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Abstract: Current depth map sensing technologies capture depth maps at low spatial
resolution, rendering serious problems in various applications. In this paper, we propose a
single depth map super-resolution method that combines the advantages of model-based
methods and deep learning approaches. Specifically, we formulate a linear inverse problem
which we solve by introducing a graph Laplacian regularizer. The regularization approach
promotes smoothness and preserves the structural details of the observed depth map.
We construct the graph Laplacian matrix by deploying latent features obtained from a
pretrained deep learning model. The problem is solved with the Alternating Direction
Method of Multipliers (ADMM). Experimental results show that the proposed approach
outperforms existing optimization-based and deep learning solutions.

Keywords: depth map super-resolution; graph-based regularization; alternating direction
method of multipliers

1. Introduction

Depth maps play a crucial role in various applications such as autonomous driving [1],
3D reconstruction [2], augmented reality [3], and semantic scene understanding [4]. There
are two main sensing technologies to capture depth information, either passive or active.
The most common approach for passive technologies is stereo reconstruction, that is, the
estimation of the scene depth from two images of the scene by using stereo matching
algorithms [5]. The Time-of-Flight (ToF) camera [6] and structure light scanner [7] are
two representative depth sensors for real-time active depth sensing. However, due to hard-
ware limitations and sensor noise, captured depth maps often suffer from low resolution
and artifacts, posing serious issues for various 3D applications.

Depth map super-resolution (SR) aims to reconstruct high-resolution (HR) depth
maps from their low-resolution (LR) counterparts. Similar to image SR, depth map SR
is an ill-conditioned inverse problem, requiring additional information to be solved. In
general, depth cameras are equipped with an additional RGB sensor that can capture color
images with a resolution higher than that of depth maps. Most of the existing works apply
guided depth map SR, that is, they employ the HR color counterpart as guidance for the SR
task. Although color images are useful for depth enhancement, the edges in color images
do not exactly match the edges in depth maps. Moreover, in low-light conditions, the
guidance image is usually noisy and may mislead the depth restoration algorithm, making
color-assisted approaches less general [8,9].
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To this end, some researchers address single-depth map SR by employing methods
similar to single-modal image SR [8,9]. Single-modal SR tasks have been addressed by
analytical, filtering and data-driven methods. Analytical methods try to solve the inverse
problem by introducing various priors [10]. Among them, graph-based regularization
is a popular approach [11-15]. Filtering-based methods estimate the depth of pixels by
performing a weighted average of local pixels, and the weights are obtained by the affinity
calculated from RGB-D image pairs [16-18]. Data-driven methods learn mapping functions
from LR depth maps to HR depth maps [9,19,20]. With the rapid development of deep
neural networks, deep learning methods have achieved state-of-the-art performance in
depth map SR [21,22]. Despite their impressive results, DL methods require large computa-
tional resources and datasets, which can limit their applicability in real-world scenarios.
Model-based deep learning designs are an alternative approach that tries to bridge the gap
between deep learning and model-based solutions [15,23,24].

In this paper, we follow a model-based approach for the solution of single depth map
SR, which also leverages the representation power of deep neural networks. Specifically,
we consider a graphical representation of depth maps and address the depth map SR as
an inverse problem. In order to incorporate prior knowledge, promote smoothness, and
preserve the structural integrity of the depth maps, we propose a regularization of the
problem at a feature level. We extract latent features from LR depth maps using a pretrained
neural network model and apply graph regularization by computing a graph Laplacian
using the extracted features. The estimated SR depth maps are obtained as a solution to the
graph-regularized problem using the Alternating Direction Method of Multipliers (ADMM)
algorithm. The experimental results demonstrate the superior performance of the proposed
approach against single-modal and guided SR methods.

The remainder of the paper is organized as follows: Section 2 reviews the related work.
Section 3 presents the mathematical formulation and the details of the proposed algorithm.
Section 4 provides the experimental setup, the datasets, the experiments, and the results of
the algorithm. Section 5 investigates the impact of each component of our framework via
ablation studies. Finally, Section 6 concludes the paper.

2. Related Work
2.1. Depth Map Super-Resolution

We briefly review three categories of depth map SR methods, that is, analytical or
model-based methods, filtering-based methods, and data-driven methods.

