image Susie, with salt and pepper noise at 5 and 10%.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Salt and pepper at 5%

Lorentzian 0.6 0.0 0.6 0.8 0.0 0.8 0.5 0.0 0.5 0.9 0.0 0.9

TLS 0.1 0.0 0.1 0.1 0.0 0.1 0.8 0.1 0.8 0.9 0.0 0.9

Geman 0.1 0.0 0.5 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

Salt and pepper at 10%

Lorentzian 0.6 0.0 0.5 0.8 0.0 0.8 0.5 0.0 0.5 0.9 0.0 0.9

TLS 0.1 0.0 0.1 0.1 0.0 0.1 0.7 0.1 0.7 0.9 0.0 0.9

Geman 0.5 0.0 0.5 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9
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In the first set of experiments, 20 frames of the Susie
sequence [Fig. 1(a)] were used and 50% of them were
degraded by salt and pepper noise. Two cases were exam-
ined: corruption of 5 and 10% of the pixels in the respective
frame. Figures 2(a) and 3(a) depict the reconstructed HR
images of the fully robust image SR algorithm for this
experiment using three different types of M-estimators
(e.g., Lorentzian, Geman-McClure, and TLS) with 5 and
10% salt and pepper noise, respectively. In Figs. 2(b) and
3(b), the reconstructed HR images with a robust estimator
employed only in the estimation of the HR image and not
for the parameters εnk and αkðzÞ are shown.

Table 1 presents the statistics of PSNR for the proposed
algorithm for 10 realizations of the experiment in each case.
In this table, the term “partially robust” refers to the employ-
ment of a robust estimator only for the computation of the
HR image using Eq. (10) but not for the parameters αkðzÞ and

εnk , which were computed by Eqs. (4) and (6), respectively.
The term “fully robust” indicates that a robust estimator
was also employed for the computation of αkðzÞ and εnk ,
which were computed using Eqs. (9) and (11), respectively.
PSNR values in bold indicate the best reconstructed HR
image with respect to the robust estimator. In terms of
PSNR, the proposed method achieves better reconstruction
results with respect to the partially robust technique and the
methods of El-Yamany and Papamichalis22 and Patanavijit
et al.24 for all three robust M-estimators.

Table 2 shows the statistics using the SSIM index. Notice
that the best performance is accomplished for the fully robust
method. In Table 3, VIF statistics for the Susie sequence are
shown. As can be seen, our method achieves better results for
the TLS and the Geman-McClure estimator for 5% salt and
pepper noise, while it is better than the other methods for
10% salt and pepper noise when the Lorentzian estimator

Fig. 4 Reconstructed high-resolution images for 20 frames of the Claire sequence, with speckle noise at
1%. (a) Robust parameters εk and αk ðzÞ and (b) no robust parameters.

Fig. 5 Reconstructed high-resolution images for 20 frames of the Claire sequence, with speckle noise at
2%. (a) Robust parameters εk and αk ðzÞ and (b) no robust parameters.
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is employed. The values in bold indicate the best
reconstruction result with respect to the robust estimator.
Notice that the TLS estimator underperforms when used
with the methods of El-Yamany and Papamichalis22 and
Patanavijit et al.24

In the second set of experiments, 20 frames of the Claire
sequence [Fig. 1(b)] were used, of which 50% were degraded
by speckle noise. Speckle noise is a granular noise that
downgrades the quality of an image. Let xk be the image
to which we want to add speckle noise. Then

yk ¼ xk þ n × xk; (17)

where n is uniformly distributed random noise with zero
mean and standard deviation σ2 and yk is the degraded

LR image. Experiments have been conducted for 1 and
2% configurations of speckle noise in randomly selected
LR image frames. In Figs. 4(a) and 5(a), the reconstructed
HR images for the Claire sequence are shown, with speckle
noise at 1 and 2%, using the proposed method. The recon-
structed HR images for the same sequence and the same
amount of noise using the partially robust technique are
shown in Figs. 4(b) and 5(b). As can be observed, the fully
robust method is able to fully wipe away speckle noise and
reconstruct a clean image, while the partially robust method
suffers from noise artifacts.

