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Abstract

Performance guarantees for recovery algorithms employed in sparse representations, and compressed sensing
highlights the importance of incoherence. Optimal bounds of incoherence are attained by equiangular unit norm
tight frames (ETFs). Although ETFs are important in many applications, they do not exist for all dimensions, while their
construction has been proven extremely difficult. In this paper, we construct frames that are close to ETFs. According to
results from frame and graph theory, the existence of an ETF depends on the existence of its signature matrix, that is, a
symmetric matrix with certain structure and spectrum consisting of two distinct eigenvalues. We view the construction
of a signature matrix as an inverse eigenvalue problem and propose amethod that produces frames of any dimensions
that are close to ETFs. Due to the achieved equiangularity property, the so obtained frames can be employed as
spreading sequences in synchronous code-division multiple access (s-CDMA) systems, besides compressed sensing.
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1 Introduction
Recent theoretical and practical results in mathematics,
computer science, and engineering highlight that frame
theory is fundamental in many research areas, and frames
are useful in numerous applications requiring redundancy
[1]. Among all frames, equiangular unit norm tight frames
(ETFs) have a special structure that makes them particu-
larly important in many fields like signal processing [2, 3],
quantum information theory [4, 5], and communications
[6–9].
From a geometrical perspective, an ETF is a set of unit

norm vectors in a Hilbert space forming equal angles,
therefore, having identical correlation, which is also the
smallest possible [6]. Besides small column correlation,
ETFs exhibit row orthogonality, a property known as
tightness. These properties are important when consider-
ing overcomplete spanning systems, as they lead to frames
that are close to orthonormal bases. However, ETFs either
do not exist for arbitrary frame dimensions or their con-
struction is difficult [6, 10], thus, in many problems,
closely related frames are used as substitutes.
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According to well-known results from frame and graph
theory [6, 7], an equiangular frame can be defined up
to unitary equivalence by its so called signature matrix.
Considering real equiangular frames, the corresponding
signature matrix is a symmetric matrix with zero diagonal
and ± 1’s off-diagonal entries, and it can be thought of as
the Seidel matrix of a graph. It is known that the signature
matrix corresponding to a real ETF has exactly two dis-
tinct eigenvalues [7]. Therefore, the problem of designing
an ETF can be reduced to an inverse eigenvalue problem,
that is, the construction of a matrix with specific structure
and spectrum consisting of two distinct eigenvalues.
Many signature matrices that correspond to ETFs are

known and constructions of ETFs based on signature
matrices have been proposed in [6]. These techniques
impose certain restrictions on frame dimensions. In
this paper, we consider frames of arbitrary dimensions
and construct a symmetric matrix with spectrum that
approximates the spectrum of the corresponding signa-
ture matrix. The obtained matrix is then used for the
construction of frames that are close to ETFs. The pro-
duced frames are almost tight, with frame vectors forming
angles that approximate the optimal value.
Small column correlation as well as tightness are impor-

tant when designing sensing matrices for compressed

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-017-0501-0&domain=pdf
mailto: lkon@cs.uoi.gr
http://creativecommons.org/licenses/by/4.0/


Tsiligianni et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:66 Page 2 of 14

sensing (CS) [11, 12]. CS is a new acquisition tech-
nique for sparse signals that can reduce the sampling rate
drastically, as long as the matrix implementing the sens-
ing mechanism satisfies the aforementioned properties.
These properties play an important role in the perfor-
mance of the numerical algorithms deployed to recover
sparse signals [13]. Therefore, any improvement concern-
ing the sensing matrix results in higher reconstruction
accuracy and reduction of the number of necessary mea-
surements.
Tight frames are considered the best candidates when

designing spreading sequences in code-division multiple
access (CDMA) systems. Equal norm tight frames [14],
also known as Welch bound equality (WBE) sequences
[15], are considered capacity optimal spreading sequences
and minimize the interference experienced by the indi-
vidual users. However, it was shown in [9] that when
the number of active users in the system changes, only
ETFs result in the same interuser interference. Our sim-
ulations show that if an ETF construction is not avail-
able, nearly equiangular nearly tight frames can reduce
interuser interference substantially when used as spread-
ing sequences.
The rest of the paper is organized as follows: Section 2

reviews some results of frame theory and the connection
of frames to graphs. In Section 3, we present two algo-
rithms for constructing signature matrices, which we use
to obtain nearly equiangular frames. In Section 4, we use
the proposed frames as sensing matrices for compressed
sensing and spreading sequences for synchronous CDMA
systems. Conclusions are drawn in Section 5.

2 Frames review
2.1 Finite frames basics
A finite frame in a real or complexm-dimensional Hilbert
space H

m is a sequence of N ≥ m vectors
{
fk

}N
k=1, fk ∈

H
m, satisfying the following condition

α
∥∥f

∥∥2
2 ≤

N∑

k=1

∣∣〈f , fk
〉∣∣2 ≤ β

∥∥f
∥∥2
2 ∀f ∈ H

m, (1)

with positive constants α and β [1]. We refer to α, β as the
lower and upper frame bounds, respectively. The m × N
matrix F =[ f1 f2 . . . fN ], with columns the frame vectors
fk , is usually identified with the frame itself.
The following notions are related to a frame

{
fk

}N
k=1 [1]:

(a) The ratio ρ = N/m is referred to as the redundancy
of the frame and is a “measure of overcompleteness”
of the frame.

(b) When α = β , we say that the frame is α-tight.
(c) A frame is called uniform or equal norm, when∥∥fk

∥∥ = C, C > 0, for all k ∈ {1, . . . ,N}, and unit
norm, when

∥∥fk
∥∥ = 1 for all k ∈ {1, . . . ,N}.

(d) For a unit norm frame, the absolute value of the
inner product between two frame vectors equals the
cosine of the acute angle between the lines spanned
by the two vectors. If there is a constant c > 0 for
which |〈fk , f�〉| = c, k �= �, then the frame is called
equiangular.

An important operator of frames is the Grammian oper-
ator [1]. The matrix representation of the Grammian of a
frame is called the Gram matrix. The Gram matrix is the
N × N matrix R = F∗F , where F∗ denotes the conjugate
transpose of F. It is known [1] that F is anm × N frame if
and only if the Gram matrix is a self adjoint N × N pro-
jection with rankm. Frames F = {fk}Nk=1 and G = {gk}Nk=1
are unitarily equivalent, if there is a unitary transforma-
tionU : Hm → H

m with F = UG := {Ufk}, k ∈ {1, . . . ,N}.
A frame is determined by its Gram matrix up to unitary
equivalence.