Similar to color image SR, analytical approaches for depth map SR address the estima-
tion of the HR depth map from the observed LR counterpart as an inverse problem and
introduce various priors [10]. The corresponding optimization methods apply different
regularization techniques. Total variation (TV) regularization aims to minimize the gradient
magnitude to enforce smoothness. Although the TV constraint helps to distinguish the
edge and the noise, it tends to generate “staircasing artifacts” for the smooth region [10].
Recent studies have shown the powerful capability of the graph Laplacian to deal with
piecewise smooth signals, and several works have used it to exploit the smoothness of the
depth map [11-15].

Filtering-based methods combine both computational efficiency and structure preser-
vation. Tomasi and Manduchi [16] proposed a bilateral filtering method, which smooths
images while preserving edges and considers both spatial proximity and intensity simi-
larity. However, the fact that it relies on local neighborhoods limited the ability to capture
long-range dependencies. Buades et al. [17] addressed this problem with non-local means
(NLMs) filtering, which extends filtering beyond local neighborhoods by leveraging self-
similar patches across the entire image. While NLMs filtering enhances noise reduction
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and texture preservation, it suffers from high computational costs and potential artifacts
in complex structures. To improve efficiency, He et al. [18] proposed an edge-aware ap-
proach that takes advantage of a high-resolution guidance image to improve depth map
super-resolution.

Data-driven solutions are an alternative approach to address SR tasks and include
dictionary learning and deep learning methods. Dictionary learning methods rely on
sparsity assumptions and try to learn the correlation between the LR and the HR space from
a set of training image pairs [9]. Wang et al. [19] introduced a depth map super-resolution
technique that integrates multi-directional dictionary learning with autoregressive (AR)
modeling. This method involves training multiple dictionaries, each corresponding to
specific geometric directions, to effectively represent directional depth patches. Tosic
and Drewes [20] proposed a method for learning overcomplete dictionaries that jointly
represent image intensity and scene depth. They developed a novel Joint Basis Pursuit
(JBP) algorithm to identify related sparse features across these two modalities, allowing for
effective depth inpainting and improved 3D scene representation.

Deep learning (DL) methods rely on large amounts of data to find a direct mapping
from the LR observations to the HR ground truth. Pioneer DL designs for general image SR
include SRCNN [21], which demonstrated the potential of CNN data-driven approaches,
ESRGAN [22], which relied on generative adversarial neural networks, RESNET [25]
with its variants (RESNET50, RESNET101, etc.), which introduced residual learning, and
U-net [26], which showed that skip connections are useful for recovering fine details. State-
of-the-art DL models for depth map SR include a multi-scale fusion model proposed in [27]
where the multi-scale guided features are obtained by a visual geometry group (VGG)-
like neural network, a multi-modal attention-based fusion model [28], a high-frequency
guidance network that employs the octave convolution [29], and the model presented
in [30], which uses a guidance image only at the training stage. Super-Resolution Graph
Attention Networks (SRGATs) [31] introduced a graph-based deep learning framework
for single-image SR, utilizing Graph Attention Networks (GATs) to model complex and
non-local relationships between pixels. By representing the image as a graph and applying
attention mechanisms, the method enhances the reconstruction of high-frequency details,
leading to improved visual quality in the outputs.

2.2. Graph-Based Representations

In graph-based representations, we assume that the signal is represented in the form
of a weighted undirected graph G, and similarities in the signal are expressed by the
edges £ and the respective weights encoded in the adjacency matrix W. Graph-based
representations provide a powerful tool in computer vision, as they capture complex
image structures and relationships between pixels [14,32]. In image processing, typically,
the nodes of the graph correspond to image pixels, and the graph Laplacian is used to
express similarity constraints between the pixels. Graph-based techniques have been widely
applied in various image processing tasks, including segmentation, denoising, and super-
resolution, due to their ability to model spatial dependencies and structural patterns [33].
Spectral graph theory has been leveraged to design effective regularization strategies that
enhance feature preservation and structural coherence in reconstructed images. Graph-
based regularization has been incorporated both in model-based approaches [32] and deep
learning designs [14,15].

Concerning depth map reconstruction, a graph Laplacian model exploiting prior
information about the depth image and the corresponding color image was formulated
in [11]. Instead of constructing the graph with pixels, the authors of [12] proposed to
construct the graph with a group of similar patches. In [13], the edge weight distribution of
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an area with sharp edges was considered to be a bimodal distribution. A reweighted graph
Laplacian regularizer was proposed to preserve sharp edges and promote the bimodal
distribution of edge weights. In [15], the graph Laplacian was learned from their data, and
the regularized problem was solved by a DL design in an end-to-end manner.