In Table 4, PSNR values for the reconstructed Claire
sequence with speckle noise at 1 and 2% are shown. The
robust variant is the most accurate SR method for all three
M-estimators. Tables 5 and 6 present the SSIM and VIF

Table 4 Performance evaluation of the compared robust image super-resolution methods with respect to PSNR (in decibels) for the reconstructed
image Claire, with speckle noise at 1 and 2%.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Speckle at 1%

Lorentzian 22.3 0.5 22.3 27.8 0.1 27.8 23.3 0.4 23.3 29.9 0.1 30.5

TLS 10.4 0.3 10.3 11.5 0.1 11.5 16.9 0.6 16.8 28.2 0.6 28.3

Geman 21.6 0.8 21.3 23.2 0.16 23.2 29.0 0.4 29.0 29.8 0.5 30.0

Speckle at 2%

Lorentzian 22.6 0.7 22.7 27.9 0.1 27.9 22.2 0.8 22.6 31.2 0.8 31.5

TLS 10.5 0.1 10.5 11.5 0.1 11.5 14.3 0.5 14.0 29.5 0.5 29.4

Geman 21.6 0.5 21.5 23.2 0.1 23.1 28.8 0.6 29.4 31.1 0.2 31.1

Table 5 Performance evaluation of the compared robust image super-resolution methods with respect to the SSIM statistics for the reconstructed
image Claire, with speckle noise at 1 and 2%.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Speckle at 1%

Lorentzian 0.8 0.0 0.8 0.8 0.0 0.8 0.6 0.2 0.6 0.9 0.1 0.9

TLS 0.4 0.1 0.4 0.5 0.0 0.5 0.6 0.1 0.7 0.9 0.1 0.9

Geman 0.8 0.0 0.8 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

Speckle at 2%

Lorentzian 0.8 0.0 0.8 0.8 0.0 0.8 0.5 0.2 0.5 0.9 0.0 0.9

TLS 0.3 0.1 0.4 0.5 0.0 0.5 0.7 0.1 0.7 0.7 0.0 0.9

Geman 0.8 0.1 0.7 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9
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Table 6 Performance evaluation of the compared robust image super-resolution methods with respect to the VIF statistics for the reconstructed
image Claire, with speckle noise at 1 and 2%.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Speckle at 1%

Lorentzian 0.3 0.0 0.3 0.7 0.0 0.7 0.4 0.1 0.4 0.8 0.2 0.8

TLS 0.1 0.0 0.1 0.1 0.0 0.1 0.3 0.1 0.3 0.7 0.1 0.7

Geman 0.3 0.2 0.2 0.6 0.0 0.6 0.6 0.0 0.6 0.7 0.1 0.8

Speckle at 2%

Lorentzian 0.4 0.0 0.4 0.7 0.0 0.7 0.3 0.1 0.3 0.8 0.1 0.8

TLS 0.1 0.0 0.1 0.1 0.0 0.1 0.4 0.2 0.4 0.7 0.0 0.7

Geman 0.3 0.0 0.3 0.7 0.0 0.7 0.7 0.0 0.7 0.8 0.0 0.8

Fig. 6 Reconstructed high-resolution images for 20 frames of the Helmet sequence. (a) Robust param-
eters εk and αk ðzÞ and (b) no robust parameters.

Table 7 Performance evaluation of the compared robust image super-resolution methods with respect to PSNR (in decibels) for the reconstructed
image Helmet.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Lorentzian 20.4 0.5 20.4 23.1 0.0 23.1 18.4 0.4 18.9 23.8 0.4 23.0

TLS 7.5 0.4 7.3 14.4 0.1 14.4 19.9 0.6 20.0 23.0 0.0 23.0

Geman 20.4 0.9 20.5 22.7 0.1 22.7 22.5 0.3 22.5 23.0 0.0 23.0
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statistics for the same sequence. As can be seen, the TLS
estimator does not perform very well when associated
with the El-Yamany and Papamichalis22 and Patanavijit
et al.24 methods.

The third set of experiments contains a sequence of 10 LR
frames depicting a football helmet [Fig. 1(c)]. In order to

simulate motion errors, a global translational model is
assumed. Thirty percent of randomly selected LR images
were transformed by the translation of 15 pixels along the
horizontal and vertical directions, while a rotation of 20 deg
was also applied. The misalignment is large and the standard
SR reconstruction methods cannot account for it without

Table 8 Performance evaluation of the compared robust image super-resolution methods with respect to SSIM statistics for the reconstructed
image Helmet.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Lorentzian 0.7 0.0 0.7 0.8 0.0 0.8 0.7 0.1 0.6 0.9 0.0 0.9

TLS 0.1 0.0 0.1 0.5 0.0 0.5 0.7 0.1 0.7 0.8 0.0 0.8

Geman 0.7 0.0 0.7 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

Table 9 Performance evaluation of the compared robust image super-resolution methods with respect to VIF statistics for the reconstructed image
Helmet.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Lorentzian 0.7 0.0 0.7 0.7 0.0 0.7 0.5 0.1 0.5 0.8 0.1 0.8

TLS 0.2 0.0 0.2 0.4 0.0 0.4 0.6 0.1 0.6 0.7 0.0 0.7

Geman 0.7 0.1 0.7 0.7 0.0 0.7 0.7 0.0 0.7 0.8 0.0 0.8

Fig. 7 Reconstructed high-resolution images for 20 frames of the Clock sequence. (a) Robust param-
eters εk and αk ðzÞ and (b) no robust parameters.
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a robust estimator. The reconstructed HR images for the pro-
posed method are depicted in Fig. 6(a) and those for the par-
tially robust method are shown in Fig. 6(b). As can be seen,
the proposed method can successfully suppress the effect of
outliers, resulting in an image free of noise artifacts. On the
other hand, the partially robust technique is of sightly lower
quality.