2.1.1 Tight frames
When α = β , we obtain an α-tight frame, that is

f = 1
α

N∑

k=1

〈
f , fk

〉
fk ∀f ∈ H

m. (2)

In this case, the rows of α−1/2F form an orthogonal
family, each with norm

√
α. It follows immediately that

FF∗ = αIm, where Im is the m × m identity matrix. Con-
sidering the spectral properties of an α-tight frame, the
following proposition summarizes well-known results.

Proposition 1 (Spectral properties of tight frames [1])
A frame is α-tight if and only if one of the following
conditions holds:

(a) The non-zero eigenvalues of the Gram matrix equal
α.

(b) The non-zero singular values of F equal
√

α.
(c) The spectral norm of F equals

√
α.

Constructing a tight frame is straightforward; we take an
orthonormal basis and select the desired number of rows.
For example, m × N harmonic tight frames are obtained
by deleting (N − m) rows of an N × N DFT matrix.

2.1.2 Unit norm tight frames
Finite frames that are both tight and normalized are called
unit norm tight frames (UNTFs) and possess a signifi-
cant structure. A UNTF can be thought of as a sequence
that retains the decomposition properties of orthonormal
bases while relaxing the need to be a basis. There is only
one choice for the frame bound of a UNTF of N vectors
for Hm, which is given by the following theorem.
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Theorem 1 ([16]) If {fk}Nk=1 is a finite unit norm α-tight
frame for an m-dimensional Hilbert space Hm, then α =
N/m.

Therefore, a UNTF in a finite dimensional space is an
m × N matrix such that (a) the rows are orthogonal, (b)
each row has norm

√
N/m, (c) each column has norm 1.

The spectral properties of a UNTF are obtained by Propo-
sition 1 by setting α = N/m. The value of the spectral
norm of a UNTF is the lowest possible bound for m × N
frames and is often used as a measure of how close a given
frame is to a UNTF.

2.1.3 Equiangular tight frames
When a unit norm tight frame has vectors forming equal
angles, we obtain an equiangular tight frame. ETFs exhibit
equal column correlation, which is also the smallest pos-
sible [6]; thus, they are maximally incoherent equiangular
frames. ETFs are arguably the most important class of
finite-dimensional frames, and they are the natural choice
when one tries to combine the advantages of orthonormal
bases with the concept of redundancy provided by frames.
The maximal correlation between different normalized

frame vectors, also known as mutual coherence, is defined
as μ(F) = max1≤k,�≤N

k �=�

|〈fk , f�〉|. Mutual coherence is

bounded according to

μ(F) ≥
√

N − m
m(N − 1)

, (3)

which is referred to as Welch bound [6]. Equality holds,
if and only if F is an equiangular tight frame [6]. As
unit norm tight frames with dimensions m,N exist for a
specific tightness parameter (α = N/m), an ETF is an
equiangular N/m-tight frame.
Despite their important properties and their numer-

ous practical applications, there is no explicit way of
constructing ETFs. This problem is connected with
other important problems such as packings in Grass-
mannian spaces and antipodal spherical codes. It has
also connections to graph theory, equiangular line
sets, and coding theory. The techniques reported in
[3, 6, 17–19] construct only a few of the existent
frames.

2.2 Connection between ETFs and graphs
Studies concerning the connection of frames with graphs
have shown that the existence of an ETF in a real Hilbert
space depends on the existence of a matrix Q with zero
diagonal and ± 1’s off-diagonal entries. This matrix cor-
responds to the Seidel matrix of a special type of strongly
regular graphs [6]. Recall that the Seidel matrix of a graph
with N vertices is an N × N matrix with the (i, j) entry
defined to be 1 if the i and j vertices are adjacent, −1 if the

i and j vertices are not adjacent, and 0 if i = j. From [6, 7]
we obtain the following definition.

Definition 1 Given an m×N ETF F =[ f1 f2 . . . fN ], the
Gram matrix can be written in the form

R = I + cQ, (4)

where I is the N × N identity matrix and c is the Welch
bound given by (3). The N × N matrix Q, is known as the
signature matrix of the frame F.

The main results about signature matrices are summa-
rized in the following theorem.

Theorem 2 ([7]) Let Q be a self-adjoint N × N matrix,
with qi,i = 0 for all i and

∣∣qi,j
∣∣ = 1 for all i �= j. Then the

following are equivalent:

i. Q is the signature matrix of anm × N ETF.
ii. Q2 = (N − 1)I + νQ for some necessarily real

number ν.
iii. Q has exactly two distinct eigenvalues, denoted as

λ1 < λ2.

When any of the above conditions hold, the parame-
ters m,N , ν, λ1, λ2 are related with certain equations [8],
implying that for many values of m,N ETFs do not exist.
It can be shown that [19]

λ1 = −
√
m(N − 1)
N − m

, with multiplicity N − m,

λ2 =
√

(N − m)(N − 1)
m

, with multiplicitym.
(5)

According to [7], there are finitely many possible N ×
N signature matrices and finitely many real equiangular
frames of N vectors. For more details about the connec-
tion between graphs and frames, the reader is referred
to [6–8, 19, 20].

3 Construction of nearly equiangular frames
3.1 Previous work and our contribution
When designing a frame, the design specifications arise
from the application of interest. As a result, there exist a
large number of construction methods, as diverse as the
applications requiring a frame. Usually, the constructions
that come to address specific requirements are difficult to
generalize to solve different types of frame design prob-
lems. On the other hand, more general constructions
[3, 6, 17–19, 21] impose certain restrictions on the frame
dimensions.
Recently, the construction of equiangular tight frames

has gained the interest of the sparse modeling commu-
nity, as ETFs are maximally incoherent. Thus, a category
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of algorithms that produce incoherent frames has been
developed in the latest years [22–30]. Most of the exist-
ing algorithms are inspired by the work of [17] and are
based on a “shrinkage” operation on the Grammatrix. For
example, the algorithm proposed in [22] starts from an
arbitrarym × N frame that has full rank, and sequentially
“shrinks” the absolute values of the off-diagonal entries of
the Grammatrix in order to reduce frame’s column corre-
lation. Then, truncated SVD is used to obtain a frame with
rankm.
Our motivation in frame design originates from the

