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Abstract: Super-resolution (SR) techniques have shown significant promise in enhancing the resolu-
tion of MRI images, which are often limited by hardware constraints and acquisition time. In this
study, we introduce an advanced regularization method for MRI super-resolution that integrates
spatially adaptive techniques with a robust denoising process to improve image quality. The proposed
method excels in preserving high-frequency details while effectively suppressing noise, addressing
common limitations of conventional SR approaches. The validation of clinical MRI datasets demon-
strates that our approach achieves superior performance compared to traditional algorithms, yielding
enhanced image clarity and quantitative improvements in metrics such as the peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM).

Keywords: MRI; super-resolution; regularization method

1. Introduction

Super-resolution (SR) has gained significant attention in recent years, particularly in
medical imaging applications, where the resolution of acquired images is often limited by
hardware constraints, time limitations, and patient comfort considerations. Traditional
medical imaging modalities such as Magnetic Resonance Imaging (MRI) and Computed
Tomography (CT) produce images at a resolution that can restrict the level of detail observ-
able for diagnostic purposes. Increasing the resolution of these images through hardware
improvements is often costly and impractical. As a result, computational techniques like
SR have emerged as a powerful alternative, allowing high-resolution (HR) images to be
reconstructed from low-resolution (LR) inputs without the need for expensive hardware [1–3].

The principle behind SR methods is to overcome limitations by leveraging redundant
information from multiple LR images or sequences, often involving complex algorithms like
regularization methods and machine learning models [4]. Various approaches, from clas-
sic interpolation methods to more advanced neural-network-based models, have been
employed to enhance the quality of medical images in terms of spatial resolution, signal-to-
noise ratio (SNR), and edge preservation [5].

In medical imaging, SR is particularly valuable because it enhances the quality of
images used in diagnostic processes. For instance, MRI scans are used to assess various
medical conditions, and improving their resolution can lead to more accurate diagnoses.
Using SR techniques like Wiener filter regularization [1] or edge-preserving high-frequency
regularization [3] allows for better visual quality in images without increasing acquisition
costs or hardware requirements. Furthermore, neural-network-based SR methods [2] have
demonstrated promising results in improving image quality with reduced computational
time, making them suitable for real-time applications in clinical settings.

The concept of SR in medical imaging has evolved significantly over the years, with var-
ious methodologies proposed to tackle the challenges of resolution enhancement. One of
the early applications of SR to MRI was proposed by Peled et al. [6], where an Iterative
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Back-Projection (IBP) method was used to enhance MRI images of human white matter
fiber tracts. While this method shows some promise, it was limited by the use of synthetic
image data, which do not fully capture the complexities of real-world medical imaging.
Subsequent work by Scheffler [7] addressed this limitation by highlighting the importance
of utilizing original image data for more reliable SR reconstruction.

More recently, the integration of machine learning techniques into SR models has
shown great promise. For example, a method combining iterative regularization with
feed-forward neural networks was proposed by Babu et al. [2], yielding improved results
over previous methods due to its capability of handling noise and producing clearer, higher-
resolution images. This method demonstrates the potential of neural networks to enhance
SR models by reducing computational complexity while maintaining high image quality.

Bayesian methods have also been a major area of exploration in SR research [8–12].
Aguena et al. [1] introduced a Bayesian approach to MRI SR, which employed a Wiener
filter to regularize the iterative solution. This method achieved notable improvements in
both noise reduction and edge preservation. Similarly, Ben-Ezra et al. [4] proposed a regu-
larized SR framework for brain MRI, incorporating domain-specific knowledge to improve
the quality of SR reconstructions. Their approach outperformed traditional maximum a
posteriori (MAP) estimators in terms of both edge clarity and overall image quality.

Moreover, Ahmadi and Salari [3] proposed a high-frequency regularization technique
that combines edge-preserving methods with traditional SR models. Their approach allows
for enhanced edge definition in MRI images without the need for image segmentation,
offering a computationally efficient solution suitable for clinical applications.