Tables 7, 8, and 9 present the PSNR, SSIM index, and
VIF numerical results, respectively, for this experiment
comparing the proposed fully robust method against the
partially robust version and the methods of El-Yamany and
Papamichalis22 and Patanavijit et al.24 The values in bold
indicate the best performance for the corresponding robust
estimator. Notice that the proposed method performs better
than the other methods in all experiments and the worst per-
formance is achieved by the TLS estimator for all methods.

Finally, the fourth set of experiments consists of a
sequence of seven LR frames [Fig. 1(d)]. In two out of
seven consecutive frames, an object representing occlusion
appears. Occlusion was intentionally added in order to
simulate accidental changes in the scene and it is treated

as an outlier by the method. The reconstructed HR images
for the proposed method using the three M-estimators are
illustrated in Fig. 7(a). Figure 7(b) depicts the reconstructed
HR images when the partially robust approach is employed.
As can be seen, there is a visible noise distortion in the recon-
structed images, which is caused by the nonrobust compu-
tation of the parameters εk and αkðzÞ.

PSNR, SSIM index, and VIF statistic results are presented
in Tables 10, 11, and 12, respectively. The values in bold
represent the best performance for the corresponding robust
estimator. Our method performs better in all experiments
and is able to fully reconstruct an HR image, suppressing
the outliers in the cases where partial occlusion is apparent
in the LR images. For the method of El-Yamany and
Papamichalis,22 the least good estimator seems to be
Geman-McClure, whereas for the method of Patanavijit
et al.,24 the least good estimator seems to be TLS. Let us
recall that in all experiments involving the proposed method,
the parameters εk and αkðzÞ were robustly estimated and
the outlier threshold was computed using the MAD criterion
[Eq. (14)], thus suppressing many outliers which have

Table 10 Performance evaluation of the compared robust image super-resolution methods with respect to PSNR (in decibels) for the recon-
structed image Clock.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Lorentzian 25.1 0.1 25.1 25.1 0.0 25.1 22.0 0.18 22.2 25.8 0.1 25.8

TLS 24.1 0.1 24.07 10.1 0.1 10.1 16.8 0.4 16.1 24.8 0.2 24.8

Geman 9.8 0.2 9.7 24.7 0.2 24.6 25.1 0.3 25.2 25.2 0.1 25.2

Table 11 Performance evaluation of the compared robust image super-resolution methods with respect to SSIM statistics for the reconstructed
image Clock.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Lorentzian 0.8 0.0 0.8 0.8 0.0 0.8 0.7 0.0 0.7 0.9 0.0 0.9

TLS 0.8 0.0 0.8 0.7 0.0 0.7 0.7 0.2 0.7 0.9 0.0 0.9

Geman 0.5 0.0 0.5 0.8 0.0 0.8 0.8 0.0 0.8 0.9 0.0 0.9

Table 12 Performance evaluation of the compared robust image super-resolution methods with respect to VIF statistics for the reconstructed
image Clock.

M-estimator

Method in Ref. 22 Method in Ref. 24 Partially robust Fully robust

Mean Std Med Mean Std Med Mean Std Med Mean Std Med

Lorentzian 0.7 0.0 0.7 0.7 0.0 0.7 0.7 0.0 0.7 0.9 0.0 0.9

TLS 0.7 0.0 0.7 0.3 0.0 0.3 0.5 0.2 0.5 0.8 0.0 0.8

Geman 0.2 0.0 0.2 0.7 0.0 0.7 0.7 0.0 0.7 0.8 0.0 0.8
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occurred due to noise artifacts, misregistration errors, or
occlusion.

5 Conclusions
In this paper, we presented a fully robust image SR algorithm
where the estimation of the HR image was integrated in
two steps. First, the regularization parameters were robustly
estimated in an automatic manner, and then, the optimal
step size of the update of the HR image was computed for
every single LR frame. The outlier threshold was automati-
cally estimated in a robust framework as the residual error
between the estimation of the degraded HR image and the
upscaled k’th LR frame. We demonstrated that under differ-
ent assumptions and different M-estimators we can derive a
powerful SR algorithm that suppresses the effect of outliers.
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