application of incoherent frames in sparse recovery and
compressed sensing. However, in contrast to the existing
methods that operate on the absolute values of the Gram
matrix entries, the method proposed here is inspired by
the results presented in Theorem 2 and aims at finding
the right signs of these entries. While the approach in
this paper involves some operations on the Gram matrix,
the proposed methodology is based on the construction
of an appropriate “signature” matrix. Compared to exist-
ing algorithms that produce incoherent frames, that is,
frames exhibiting small maximum column correlation,
the proposed frames not only exhibit small column cor-
relation but the degree of correlation between different
pairs of columns is similar. Thus, the obtained frames are
approximately equiangular.
Before proceeding, we need to define the signature

matrix of an arbitrary real frame. Suppose we are
given an ETF with dimensions m, N. From Eq. (4) we
see that we can derive the N × N signature matrix
from the corresponding Gram matrix by keeping the
signs of the off-diagonal entries and zeroing the diag-
onal. In the same manner, we can obtain an N ×
N symmetric matrix with ± 1’s off-diagonal entries
and zero diagonal from the Gram matrix of an arbi-
trary m × N frame. Therefore, we obtain the following
definition.

Definition 2 The signature matrix Q of an arbitrary
m × N real frame F =[ f1 f2 . . . fN ] is the N × N matrix
with entries derived from the corresponding Gram matrix,
R = FTF, according to

qij =
{

sgn (rij), i �= j,
0, i = j, (6)

where rij is the (i, j) entry of R.

Obviously, the eigenvalues of an arbitrary signature
matrix do not satisfy (5).
According to Theorem 2 the construction of an m × N

ETF reduces to finding the correspondingN×N signature
matrix. Therefore, if we construct a signature matrix that
approximates the signaturematrix of an ETF, using Eq. (4),
we can obtain a frame that is close to an ETF. The method

we propose here directly operates on the signature matrix
of an initial m × N frame, in order to obtain a matrix
that approximates the spectral and structural properties
defined in Theorem 2. Then, the Gram matrix calculated
by Eq. (4) yields a frame with small mutual coherence,
almost tight, with the additional property of approximate
equiangularity, that is, the frame columns form similar
angles. To our knowledge, this property is not achieved by
any other method in the literature. Approximate equian-
gularity makes the produced frames appropriate for other
applications besides compressed sensing. In our experi-
mental results, we demonstrate the employment of these
frames as spreading sequences for s-CDMA systems.
Construction of ETFs based on signature matrices has

been proposed by the frame community in [6]. The
authors of [6] have proved that an explicit construc-
tion of an ETF of dimensions m × N can be obtained,
if N = 2m and N = pα + 1, where p is an odd
prime number and α ∈ N. For frame dimensions satis-
fying these constraints, an N × N symmetric signature
matrix, the so called conference matrix, can be obtained
through a recursive process. The algorithm we propose
here produces signature matrices that yield frames close
to ETFs without imposing any restrictions on frame
dimensions.

3.2 Problem formulation
A problem concerning the construction of a matrix from
prescribed spectral data is an inverse eigenvalue problem
(IEP). A large category of IEPs includes structured inverse
eigenvalue problems (SIEPs), where given a set N of spe-
cially structured matrices and a set of scalars {λi}Ni=1, λi ∈
R, corresponding to the desired spectrum, we want to find
a matrix X ∈ N such that σ(X) = {λi}Ni=1, where σ(X)

denotes the spectrum of X [31]. SIEPs are difficult to solve
and most of the existing algorithms have been designed to
solve problems of special type [31, 32].
The signature matrix of an ETF is a symmetric matrix

with zero diagonal, ± 1’s off-diagonal entries, and spec-
trum containing the eigenvalues given by (5). The problem
we need to solve to find a signature matrix is formulated
as follows:

Signaturematrix inverse eigenvalue problem (SMIEP).
Considering a set of two real numbers, λ1, λ2, given by (5),
find a symmetric N × N matrix with zero diagonal, ± 1’s
off-diagonal entries and spectrum

σ = {λ1, . . . , λ1,︸ ︷︷ ︸
N−m

λ2, . . . , λ2︸ ︷︷ ︸
m

}, m < N . (7)

Therefore, the signaturematrix problem is a special type
of SIEP.
A similar problem addressed in [32] is the symmetric

non-negative inverse eigenvalue problem (SNIEP), that is,
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finding a symmetric matrix with non-negative entries and
specific spectrum. The numerical method for the solution
of SNIEP presented in [32] utilizes alternating projec-
tion ideas, proposing an algorithm in which, first, the
eigenvalue decomposition is used to impose the desired
spectrum, and, then, every negative entry of the obtained
matrix is set to zero to obtain a non-negative matrix. The
numerical method we propose here for the construction
of a signature matrix is inspired by the work of [32].

3.3 Construction of signature matrices
A solution to SMIEP would be a matrix satisfying the
structure of a signature matrix and the spectrum defined
by (7). Let A denote the set of N × N real symmetric
matrices with zero diagonal and ± 1’s off-diagonal entries

A = {
Q ∈ R

N×N |qij = ±1, i �= j, and qii = 0
}
. (8)

Let B denote the set of real symmetric matrices with
spectrum σ ,

B = {
Q ∈ R

N×N |Q = P	P−1} , (9)

where	 = diag (σ ) and P is some orthogonal matrix. The
signature matrix problem (SMIEP) can be stated as

Find X ∈ A ∩ B. (10)

The numerical method we propose alternatively
projects between A and B. The projection onto A is
straightforward. Concerning the projection onto B,
we use Theorem 3.2 found in [32]. Given a matrix
M ∈ R

N×N , with M = Pdiag(μ1,μ2, . . . ,μN )P−1, where
P is a real orthogonal matrix and μ1 ≥ μ2 ≥ · · · ≥ μN , a
projection onto B is given by P	P−1.
Therefore, starting from an initial symmetric matrix

Q0 of dimensions N × N , with zero diagonal, ± 1’s
off-diagonal entries and arbitrary spectrum, in the k-th
iteration we do the following:

• Step 1. Compute the eigenvalue decomposition
Qk−1 = P
P−1, where 
 is a diagonal matrix
containing the eigenvalues of Qk−1 and P is the
matrix of the corresponding eigenvectors. Then,
project onto B applying Q̃k = P	P−1, where
	 := diag(σ ) is the diagonal matrix with entries the
desired eigenvalues.