Building upon these foundations, we consider a graph-based representation of the
depth maps and compute the graph Laplacian matrix using latent features. Following an
approach similar to [15], we obtain the latent representations from a deep neural network
model. Unlike [15], where the latent features and the inverse mapping were learned from
their data in an end-to-end learning framework, we use a pretrained model to extract the
features and estimate the HR depth map by employing the ADMM algorithm to solve
the corresponding graph-regularized optimization problem. We compare our results with
state-of-the-art ADMM-based methods performing single depth map SR with other types
of regularization [34,35]. We also compare our work with state-of-the art guided depth map
SR methods that use a neural network as a graph regularizer [15]. The experiments show
that our method yielded the best results in terms of the root mean squared error (RMSE)
and visual quality.

3. Depth Map Super-Resolution Using the Admm Algorithm and
Graph-Based Regularization

We address depth map SR as a graph-based regularized optimization problem. We
considered a graphical representation of depth maps, extracted latent features from LR
depth maps using a pretrained neural network model, and computed a graph Laplacian
using the extracted features. We experimented with different feature extractors. The
obtained problem was solved with ADMM.

3.1. Depth Map Super-Resolution as an Inverse Problem

Consider y € RMM: ag the vectorized form of an observed N; x N, depth map (LR)
and x € RS"N1M2 a5 the unknown HR depth map, assuming upscaling by a factor S. Then,
the degrading process is described by the following equation:

y = Ax+¢, (1)

where A € RNN2XS*NIN: s the degradation matrix, and € is the additive noise. Since
there can be various HR depth maps with a slight difference in camera angle, illumination,
material properties, and other variables for a certain LR depth map, (1) is an ill-posed
inverse problem [10]. Seeking a unique solution, we need additional prior knowledge
which we incorporate into the problem with regularization, that is,

% = argmin ||y — Ax| + AR(x), @

where R(x) is a regularization term weighted by A > 0.
Problem (2) is of the form

% = argmin [g(x) + (x)], ©)

where g(x) = ||y — Ax||3 is the fidelity term that enforces consistency with the observed
data, and h(x) = AR(x) is the regularization term. We can rewrite (3) as follows:

X = argmin [g(x) +h(z)], st x—z=0, (4)
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and use the ADMM algorithm for its solution [36]. We formulate the augmented Lagrangian
as follows:

Lp(x,z,u) =g(X)+h(Z)+uT(x—Z)+gllx—Z|sz (5)

where u is the dual variable, and p is the augmented Lagrangian parameter [36]. Then, at
the k-th iteration of ADMM, we perform the following: (i) We minimize the augmented
Lagrangian with respect to the primal variables x and z. (ii) We update the dual vari-
able u with the minimizers. By performing these operations, ADMM takes the form of
Algorithm 1 [36], where prox, g() [prox ph(')] denotes the proximal operator of pg (ph);
the arrow <— denotes an assignment operation. The proximal operator can be calculated
according to [36] as follows:

. 1
prox, (v) = argmin{pg(x) + 5 [x — vI3}. ®)

Algorithm 1 ADMM algorithm

1: Input: u’ =0, x% and >0
2: fork=1,2,...,tdo

. k k—1 _ . k—1
3: zk — proxpg(xk kul )
4 X eproxph(z +u )
5 uf e uF 4 (2K —xb)
6: end for

7. Return: x!

3.2. Graph-Based Regularization for Depth Map Super-Resolution

In order to promote smooth upscaling and also preserve the structural information,
we consider a graphical representation of a depth map and propose a regularizer that
encodes the spatial relationships between pixels by employing the graph Laplacian matrix.
Assuming that each pixel in the depth map corresponds to a node in a graph and connec-
tions between neighboring pixels are represented by edges, the graph Laplacian matrix is
given by

L=D-W, (7)

where W is the adjacency matrix of the graph, and D is the degree matrix. Therefore, we
define a regularizer of the form
R(x) = x"Lx. (8)

We calculate the proximal operator for i(x) = AxT Lx by solving the following opti-
mization problem:

. 1
prox,,(v) = argmin{ph(x) + 3 |x — v[}3}. ©)