The Accelerated Proximal Gradient Method (APGM), as outlined in ref. [13], is a well-
known optimization technique commonly used for solving inverse problems in imaging,
including SR. APGM accelerates the convergence of proximal gradient methods, which are
widely adopted for SR tasks involving regularization. Its primary strength lies in its speed,
as it converges more quickly than traditional gradient methods, making it suitable for
large-scale imaging problems. However, APGM’s effectiveness is heavily dependent on the
choice of regularizer, which influences how well the method can balance smoothness and
sharpness in the reconstructed image. Poorly chosen regularizers can introduce artifacts or
excessively smooth the image. While APGM is flexible and powerful, it requires careful
tuning to achieve optimal results, especially when handling high-frequency details.

Block matching and 3D filtering (BM3D), a renowned denoising algorithm discussed
in ref. [14], uses a collaborative filtering approach to reduce noise while preserving image
structures. For super-resolution tasks, BM3D can act as a regularizer that effectively
manages noise without compromising edges and textures. Its block-matching mechanism
compares similar patches in the image, applying 3D filtering to reduce noise in these
matched blocks. Although BM3D excels at preserving textures and fine details in natural
images, its computational complexity can be high, particularly when dealing with large
images or complex noise patterns. Additionally, the block-matching process may struggle
in scenarios where image structures do not align well with the blocks, leading to potential
loss of detail in areas with intricate textures.

Gu et al. [15] enhanced the BM3D algorithm by introducing weighted nuclear norm
minimization, which improved its performance in image denoising. This modification
further solidified BM3D as a versatile and widely adopted tool in image processing. Al-
though BM3D is primarily an image-denoising algorithm rather than a typical regular-
ization technique, denoising often relies on regularization to reduce noise and improve
image quality. BM3D utilizes collaborative filtering and 3D-transform-domain techniques
to achieve denoising, making it more aligned with advanced signal processing than con-
ventional regularization methods.

Total variation (TV) regularization, a widely used technique in inverse problems, aims
to promote sparsity in image gradients, leading to smoother regions while preserving
sharp edges. TV regularization is known for its simplicity and its ability to retain edge
information, making it a popular choice in SR tasks. However, TV regularization often
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suffers from the staircasing effect, where smooth regions of the image appear blocky or
exhibit artificial edges. Over-regularization can further result in a loss of fine details,
which limits the technique’s applicability in images with rich textures or high-frequency
content [16].

Rapid and Accurate Image Super-Resolution (RAISR), introduced in ref. [17], is a
learning-based SR method that is both computationally efficient and fast. It works by
learning filters that are adaptive to local image features, such as gradients and edge orien-
tations. Unlike deep-learning-based methods that often require significant computational
resources, RAISR is lightweight and quick, making it an attractive option for real-time
applications. Despite its efficiency, RAISR tends to fall short when compared to more
advanced SR methods like deep neural networks in terms of recovering high-frequency
details. Its performance is highly dependent on the quality of the learned filters, and it may
struggle with images that have complex structures or varying noise levels.

PPPV1, as described in ref. [18], is a video super-resolution method, based on the
Plug-and-Play (PnP) framework. This method iteratively refines images, ensuring the grad-
ual recovery of fine details over multiple iterations. A key feature of PPPV1 is its reliance
on a denoising module, originally based on DnCNN (Denoising Convolutional Neural
Network), to remove noise from the image during each step of the reconstruction process.
While DnCNN is effective at reducing noise, it sometimes introduces oversmoothing, espe-
cially in high-frequency regions where texture and fine details are critical. The proposed
improvement to this method involves replacing DnCNN with a custom prior for denois-
ing. This change allows for more control over detail preservation and texture recovery,
potentially reducing the risk of oversmoothing. A well-designed custom prior can provide
a better balance between noise suppression and sharpness, which could lead to more
accurate and visually appealing results, particularly in areas with intricate patterns or
high-frequency details.

In addition to neural-network-based and Bayesian approaches, convex optimization
methods have been explored. Kawamura et al. [5] applied convex optimization techniques
to MRI SR, producing state-of-the-art results by carefully balancing noise suppression and
detail preservation.

Overall, the field of SR in medical imaging is rapidly advancing, with numerous ap-
proaches showing great potential in improving diagnostic imaging and reducing the need for
high-cost imaging hardware. The next phase of research will likely focus on integrating these
various techniques into more robust, real-time systems suitable for clinical environments.