• Step 2. Project ontoA obtaining a matrix Qk with the
desired structure that is approximant to Q̃k , by
keeping the signs of the off-diagonal entries of Q̃k
and set the diagonal to zero,

qij =
{

sgn (q̃ij), i �= j,
0, i = j. (11)

Step 1 replaces the eigenvalues of the given matrix with
the requested ones, thus, it yields amatrix with the desired
spectrum, impairing the matrix structure. Step 2 yields a

matrix exhibiting the requested structure, impairing the
matrix spectrum. The above steps bring up Algorithm 1.
Note that, due to small numerical inaccuracy, Q̃k from
step 1 may not be perfectly symmetric, thus, we perform
the following operation: Q̃k := 0.5 · (Q̃T

k + Q̃k).

Algorithm 1: Signature matrix construction I
input : initial signature matrix Q0, spectrum σ ,

iterations ITER
output: Qk : N × N symmetric matrix with zero

diagonal, ± 1’s off-diagonal entries and
spectrum approximate to σ

	 := diag(σ )

for k := 1 to ITER do
[P,
] := EigenDecomp(Qk−1)
// Qk−1 = P
P−1

Qk := P	P−1

Qk := 0.5 · (QT
k + Qk)

for every entry of Qk, qij, do
if i == j then // diagonal entries

qij := 0
else

qij := sgn(qij) // off-diagonal
entries

end
end
k := k + 1

end

Studying the convergence of the proposed algorithm
is not a trivial task. Well-known results from alternat-
ing projections cannot be applied here because convexity
conditions for the employed sets are not satisfied, and
in case the corresponding ETF does not exist, SMIEP is
not solvable. Therefore, the proposed numerical method
for SMIEP does not always produce an exact solution.
However, it can produce an approximate solution satis-
fying structural constraints and approximating spectral
constraints. Although such a matrix is not the signature
matrix of an ETF, it can be used to obtain a frame that is
close to an ETF as we will see next.
Before proceeding to the construction of ETFs, let us

see some experimental results concerning the produced
signaturematrices. First, we use Algorithm 1 to find signa-
ture matrices of ETFs that are known to exist. Our exper-
iments have shown that the algorithm can produce the
signature matrices of ETFs with dimensionsm×(m+1) in
a few iterations. When the algorithm is used to construct
ETFs of other dimensions, e.g., 5×10, 6×16, it may need a
few trials (with different starting matrices) to find the cor-
responding signature matrices. A possible explanation for
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this is that the algorithm may converge locally, thus, find-
ing a solution depends on the startingmatrix. Considering
that the construction of ETFs with the aforementioned
dimensions is a problem that has already been solved (see
[33] for a list of known ETFs), the most important results
of Algorithm 1 concern finding the signature matrices of
nearly equiangular frames of arbitrary dimensions. To test
the proposed algorithm, we employ an initial signature
matrix obtained from a randomly generated frame. We
use frames of various dimensions. After a few iterations,
the proposed algorithm produces a signature matrix with
the requested structure and significantly improved spec-
trum that approximates (7); therefore, Algorithm 1 yields
an approximate solution to SMIEP. Figure 1 demonstrates
results concerning the spectrum of a signature matrix
before and after applying Algorithm 1. The initial signa-
ture matrix was obtained by a random Gaussian 64 × 128
matrix.
Our experiments with Algorithm 1 have shown that,

even though the proposed processing improves the signa-
ture matrix spectrum substantially, it becomes ineffective
after a few iterations. To further improve our results,
we propose to modify the second step as follows. Before
changing the value of a matrix entry according to (11),
we examine its distance from 1 (off-diagonal) or 0 (diag-
onal). To avoid a significant spectrum impairment, if this
distance is greater than a threshold t, we keep the entry
unchanged, that is

qij =
⎧
⎨

⎩

sgn(q̃ij), if
∣∣1 − ∣∣q̃ij

∣∣∣∣ < t, i �= j,
0, if

∣∣q̃ij
∣∣ < t, i = j,

q̃ij, otherwise.
(12)
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Fig. 1 The spectrum of the signature matrix of a 64 × 128 random
Gaussian matrix before and after processing the matrix with
Algorithms 1 and 2. The black dotted line stands for the spectrum of
the signature matrix corresponding to a 64 × 128 ETF

According to (12), an off-diagonal positive (negative)
entry q̃ij is projected on +1 (−1), if the distance between
the current entry and the target value is less than t.
Similarly, a diagonal entry is projected on 0, if its dis-
tance from 0 is smaller than t. In the experiments
presented in this paper, we choose t = 1/2, but
fine tuning is possible depending on the frame dimen-
sions. Thus, the second step of the algorithm does not
actually project on A, but on a broader set; equiva-
lently, the steps towards A are smaller compared to
Algorithm 1.
This way the k-th iteration does not produce a matrix

having the appropriate entries, but structure is improved
gradually. After a number of iterations is reached, we apply
(11) to finally produce a matrix with the desired struc-
ture. Thus, we obtain Algorithm 2. Experimental results
showing the improvement achieved with Algorithm 2 are
presented in Fig. 1.

Algorithm 2: Signature matrix construction II
input : initial signature matrix Q0, spectrum σ ,

iterations ITER, threshold t
output: Qk : N × N symmetric matrix with zero

diagonal, ± 1’s off-diagonal entries and
spectrum approximate to σ

	 := diag(σ )

for k := 1 to ITER do
[P,
] := EigenDecomp(Qk−1)
// Qk−1 = P
P−1

Qk := P	P−1

Qk := 0.5 · (QT
k + Qk)

for every entry of Qk, qij, do
if i == j then // diagonal entries

if |qij| < t then
qij := 0

end
else

// off-diagonal entries
if |1 − |qij|| < t then

qij := sgn(qij)
end

end
end
k := k + 1

end
for every off-diagonal entry do

qij := sgn(qij)
end
for every diagonal entry do

qii := 0
end
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Algorithm 2 is a modified alternating projections
method. Instead of taking full projection steps, it moves
slowly towards the target setA by selectively projecting on
{− 1, 0,+ 1} the entries of the signature matrix that satisfy
a threshold requirement. The idea to move slowly towards
the target sets when applying alternating projections is not
new. In [34, 35], a method referred to as relaxed alter-
nating projections replaces the unrelaxed projection steps
by underrelaxed versions. According to this method, the
projection operators PA and PB providing the projections
of the signature matrix on the sets A and B, respectively,
may be replaced by (1 − λ)IN − λPA and (1 − μ)IN −
μPB , where λ,μ ∈ (0, 1] are the relaxation parameters
and IN , the N × N identity matrix. Moving only part-
way towards the constraint set may enlarge the regions of
convergence. Applying relaxed alternating projections in
our problem did not yield better results than Algorithm 1.
In our experiments, we have also tried other relaxation
schemes; the projections expressed by (12) yielded the
best results. Algorithm 2 can be viewed as a modified ver-
sion of relaxed alternating projections and its convergence
will be studied in our future work.