We minimize (9) by setting the gradient to zero. Then, the calculation of the proximal
operator induces to the solution of a quadratic minimization problem, which can be
reformulated as a linear system:

(pI +2AL)x = pv, (10)

where p is the penalty parameter for the ADMM algorithm, and [ is the identity matrix
with shape S?NjN, x S2N;N,. This is a linear system of equations that can be efficiently
solved using modern numerical methods, such as conjugate gradient descent. The matrix
(pI 4 2AL) is sparse, which makes these methods computationally feasible even for large-
scale depth map SR tasks.
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3.3. Feature-Based Graph Laplacian Matrix

Our approach considers the construction of a Laplacian matrix based on the similarity
between pixels on a latent space. Following the approach of recent methods that employ
pretrained neural networks [37-40], we deploy a deep feature extractor to obtain features for
every pixel of the depth map and encode the similarity between features using a Gaussian
kernel. For each pixel in the depth map, we consider its 4-connected neighbors. Then,
the (i, ) element of the adjacency matrix W of the pixels graph contains the weights of the
graph edges and is determined as follows:

I — £13
Wi = exp (—‘Uz” : (11)

where f; and f; are the feature vectors with size equal to fdim, and ¢ is a scaling parameter
to control the sensitivity of the similarity to feature differences. For non-neighboring pixels,
we set Wj; = 0.

As a deep feature extractor, we employed a pretrained neural network. Since we
wanted to learn per pixel features and our task involved spatial dependencies, we explored
different encoder—decoder deep learning models that have been used successfully in dense
prediction tasks, that is, tasks that require representations at a pixel level. Specifically, we
investigated the use of the following models.

DeepLabv3 [41] is an excellent feature extraction method for pixel-level information
and has been deployed in tasks like semantic segmentation. The model captures multi-scale
contextual information by applying dilated (atrous) convolutions with different rates and
can understand both local and global features. This is important when working with
complex structures in depth estimation tasks.

LinkNet [42] is designed to be lightweight while maintaining strong feature extraction
performance through residual connections. Although simpler than the rest of the models
tested, it has proven effective in segmentation tasks.

PAN [43] combines spatial attention mechanisms with multi-scale feature extraction.
The model includes both global context and fine detail, which are valuable components
when dealing with predictions like depth map estimation. Its attention mechanisms help
refine features at different levels, making it an interesting candidate for our comparisons.

Finally, U-Net [26] has shown an excellent performance in tasks requiring detailed
structure preservation. Its skip connections and balanced encoder-decoder architecture
allow for rich feature extraction while retaining spatial precision. All the aforementioned
models have an encoder-decoder architecture. We obtained a deep feature representation of
a considered depth map as the output of the decoder part. Concerning their implementation,
all encoders can be deployed with different backbone neural network blocks, e.g., ResNet34,
ResNet50, etc. We tested various encoder backbones and ultimately selected ResNet-50
pretrained on ImageNet, as it consistently yielded the best results in our experiments.

The whole process for the construction of the Laplacian matrix is depicted in Figure 1.
The feature extractor receives as input a bicubic interpolated depth map and computes
features with dimensions equal to fdim x SN; X SNp, with fdim = 64. After computing the
adjacency matrix, the degree matrix D is calculated as

Dii = ) Wi. (12)
j

Finally, the Laplacian matrix is obtained from (7).
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Deep Feature Extractor Features Laplacian matrix construction

Figure 1. Flowchart presenting the process of the Laplacian matrix construction. We pass the depth
map into the deep feature extractor and construct the Laplacian matrix from the obtained features
instead of traditionally using the depth map pixels.

Figure 2 provides a visual summary of the complete workflow of our proposed
depth map super-resolution method. Starting from a low-resolution depth map, we first
extract deep feature representations using a pretrained encoder—decoder neural network.
These features capture semantic and spatial information, which is used to define the
affinity between pixels in a graph structure. The resulting graph adjacency matrix allows
us to compute the Laplacian, which acts as a regularizer promoting smoothness and
structure preservation. The reconstruction step solves a convex optimization problem
using the ADMM algorithm, integrating both the fidelity to the observed depth values and
the structural priors encoded in the graph. The final result is a refined, high-resolution
depth map.