In this paper, we propose an improved PPP regularization method for MRI super-
resolution, utilizing an effective prior specifically designed for denoising and handling mo-
tion between frames. Building upon the foundation of our previous method (PPPV1 [18]),
our approach incorporates an innovative denoiser that significantly enhances performance.
Unlike traditional methods that primarily focus on denoising, our method integrates these
advances into an MRI super-resolution framework.

2. Materials and Methods

The acquisition model we are assuming is

y = Ax + ε, (1)

where

• y is the full set of low resolution (LR) frames, described as y = [ y1
T , y2

T , . . . , yp
T ] T ,

where yk, k = 1, 2, . . . , p are the p LR images. Each observed LR image is of size N1×N2.
Let the kth LR image be denoted in lexicographic notation as yk = [ yk,1, yk,2, . . . , yk,M] T ,
for k = 1, 2, . . . , p and M = N1N2.

• x is the desired high-resolution (HR) image, of size L1N1 × L2N2, written in lexi-
cographical notation as the vector x = [ x1, x2, . . . , xN ]

T , where N = L1N1L2N2
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and L1 and L2 represent the up-sampling factors in the horizontal and vertical
directions, respectively.

• ε = [ ε1, ε2, . . . , εp] T , where εk is the noise vector for frame k and contains independent
zero-mean Gaussian random variables.

• A = [ A1, A2, . . . , Ap] T is the degradation matrix, which performs the operations of
blur, rigid transformation and subsampling.

Assuming that each LR image is corrupted by additive noise, we can then represent
the observation model as [19]

yk = Akx + εk for 1 ≤ k ≤ p (2)

where
Ak = SBk Mk. (3)

Mk is a matrix of size L1N1L2N2 × L1N1L2N2 that performs the rigid transformation,
Bk represents a L1N1L2N2 × L1N1L2N2 blur matrix, and S is a N1N2 × L1N1L2N2 subsam-
pling matrix. In our case, Bk = I, since we assumed no added blur on video frames.

The goal is to find the estimate x̂ of the HR image x from the p LR images yk by
minimizing the cost function

x̂ = arg min
x∈RN

f (x) with f (x) = g(x) + h(x), (4)

where g(x) = ∑
p
k=1

1
2∥Akx− yk∥2

2 is the “fidelity to the data” term, and h(x) is the regu-
larization term, which offers some prior knowledge about x. In this study, we adopt the
Plug-and-Play priors approach, in which the ADMM (Alternating Direction Method of
Multipliers) algorithm is modified so that the proximal operator related to h(x) is replaced
by a denoiser that solves the problem of Equation (5). The denoiser used is based on the
work by Chantas et al. [20].

The following outlines the algorithm we propose:

1. The first step of our algorithm is to evaluate the term Mk from the Equation (3),
by using rigid registration. Rigid registration, also known as rigid body registration
or rigid transformation, is a fundamental technique in medical image processing
and computer vision. It is used to align two images by performing translations and
rotations while preserving the shape and size of the structures within the images [21].
In a 2D plane, a rigid transformation can be represented using a 3× 3 matrix, of-
ten referred to as the transformation matrix. For example, a 2D translation can be
represented as [22]

T =

1 0 tx
0 1 ty
0 0 1


Rotation and reflection matrices can also be formulated similarly. The result of the
rigid transformation is represented as an affine transformation matrix. This matrix
captures the translation and rotation parameters applied to the original image [22].
We assume that one of the LR images, ymid (typically the middle one), is produced
from the HR image x by applying only downsampling, without transformation. Thus,
Mmid = I. Rigid transformation is calculated between ymid and the rest of the LR
images. Following that, we obtain Mk for the remaining p− 1 images.

2. The subsequent phase is centered on employing the PnP-ADMM technique. We
execute the PnP-ADMM, adhering to the procedure outlined in Algorithm 1, until
reaching convergence, in order to minimize the problem described by Equation (4).
The initial HR image guess, x0, is generated from ymid using the pseudo-inverse
of Amid. Here, D represents the denoising operator, introduced and discussed in
Section 2.1, and g is formulated as g(x) = ∑

p
k=1

1
2∥Akx− yk∥2

2.
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Algorithm 1 PnP -ADMM [23]

1: u0 = 0, x0, and γ > 0
2: for k = 1, 2, . . . , t do
3: zk ← proxγg(xk−1 − uk−1)