3.4 Nearly equiangular frames based on signature
matrices

The signaturematrix obtained by Algorithm 2will be used
next to construct a nearly equiangular frame. First, we
construct the Gram matrix R according to (4). A sym-
metric N × N matrix obtained by (4) corresponds to an
m × N frame if it is of rank m. Thus, a rank reduction
step follows. Using singular value decomposition (SVD),
we keep them largest eigenvalues and set the rest to zero.
The matrix produced after rank reduction may not have
ones in the diagonal, therefore, a normalization step fol-
lows to ensure that the Grammatrix corresponds to a unit
norm frame. Finally, using SVD, we obtain anm×N frame,
which is unit norm, almost tight, with the frame vectors
forming angles near the optimal value. More particularly,
let R = USVT be the singular value decomposition of
the obtained Gram matrix, after rank reduction and nor-
malization. Considering that R is a symmetric matrix,
thus U = V , we can obtain a frame F determined
by R according to F = √

SV , where
√
S is a diagonal

matrix with entries the square roots of the singular val-
ues of R. The above steps bring up Algorithm 3. Recall
that the frame obtained this way is unique up to unitary
equivalence.
Some results of the produced frames are presented in

Fig. 2. The demonstrated results include the frame vec-
tors’ correlation for a 64 × 128 and a 96 × 128 frame. The
results show that the angles formed by the frame vectors
have values that are concentrated near the optimal bound
corresponding to an ETF, that is, the obtained frames
are approximately equiangular. For a 96 × 128 frame that

Algorithm 3: Construction of a nearly equiangular
frame
Data: Randomm × N frame F0
Result: Fout: nearly equiangularm × N frame
// Obtain the initial Gram matrix
R0 = F∗

0F0
// Obtain Q0 according to (6)
Q0 = sgn(R0)
Q0(i, i) = 0, for all i
// Use Algorithm 2 to obtain a

signature matrix Q̃
Q̃ = Algorithm2(Q0)
// Obtain the Gram matrix from (4)

R̃ = I + cQ̃
// Reduce the rank of R̃ to m

[U , S,V ]= svd(R̃)

S = S(1 : m, 1 : m)

U = U(1 : m, 1 : m)

V = V (1 : m, 1 : m)

Ř = USV
// Normalize the Gram matrix Ř
Ř = diag(1./sqrt(diag(Ř))) · Ř · diag(1./sqrt(diag(Ř)))

// Obtain Fout
[U , S,V ]= svd(Ř) // U = V
Fout = sqrt(S)VT

exhibits a lower redundancy the results are more impres-
sive. The proposed constructions are compared with
random Gaussian matrices and incoherent tight frames
produced with [26] and [30]. Both [26] and [30] attain
small mutual coherence; however, they do not exhibit the
approximate equiangularity property like the proposed
constructions.

3.5 Nearly equiangular, nearly tight frames based on
signature matrices

Algorithm 3 produces frames of any dimensions with the
frame vectors forming angles near the optimal value. Even
though the obtained frames exhibit good spectral prop-
erties, they are not exactly tight, a characteristic that is
important for many applications. One way to improve
tightness is the following well-known theorem.

Theorem 3 ([36]) Given a matrix F ∈ R
m×N , N ≥ m,

suppose F has singular value decomposition UΣV ∗. With
respect to the Frobenius norm, a nearest α-tight frame F ′
to F is given by

√
α · UV ∗. Assume in addition that F has

full row-rank. Then
√

α · UV ∗ is the unique α-tight frame
closest to F. Moreover, one may compute UV ∗ using the
formula (FF∗)−1/2F.
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Algorithm 4: Construction of a nearly equiangular,
nearly tight frame
input : Randomm × N frame F0, iterations ITER
output: Fk : nearly equiangular, nearly tightm × N

frame
Compute Q0 the signature matrix of F0.
Obtain a nearly equiangular frame F1 with
Algorithm 3.
for k := 1 to ITER do

Fk+1 := √
N/m(FkF∗

k )−1/2Fk // impose

tightness
Fk+1 := normc(Fk+1) // normalize
columns
k := k + 1

end

Having produced a nearly equiangular m × N frame
with Algorithm 3, we apply Theorem 3 with α = N/m.
As tightness opposes unit-normness, we must carry out
a few iterations, alternating between these two properties
according to Algorithm 4 to obtain a nearly equiangular,
nearly tight unit norm frame.
A metric to evaluate how close the obtained frame is to

a tight frame is the spectral norm. Recall that the spectral
norm of a tight frame equals the lowest possible bound√
N/m. To see the improvement of tightness achieved by

Algorithm 4 we construct frames of various dimensions
and compute their spectral norm. The results presented in
Table 1 are averaged over 500 frame samples and concern
m × N frames withm = 32 : 16 : 96 and N = 128.
While Algorithm 4 reduces the spectral norm of the

obtained frames, it also affects the frame vectors’ corre-
lation. Figure 3 demonstrates results of the frame vectors’
correlation for a 64 × 128 and a 96 × 128 frame produced
by Algorithm 4. Comparing Fig. 3 to Fig. 2, we observe a
slight deterioration of correlation’s distribution, as a price
of the improvement of tightness. Therefore, the choice
between Algorithm 3 and Algorithm 4 for the construc-
tion of nearly equiangular frames, depends on the specific
requirements of the related application.