Feature extraction

LR Depth map HR Depth map

-

Y ADMM —

% = argmin |y — Ax||3 + Ax"Lx

|

Figure 2. Overview of the proposed depth map super-resolution pipeline. A low-resolution depth

E.!.

map is first passed through a pretrained feature extractor to obtain latent features. These features are
used to compute the adjacency matrix of a graph, which is then used to construct the graph Laplacian
regularizer. The depth map is subsequently reconstructed by solving an optimization problem that
balances data fidelity and graph-based smoothness via ADMM. The output is a high-resolution depth
map with preserved structure and reduced artifacts.

Our method integrates graph-based regularization directly into the ADMM frame-
work, and unlike learning-based methods that require extensive training on large datasets,
our method does not include any task-specific training or fine-tuning. This significantly
reduces the need for large-scale training datasets and allows for broader applicability
without the overhead of specialized training. Moreover, we do not use complementary
information from a guided color HR image; we only use a single depth map as input.

4. Results and Evaluation

In this section, we investigate the performance of the proposed method by providing
numerical and visual experimental results. We performed two categories of experiments.
The first involved the deployment of different feature extractors which determined the
selection of the proposed model. The second involved the evaluation of the proposed
framework against state-of-the-art methods.

4.1. Experimental Setup

We conducted experiments on two widely used depth map datasets, namely, DIML
and NYUv2. DIML is a dataset which contains both indoor and outdoor real-world depth
maps; we focused on the indoor depth maps. NYUv2 also contains indoor depth maps
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captured from RGB-D sensors. The experiments involved 5030 samples from the DIML
dataset and 600 samples from the NYUv2.

For our experiments, we used depth map patches of size 256 x 256. We also rescaled
the input and output depth maps in the range [0, 1]. For x4 upsample, the parameters of
the proposed ADMM method were set as follows: A = 1.61, p = 0.11, and ¢ = 2.71. For the
x8 upsample, we used A = 1.01, p = 0.11, and ¢ = 3.21. These parameters were selected
through tuning on a validation set. Specifically, we performed a grid search and evaluated
performance using RMSE. The chosen values correspond to those that achieved the best
performance on the validation set. All the deployed models used RESNET50 as a backbone
encoder pretrained on ImageNet. We ran the algorithm for a total of 15 iterations. For
numerical evaluation, we used the average root mean squared error (RMSE).

To obtain the features from the deployed feature extractors, we used the Segmentation
Models PyTorch, which is a library with pretrained neural networks for image segmentation
based on PyTorch (https://segmentation-modelspytorch.readthedocs.io/en/latest/docs/
api.html#api (accessed on 29 April 2025)). For the code implementation, we used the
Scientific Computational Imaging Code (SCICO) [44], which is a powerful open-source
software framework designed for solving imaging and inverse problems using state-of-the-
art computational algorithms. The hardware setup we used was the following: cpu Intel i3
12100, 16 GB ram, and MSI Geforce RTX 4060 graphics card.

4.2. Performance Comparison Across Selected Models

We present results of the proposed approach by deploying four well-established deep
learning models for feature extraction, that is, U-net [26], DeepLabv3 [41], LinkNet [42],
and the Pyramid Attention Network (PAN) [43]. The datasets were processed in the same
way for all models to ensure a fair and unbiased comparison.

The numerical results obtained for each model are presented in Table 1. For x4 up-
sampling, all models demonstrated a high performance level; however, U-Net consistently
outperformed the others. For x8 upsampling, the difference between U-Net and all other
models became noticeable, showcasing that for higher upsampling rates, the rest of the
models performed worse.

Table 1. Comparison of U-Net with other segmentation models on NYUv2 and DIML datasets in
terms of RMSE.

U-Net [26] DeepLabV3[41] LinkNet [42] PAN [43]

x4 NYUv2 0.015409 0.015611 0.015600 0.015612
x8 NYUv2 0.026526 0.027544 0.027555 0.027546
x4 DIML 0.015288 0.015473 0.015462 0.015473
x8 DIML 0.025857 0.026851 0.026865 0.026852

In Figure 3, we present visual results to compare the reconstructed depth maps for
the four tested models at upsampling factors x4 and x8. As for the x4 case, the visual
differences between the models are not particularly pronounced. This aligns with the
RMSE results, where all the models performed similarly without noticeable differences.
However, for x8 upsampling, the differences became more evident. All other models
appeared slightly noisier, less consistent, and with more artifacts, whereas the U-Net model
maintained smooth transitions. These visual observations confirm that U-Net is more
effective under more challenging upsampling conditions.