3.6 Comparison with existing methods
In this section, we discuss the differences between the
proposed work and existing approaches, while enlight-
ening some aspects of our method. Considering the
one-to-one correspondence between ETFs and signature
matrices, we will compare the different algorithms using
as a performance criterion the spectrum of the signa-
ture matrix, i.e., we will graphically examine how close
the spectrum is of an obtained signature matrix to the
ideal spectrum given by Eq. (5). Our comparison includes
the work presented in [22] and [26]; similar results were

obtained by comparing with other existing algorithms
[23, 24, 30]. Figure 4 demonstrates typical results obtained
with [22] and [26] for a 64 × 128 frame.
The algorithm presented in [22] focuses on incoher-

ence. The iterative operations applied on the Grammatrix
include shrinkage and rank reduction. Denoting with rij
the (i, j) entry of the Gram matrix, the following modifi-
cation is applied:

r̂ij =
⎧
⎨

⎩

γ rij,
∣∣rij

∣∣ ≥ t,
γ t · sgn(rij), t >

∣∣rij
∣∣ ≥ γ t,

rij, γ t >
∣∣rij

∣∣ ,
(13)

where γ , t are appropriate parameters. For the results pre-
sented in Fig. 4, we used γ = 0.7, t = 0.5. Eq. 13 leaves
the signs of the Gram entries unchanged; therefore, it does
not modify the signature matrix. However, the shrinkage
operation impairs the matrix rank, and a rank reduc-
tion step must follow to yield an acceptable Gram. Rank
reduction implicitly affects the signature matrix. The
spectrum demonstrated in Fig. 4 reflects these changes.
The method of [22] is an alternating projections method.
The involved sets include the set of N × N symmetric
matrices with bounded absolute values (the bounds are
defined according to (13)) and the set of N × N sym-
metric rank m matrices, that is, the set of matrices with
m non-zero eigenvalues. Nevertheless, the imposed con-
straints do not improve the signature matrix sufficiently
as another important property of ETFs, namely, tightness
is not addressed by the optimization algorithm.
The optimization process proposed in [26] leads to a

better spectrum compared to [22]. The goal of [26] is to
find a frame that satisfies both incoherence and tightness,
thus, it produces frames that are closer to ETFs. Concern-
ing the corresponding Grammatrix, incoherence involves
explicit operations on the absolute values, while tightness
involves operations on the eigenvalues. Therefore, the
averaged projections method proposed in [26] concerns
one more constrained set, i.e., the set of N × N symmet-
ric matrices with specific eigenvalues (see Proposition 1).
Similarly to rank reduction, operations on the eigenval-
ues may change the signs of the Gram entries, implicitly
improving the signature matrix.
The Gram matrix of an ETF is a matrix with specific

structural and spectral properties. Structural properties
are related to incoherence; structural constraints involve
bounds on the absolute values of the Gram entries. Spec-
tral properties are related to tightness and involve restric-
tions on the eigenvalues. The methods presented in [22]
and [26] are based on a joint optimization of the Gram
matrix with respect to both structural and spectral con-
straints. In this case, the (implicit) optimization of the
signature matrix resulting from the application of spec-
tral constraints is subjected to incoherence constraints.
Eq. 4 provides a representation of the Gram matrix of
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Fig. 2 Correlation distribution of frame vectors of 64 × 128 (left) and 96 × 128 (right) frames constructed with [26], [30] and proposed method. The
optimal lowest bound (Welch bound) for these dimensions is μopt = 0.0887 and μopt = 0.0512, respectively

an ETF that enables a decoupling optimization strategy:
the signature matrix can be directly optimized without
being subjected to incoherence constraints. The incoher-
ence constraints are applied to the Gram matrix in a
single step by multiplying the signature matrix Q with the
Welch bound c. A direct optimization of the signature
matrix that does not involve incoherence constraints is
more efficient. The proposed construction of approximate
ETFs assigns the Gram entries identical absolute values
equal to the Welch bound in a single step and results in
frames that exhibit approximate equiangularity, a prop-
erty that is not achieved by any othermethod. Such a strict
incoherence constraint cannot be applied with alternating
projections methods; experimental results show that both

[22] and [26] do not converge. Therefore, in this paper,
the joint optimization of the Gram matrix with respect
to both structural and spectral constraints is replaced by
an equivalent two-fold problem, the optimization of the
signature matrix and the absolute Gram entries. These
problems can be tackled separately, resulting in a more
efficient optimization strategy that leads to a different set
of solutions, namely, approximate equiangular frames.
We would like to underline that, from a theoretical per-

spective, the decoupling strategy described above only
holds for the ideal case, i.e., perfect ETFs. When dealing
with approximate ETFs, and suppose that we have com-
puted an optimal signature matrix, the application of (4)
does not necessarily lead to the desired Gram; usually it
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Table 1 Spectral norm ofm × N frames withm = 32 : 16 : 96
and N = 128 obtained with Algorithm 3 and Algorithm 4

m dimension
Spectral norm

Algorithm 3 Algorithm 4 Optimal

32 2.074 2.015 2.000

48 1.716 1.655 1.633

64 1.499 1.440 1.414

80 1.351 1.288 1.265

96 1.250 1.171 1.155

must be followed by a rank reduction step, which may not
preserve the properties (i.e., the spectrum) of the optimal
signature matrix. Even though there is no theoretical evi-
dence that a decoupling strategy will perform well for the
case of approximate ETFs, we assert that the experimental
results presented here are promising. Nevertheless, a the-
oretical study about the relation between an approximate
solution of the signature matrix problem (especially when
an accurate solution does not exist) and the corresponding
constrained Gram remains a challenge.
We continue with a comment on the complexity of

the tested algorithms. The work of [26] and [22] applies
explicit operations on the Gram matrix to impose struc-
tural and spectral constraints. These operations involve
projections on sets of matrices with specific structural and
spectral properties; the projections are performed iter-
atively and both algorithms exhibit similar complexity.
In our algorithm, the explicit construction of the Gram
matrix is a two step non-iterative procedure: first we apply
(4) and then we perform rank reduction. However, the
construction of the signature matrix involved in (4) is

performed through an iterative process which imposes
structural and spectral constraints on a matrix of the
same dimensions of the Gram matrix. Therefore, we can-
not argue that the proposed algorithm is less complex
compared to [26] and [22].
Before ending this discussion, we would like to note that

the major contribution of the proposed work is the intro-
duction of a different strategy towards the optimization of
the Gram matrix of an approximate ETF, which, for the
first time, addresses the construction of the correspond-
ing signature matrix. Taking into account that the frames
obtained with the proposed method, besides incoherence
and tightness, exhibit the additional property of approx-
imate equiangularity, we conclude that our optimization
strategy is more effective compared to the state of the art
algorithms.

4 Applications of nearly equiangular frames
As we have already mentioned in the introduction, frames
that are close to ETFs have many applications in sig-
nal processing and communications. In this section, first,
we employ the proposed constructions to acquire sparse
synthetic signals with compressed sensing and study
the reconstruction performance of Orthogonal Match-
ing Pursuit (OMP) [37] in this setting. Then, we use
nearly equiangular nearly tight frames to obtain spread-
ing sequences for synchronous CDMA systems and show
their superiority against WBE sequences when the num-
ber of users in the system changes.

4.1 Sensing matrices for compressed sensing
Compressed sensing is a novel theory [11, 12] that exploits
sparsity to recover signals that have been sampled at

Fig. 3 Correlation distribution of frame vectors produced with Algorithm 4. Results are demonstrated for a 64× 128 (left) and 96× 128 (right) frame.
Optimal lowest bound (Welch bound) is μopt = 0.0887 and μopt = 0.0512, respectively
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Fig. 4 The spectrum of the signature matrix of a 64 × 128 random
Gaussian matrix, a frame obtained with the proposed Algorithm 4,
and frames obtained with [22], [26]. The black dotted line stands for
the spectrum of the signature matrix corresponding to a 64× 128 ETF

a drastically smaller rate than the conventional Shan-
non/Nyquist theorem imposes. Undersampling implies
that the number of measurementsm is much smaller than
the dimensionN of the signal. Let α be a sparse signal with
a few non-zero coefficients, that is, ‖α‖0 = T , T � N ,
where ‖·‖0 is the so-called �0 norm (which is actually not a
norm) counting the non-zero coefficients of the respective
signal. We obtainmmeasurements according to

y = Φα, (14)

where Φ ∈ R
m×N is a matrix describing the sensing

mechanism. Equation (14) defines an underdetermined
linear system with more unknowns than equations. A
sparse solution satisfying (14) can be computed numeri-
cally, as long as the matrix Φ satisfies the restricted isom-
etry property (RIP) [38]. We can loosely say that when a
matrix obeys RIP of order s, then all subsets of s columns
are nearly orthogonal. Random Gaussian or Bernoulli
matrices are known to satisfy RIP with high probability
[39], however, research still goes on aiming either at the
improvement of performance guarantees or at the dis-
covery of sensing operators that are more appropriate for
practical applications [40].
A very coarse estimate on a matrix RIP bounds is the

mutual coherence of a matrix. According to [13], recon-
struction algorithms such as OMP and basis pursuit (BP)
[41] can recover a sparse signal acquired with CS as long
as the sensing matrix forms an incoherent UNTF. ETFs
are optimal CS matrices with respect to mutual coherence
as they achieve the Welch bound. The nearly equiangu-
lar frames produced in this paper with Algorithms 3 and

4 have frame vectors exhibiting correlation that approx-
imates the optimal value of an ETF. Next, we investigate
the behavior of the proposed frames in CS.
Considering synthetic sparse signals of length N =

120, with T = 4 non-zero coefficients, we obtain mea-
surements according to (14). The obtained measurements
are used to find the unknown sparse signal, using OMP,
a well-known algorithm for sparse signal recovery. The
experiments are realized using random Gaussian matri-
ces, incoherent UNTFs produced with [26], [30], and the
frames produced with Algorithms 3 and 4. Varying the
number of measurements m = {15, 20, 25, 30, 35}, for
every value of m, we perform 10,000 experiments. The
quality of the recovered signal is measured computing the
mean squared error (MSE). The results demonstrated in
Table 2 include average values.
According to Table 2, the proposed nearly equiangu-

lar frames outperform random Gaussian matrices, and
yield results similar to incoherent UNTFs. In order to
explain the obtained results of sparse reconstruction, next,
we present results regarding the mutual coherence of
the matrices employed in our CS experiments. Table 3
includes average values over 10,000 realizations for sens-
ing matrices with dimensions 20 × 120 and 30 × 120.
According to these results, the superiority of the pro-
posed frames against random Gaussian matrices is obvi-
ously expected, considering their incoherence. We cannot
assert the same comparing nearly equiangular frames to
incoherent UNTFs obtained with [26] and [30]. Frames
produced with [26] and [30] exhibit mutual coherence that
is smaller than the proposed frames, especially when the
frame dimensions yield high redundancy. However, the
smallest mutual coherence does not necessarily lead to the
highest reconstruction accuracy.
The above results are not that surprising if we take into

account thatmany authors have argued thatmutual coher-
ence may not express well the effectiveness of a matrix
in sparse signal recovery [22, 42]. Clearly, other proper-
ties of the sensing matrix such as average coherence and
spectral norm seem to determine the effectiveness of the
employed matrix as well. The role of the spectral norm in

Table 2 MSE for sparse signals of length N = 120 obtained with
CS, for variable number of measurements,m = 15 : 5 : 35, and
various types of sensing matrices

m
MSE

Gaussian [26] [30] Alg. 3 Alg. 4

15 0.01000 0.00821 0.00864 0.00837 0.00825

20 0.00506 0.00287 0.00276 0.00300 0.00287

25 0.00180 0.00056 0.00062 0.00059 0.00059

30 0.00038 5.650 · 10−5 2.320 · 10−5 5.609 · 10−5 6.887 · 10−5

35 9.115 · 10−5 3.300 · 10−6 4.770 · 10−6 2.768 · 10−6 5.071 · 10−6
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Table 3 Properties of sensing matrices employed in CS experiments

Mutual coh. Average coh. Spectral norm

m 20 30 20 30 20 30

Type

Gaussian 0.751 0.647 0.050 0.033 3.290 2.876

[26] 0.354 0.237 0.042 0.025 2.449 2.000

[30] 0.297 0.206 0.042 0.025 2.463 2.005

Algorithm 3 0.463 0.332 0.042 0.025 2.512 2.075

Algorithm 4 0.445 0.319 0.042 0.025 2.459 2.015

Results involvem × Nmatrices withm = {20, 30}, N = 120

sparse recovery was studied in [13]. The notion of average
coherence was defined in [42] as

μg(F) = 1
N(N − 1)

N∑

i=1

N∑

j=1
i�=j

|〈fi, fj〉|2. (15)

The authors of [42] conjecture its important role in
sparse recovery based on experimental results. While the
frames obtained with [30] exhibit the smallest mutual
coherence, the values of average coherence computed by
(15) are identical for all matrix constructions except for
random Gaussian matrices. We conclude that the results
obtained in Tables 2 and 3 indicate that the effectiveness of
a matrix involved in sparse recovery seems to depend on
all the aforementioned properties, with average coherence
playing a rather important role.
Before proceeding to another application of nearly

equiangular frames, we would like to make a comment
concerning Algorithms 3 and 4. While Algorithm 4 pro-
duces frames with smaller spectral norm, the achieved
improvement slightly affects the reconstruction perfor-
mance of OMP. Taking into account the additional com-
putational cost introduced by Algorithm 4 and the fact
that the matrices employed in CS are practically of large
dimensions, we suggest that Algorithm 3 is the best
choice for the construction of sensing matrices, consider-
ing both effectiveness and computational cost. Compari-
son between Algorithm 3 and [26], [30] leads to a similar
conclusion, strengthening our preference to Algorithm 3
especially when the application necessitates limitation of
resources.