The results we obtained reinforced our choice to choose U-Net as the foundational
model for our work. While more complex architectures like DeepLabV3 [41] and PAN [43]
offer powerful context-aware mechanisms, they did not match the accuracy of the U-Net.


https://segmentation-modelspytorch.readthedocs.io/en/latest/docs/api.html#api
https://segmentation-modelspytorch.readthedocs.io/en/latest/docs/api.html#api

Information 2025, 16, 501

9of 16

Also, although more simplistic architectures like LinkNet [42] could offer lightweight and
accurate features, they could not produce results as good as U-Net.

(©) (@ e)

xsuuuu
(a) - - [ - -

(b) (c) (d) (e)

= -

Figure 3. Depth map SR results for upsampling factors x4 and x8. Picture (a) represents the original
image, whereas the rest of the pictures represent the reconstructed depth maps for (b) the U-Net
method [26], (c) the DeepLabV3 method [41], (d) the LinkNet method [42], and (e) the PAN
method [43]. In x4 upsampling rate, the visual differences are subtle, as the RSME differs only by a
small margin. In X8 upsampling rate, the visual difference becomes more clear—for example, in the
left corner of the bolder computer, depth map (b) is less pixelated and more smooth than the others.

4.3. Comparison with Other Methods

To assess the effectiveness of our method, we compared it against state-of-the-art
ADMM-based methods that used different regularizers. Specifically, we compared it with
Plug-and-Play (PnP) methods like DnCNN-ADMM [45], which is a method integrating
deep learning within ADMM, using the DnCNN denoiser for regularization. We also
compared it with BM3D-ADMM [35], which leverages non-local self-similarities to remove
noise and enhance textures, and TV-ADMM [34], which enforces smoothness in images
by using total variation. We further made a comparison against the guided depth map SR
method presented in [15], which applies graph-based regularization using a deep learning
framework. Finally, we conducted experimental comparison on the Deep Attentional
Guided Image Filtering (DAGF) method [46], which uses attention-based filters to adap-
tively transfer structural information from a guidance image to a target image, enabling
accurate and edge-aware image restoration across tasks like super-resolution and texture
removal. For visual comparison, we also included the results from bicubic upsampling.

Table 2 presents average results for x4 and x8 upsampling factors. As can be seen, the
results indicate that our method outperformed all the single-modal ADMM-based methods
used as a baseline. On the NYUv2 dataset, it also outperformed the state-of-the-art DL
method presented in [15], which employs a guidance HR color image. Since our method
achieved better results than [15], it follows that it also outperformed all other methods used
for comparison in [15], that is, DKN [47], FDKN [47], and FDSR [29]. We also observed
that in most cases (x8 upsampling rate on NYUv2 dataset and x4, x8 upsampling rates on
DIML dataset) our method outperformed by a higher margin the second state-of-the-art DL
method presented in [46], for which we made a comparison, and only in the x4 upsampling
rate on the NYUv2 dataset did it perform worse, but with a small difference. In summary,
our method outperformed all existing single-modal ADMM-based methods, whereas we
remained competitive and in some cases outperformed the state-of-the-art DL methods
that used the RGB image as side information.

Note that our method does not need any adaptation to the data and instead relies
on a pretrained network integrated into an ADMM framework. As a result, as seen in
Table 3, while the per-image execution time may appear higher than that of some deep
learning methods (e.g., DAGEF [46] and the approach by de Lutio et al. [15]), those reported
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times only reflect inference and omit the substantial training cost required to obtain the
model. In contrast, our method leverages a fixed pretrained model and does not require
any retraining, making it more practical and computationally efficient in scenarios where
training resources are limited or when applying the method to new domains. On the other
hand, compared to the other ADMM variants, our method has a slightly higher per-image
processing time compared to TV-ADMM and DnCNN-ADMM due to the computation of
the Laplacian matrix that returned better image quality. In comparison to BM3D-ADMM,
we have a lower execution time.

Table 2. Comparison of methods on NYUv2 and DIML datasets in terms of RMSE.

Single Depth Map SR Guided Depth Map SR
Proposed = DnCNN-ADMM [45] TV-ADMM [34] BMS3D-ADMM [35] DAGF[46] de Lutio etal. [15]
x4 NYUv2 0.0154 0.0188 0.0232 0.0273 0.0141 0.0203
x8 NYUv2 0.0265 0.0338 0.0413 0.0666 0.0292 0.0277
x4 DIML 0.0152 0.0161 0.0212 0.0242 0.0201 0.0127
x8 DIML 0.0258 0.0303 0.0393 0.0617 0.0309 0.0187
Table 3. Comparison of the considered methods in terms of execution time (seconds). For the deep
learning methods [15,46], we only consider testing time. Execution time does not depend on the
upsampling factor.
Proposed DnCNN-ADMM [45] TV-ADMM [34] BM3D-ADMM [35] DAGEF [46] de Lutio et al. [15]
NYUv2 8.15 1.75 1.21 8.84 0.05 0.11
DIML 8.30 1.3 1.99 9.5 0.09 0.08

While the numerical results provide an objective measure of performance, the visual
quality is also a significant aspect for depth map SR. In Figure 4, we present the recon-
structed depth maps for x4 and x8 upsampling factors and different methods. Specifically,
we present (a) the HR color image, (b) the reference HR depth map patch, (c) the correspond-
ing LR patch, the reconstructed HR depth maps obtained with (d) bicubic interpolation,
(e) BM3D-ADMM [35], (f) the method of de Lutio et al. [15], (g) DnCNN-ADMM [45],
(h) TV-ADMM [34], (j) DAGEF [46] and (i) our method.

We also include additional visualizations presented in Figure 5 in the form of error
maps, where darker regions (black) indicate low reconstruction error, and brighter col-
ors—ranging from red to orange—highlight areas of higher error. These maps provide
further insight into the spatial distribution of reconstruction inaccuracies across different
methods. The first three rows correspond to the x4 upsampling rate, while the last three
illustrate results for the x8 rate. As shown, our method consistently produced the lowest
reconstruction error across all scenes, with noticeably fewer high-error regions compared
to the other approaches.

As can be seen, our method demonstrates sharper edge preservation and better depth
consistency in structured regions and object boundaries. We observe that the TV-ADMM
method produces overly smoothed and blurry depth maps that lose lots of information
of depth and also quality. BM3D and DnCNN produced better results compared to TV-
ADMM, but they also have the same problem, that is, the depth maps are smoother than
expected, and they do not have sufficient details. We also observed that BM3D tended
to introduce residual noise in texture-heavy regions. The method of De Lutio et al. [15],
which uses a guidance HR image, outperformed the other baseline methods, likely due
to the additional learned weights enhancing depth variations. However, our method
reconstructed the image with finer details and fewer artifacts and provided a good balance
between sharpness and smoothness.
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Figure 4. Depth map SR results for upsampling factors x4 and x8. The reconstructed depth maps
obtained with our method in (i) are compared with (d) bicubic interpolation, (e) BM3D-ADMM [35],
(f) the method of de Lutio et al. [15], (g) DnCNN-ADMM [45], (h) TV-ADMM [34], and (j) DAGEF [46].
We also present (a) the HR color image, (b) the ground truth, and (c) the downsampled depth maps.
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Figure 5. Error maps computed as the absolute difference between the ground truth HR depth
maps and the reconstructed outputs for various methods. (a) represents the HR RGB image, (b) the
HR depth map, (c) the downsampled depth map, the error maps of (d) DnCNN-ADMM [45],
(e) TV-ADMM [34], (f) BM3D-ADMM [35], (g) DAGEF [46], (h) the method of de Lutio et al. [15],
(i) our method, and (j) the predicted depth map of our method. First three rows display results
for x4 upsampling rate, whereas the remaining three display the x8 upsampling rate. Low-error
areas appear in darker colors, whereas areas where the error becomes higher are represented with
increasingly brighter colors ranging from red to orange.

5. Ablation Study

In this section, we present the ablation studies we implemented. Specifically, we
analyzed the contribution of key components in our proposed graph-based SR framework.
Our study initially focused on varying the number of output fdim in U-Net, which affects
the capacity of the neural network. Then, we conducted experiments on various number of
ADMM iterations to investigate the convergence and also the output of the framework nu-
merically and visually. Finally, we explored the employment of complementary information
from a guidance RGB image, which we used as side information.