4.2 Spreading sequences for CDMA systems
In synchronous CDMA systems, the users share the entire
bandwidth and each user is distinguished from the others
by its spreading sequence or code. (the term signature is
also extensively used, but we avoid using it here as it might
confuse the reader. Clearly, a signature sequence is not
related to a signature matrix by any means). The capac-
ity region defined as the set of information rates at which
users can transmit while retaining reliable transmission

is characterized as a function of the spreading sequences
and average input power constraints of the users. Capac-
ity optimal sequences are functions of codebook length as
well as the number of users [14, 15].
Suppose that x1, x2, . . . , xN is a set of vectors in R

m cor-
responding to N possible users of an s-CDMA system.
These vectors form a set of sequences of length m. Opti-
mal spreading sequences have been characterized in [14]
to be theWBE sequences, that is, equal norm tight frames.
WBE sequences minimize the total squared correlation,
that is,

TSC =
N∑

i=1

N∑

j=1

∣∣〈xi, xj
〉∣∣2 , (16)

which results in that the interference experienced by any
user is exactly the same.
The design of WBE sequences for s-CDMA has gained

a lot of interest in the last decades [15, 43, 44]. However,
WBE sequences do not perform well when the number of
users in the cell changes. If the number of the active users
is smaller than N, then a code set designed for N users is
no longer optimal and new codes should be assigned to all
users [9].
The interference experienced by the j-th user in the

system depends on the term [14]

I(j) =
∑

i�=j

∣∣〈xi, xj
〉∣∣2 . (17)

Consider a system with K < N active users. In [9] it
was shown that all users experience the same interference,
which depends only on K, the current number of active
users, if and only if the code set is an equiangular sequence
set. As we have mentioned in Section 3.1, the authors of
[9] use conference matrices to construct ETFs that are
employed as spreading sequences. However, construction
techniques for conference matrices impose restrictions on
frame dimensions.
Algorithm 4 may produce nearly equiangular nearly

tight frames of any dimensions, offering flexibility when
designing codes for an s-CDMA system. The experiments



Tsiligianni et al. EURASIP Journal on Advances in Signal Processing  (2017) 2017:66 Page 13 of 14

presented here involve the computation of interuser inter-
ference when employing the proposed frame vectors as
codes of a CDMA system with variable number of users.
The performance of the proposed frames in s-CDMA
is compared to a method presented in [44] for spread-
ing sequence design. The authors of [44] produce WBE
sequences from an appropriate Gram matrix. The con-
struction of the Gram matrix is addressed as an inverse
eigenvalue problem, which is solved using finite-step algo-
rithms from matrix theory. The code set we use in our
experiments is designed for 128 users with codes of length
64, obtained by a 64 × 128 frame produced with Algo-
rithm 4. For each subset of K ≤ 128 active users, we
randomly choose K codes and examine the interference
term given by (17). As ameasure of how close we are to the
target that all users experience the same interference, we
compute the standard deviation of the interference term
for every active subset of users. The results are averaged
over a series of random trials.
Figure 5 demonstrates results when the number of

users in the cell varies from 64 to 128. The perfor-
mance of the proposed frame when used as a spread-
ing sequence set is also compared to an incoherent
UNTF (WBE sequence set) produced by our previous
work [26]. It is obvious that the proposed nearly equian-
gular nearly tight frame, outperforms WBE sequence
sets, when the system works with a load up to 85% its
total load.
Next, we demonstrate results for total squared cor-

relation for comparison with other work on spreading
sequence design based on TSC. Total squared correlation
is related to the total mean squared error (MSE) in the
system, that is, the sum of MSEs observed by all users. In
[43] it is shown that for a link with additive Gaussian noise
of zero power and spectral density σ 2, assuming that the
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Fig. 5 Standard deviation of the interference term for variable
number of active users in a s-CDMA system designed for 128 users

users receive signals of equal power p, the total MSE for K
users in the system is given by

MSE = p
K∑

i=1

K∑

j=1

〈
xi, xj

〉2 − (
2√p − σ 2)

K∑

i=1
xTi xj + K .

(18)

For unit norm codes xi, we receive

MSE = pTSC + (1 + σ 2 − 2√p)K . (19)

From (19) it is obvious that minimizing TSC is equiv-
alent to minimizing MSE. Algorithms like the one pre-
sented in [43] produce spreading sequences that minimize
TSC.
Table 4, presents averaged values of TSC observed in

the above scenarios of active subset of users. For K =
{64, 80, 96, 112, 128} users in the system, we randomly
choose K codes and calculate TSC. The results are aver-
aged over a series of random trials. The measured values
are similar for all methods showing that the proposed
construction yields results similar to [26] and [44]. There-
fore, compared to WBE sequences, the proposed frames
reduce the interference experienced by the users without
affecting the total MSE in the system.

5 Conclusions
Signature matrices are matrices with specific structure
and spectrum, and define ETFs up to unitary equiva-
lence. While signature matrices of ETFs exist for certain
frame dimensions, in this paper, we propose a numer-
ical method that produces signature matrices of nearly
equiangular frames of arbitrary dimensions. These frames
are almost tight, with frame vectors exhibiting near opti-
mal correlation. Using the obtained frames as spreading
sequences for CDMA systems, we reduce the interference
experienced by the individual users, when the number
of active users in the system changes. We also employ
nearly equiangular frames to obtain sparse signals with
CS, achieving high reconstruction performance of sparse
recovery algorithms. The proposed frame constructions,
which are based on signature matrices, rely on the solu-
tion of a structured inverse eigenvalue problem. Any

Table 4 Average total squared correlation (TSC) for variable
number of active users

# of active users
TSC

Algorithm 4 [26] [44]

64 95.720 95.742 95.868

80 129.812 129.773 129.706

96 167.769 167.763 167.821

112 209.932 209.876 209.805

128 256.094 256.000 256.000
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progress towards the solution of similar inverse eigen-
value problems could improve the proposed constructions
substantially.
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