Experimental Setup and Results

We performed experiments on the NYUv2 and DIML datasets for both x4 and x8
upsampling factors, using RMSE as an evaluation metric. As a baseline, we used the single
depth map SR framework, deploying a U-Net feature extractor with fdim = 64, and a total
of 15 iterations of the ADMM algorithm. In order to test how each of the numbers of fdim
values and the number of iterations affect the framework, we altered one variable at a time
and kept the others unchanged.

In Table 4, we observe that changing the number of output fdim values in U-Net
had an insignificant impact on the RMSE across both datasets and scaling factors. The
performance remained nearly the same for 64, 128, and 256 fdim values. The model with
64 fdim values achieved in most cases either the best or equivalent results compared to
larger values of the number of fdim values. This suggests that increasing the number of
output fdim values does not provide any benefit, while it increases the computational
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and memory demands. Therefore, choosing 64 as the number of fdim values is the most
efficient choice.

Table 4. Results of different number of fdim values of U-Net.

fdim 64 128 256
x4 NYUv2 0.01539 0.01539 0.01539
x8 NYUv2 0.02652 0.02654 0.02656

x4 DIML 0.01528 0.01528 0.01527
x 8 DIML 0.02585 0.02588 0.02590

Next, Table 5 showcases the effect of an HR guidance color image as side information.
The input depth map and the corresponding RGB image were concatenated into a 3D
array of size 4 x height x width of the depth map. The concatenated input was passed
to the feature extractor, and the graph Laplacian matrix was constructed as described in
our proposed framework. The results indicate that including side information offered no
measurable improvement, and in some cases, it performed slightly worse. For example, in
the x8 upsampling rate on both NYUv2 and DIML, removing side information led to better
RMSE scores. This indicates that the network is able to extract sufficient information from
the single-input modality (depth map), and adding the corresponding RGB image as side
information introduces more noise rather that useful guidance. As a result, we conclude
that side information is unnecessary for this task in our framework.

Table 5. Comparison of guided vs. single depth map SR.

Side Info Yes No

x4 NYUv2 0.01540 0.01540

x8 NYUv2 0.02665 0.02652
x4 DIML 0.01530 0.01528
x 8 DIML 0.02598 0.02585

Finally, Table 6 presents the impact of different numbers of ADMM iterations. We
observed a consistent improvement in the RMSE as the number of iterations increased from
5 to 15. However, beyond 15 iterations, the performance became stable, with minimal or
no further improvement. This was especially evident in the x4 NYUv2 case, where the
RMSE remained constant from 10 to 20 iterations. Similarly, for DIML at x 8, the difference
between 15 and 20 iterations was very small. Therefore, 15 iterations appear to offer the
best tradeoff between reconstruction quality and computational cost. Using more iterations
increased runtime without clear benefits.

Table 6. Results of different numbers of ADMM iterations.

Iterations 5 10 15 20

x4 NYUv2 0.01551 0.01540 0.01540 0.01540

x8 NYUv2 0.02781 0.02678 0.02652 0.02654
x4 DIML 0.01535 0.01529 0.01528 0.01529
x 8 DIML 0.02717 0.02615 0.02585 0.02583

6. Conclusions

In this work, we addressed single depth map SR with a model-based approach incorpo-
rating priors of the form of a graph-based regularizer. The obtained optimization problem
was solved with the ADMM algorithm. The proposed method relied on a pretrained deep
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neural network model to capture the latent features of the considered depth maps and
estimate the regularizer. The experimental results on two benchmark datasets have shown
that the proposed method outperformed other ADMM-based solutions as well as deep
learning-based guided SR approaches in terms of both the numerical and visual results.
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ADMM Alternating Direction Method of Multiplier

HR High Resolution

LR Low Resolution

TV Total Variation

NLM Non-Local Mean

AR AutoRegressive

JBP Joint Basis Pursuit

DL Deep Learning

CNNs Convolutional Neural Networks

SRCNNs Super Resolution Convolutional Neural Networks
ESRGANs  Enhanced Super-Resolution Generative Adversarial Networks
RESNET Residual Neural Network

VGG Visual Geometry Group

SRGATs Super Resolution Graph Attention Networks
GAT Graph Attention Network

RMSE Root Mean Squared Error

SCICO Scientific Computational Imaging Code

PnP Plug-and-Play

PAN Pyramid Attention Network

DAGF Deep Attentional Guided Image Filtering
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