4: xk ← D(zk + uk−1)
5: uk ← uk−1 + (zk − xk)
6: end for
7: return xt

We next explain the modification made to the standard ADMM algorithm to obtain
PnP-ADMM. Line 4 or the standard ADMM is xk ← proxβh(zk + uk−1). In the PnP-ADMM,
the proximal operator is replaced by a denoiser D that solves the problem

z = x0 + w, where x0 ∼ p, w ∼ N(0; βI). (5)

It can be shown that the Maximum A Posteriori (MAP) estimator x̂0 of x0 is the
proximal operator:

x̂0 = proxβh(z) = arg min
x∈RN

{1
2
∥x− z∥2

2 + βh(x)}, (6)

for h(x) = − log(p(x)).

2.1. The Denoising Algorithm

In this section, we describe the algorithm we use to implement the denoising step
of Equation (6). The algorithm is a simplification of that proposed in ref. [20], and it is
formulated in a probabilistic (Variational Bayes) context and utilizes an effective prior
distribution, which we describe in short next.

2.1.1. The Prior Distribution

The prior distribution we employ for the denoising step was proposed in ref. [20] for
single-image Super-Resolution, and it is of the form

p(x) ∝ ∏
w∈Ω

(
∑

δ∈D

(
1 +

λ

ν
ϵw,δ(x)

)− ν+1
2
)

, (7)

where λ, ν are the real-positive distribution parameters and ϵw,δ is a similarity measure
between two patches, each with a center pixel w and w + δ. The above distribution is
produced after integrating out the hidden variables of the prior in ref. [20]. However, this
form is never explicitly used (it is not necessary) in the optimization algorithm. We show
it here in this form for simplicity of presentation. Indeed, h(x) enables us to interpret the
prior in a deterministic context, analogous to the penalty function imposed on the video
frames; see Equation (6).

We introduce a similarity measure between two image patches, denoted asNw andNw′ ,
where x(w) and x(w′) represent the central pixel of the first and second patch, respectively.

The complete set of pixel coordinates is represented by Ω = {1, . . . , N}. Furthermore,
we define δ as the integer displacement between the center pixels of the two patches,
such that w′ = w + δ. For measuring similarity, we employ a weighted Euclidean norm,
represented by ϵw,δ, to quantify the difference between Nw and Nw′ (or Nw+δ) as follows:

ϵw,δ = ∑
i∈Ω

v2
δ(i)gw(i), (8)

where vδ is defined by vδ = Qδx and v2
δ indicates the vector obtained by squaring each

element of vδ. Qδ represents the difference operator, an N × N matrix, such that the i-th
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component of Qδx equals x(i)− x(i′) for all i, i′ ∈ Ω with i′ − i = δ. The matrix Gw is an
N × N diagonal matrix, where its diagonal elements corresponding to the pixels in Nw are
the only non-zero values, specifically, Gw(i, i) = 0, for all i not in Nw. Lastly, we denote by
gw the N × 1 vector with elements being the weights of the weighted norm: the closer to
the central pixel of the patches, the larger the weight value.

The norm defined by (8) retains its value even if the summation (8) runs over only
the subset Nw ⊂ Ω instead of Ω, since gw(i) = 0 for i /∈ Nw. However, we use the full
summation range over Ω for enabling fast computations with the Fast Fourier Transform,
as explained next.

The distance between the patch Nw=1 and an arbitrary patch Nw′ , w′ ∈ Ω, is
δ = w− w′ = 1− w′. Given that the image patches correspond to g1 and gw′ , it is

gw′(i) = gw=1(i− δ) = g1(i + 1− w), ∀i ∈ Ω. (9)

As we can see, each gw′ is a circularly shifted by w′ version of g1 ≡ g (denoted simply
by g from now on). The Formula (8) for calculating ϵw,δ, expressed in terms of g, is

ϵw,δ = ∑
i∈Ω

v2
δ(i)gw(i) = ∑

i∈Ω
v2

δ(i)g(i + 1− w). (10)

Clearly, the values of ϵw,δ for all w’s are the result of the correlation between v2
δ and g,

since the indices of v2 and g always differ by the constant 1−w. To calculate the correlation
required for the super-resolution technique discussed in the following section, we use the
Fast Fourier Transform (FFT). This approach decreases the computational complexity of
the algorithm from O(N2), typical for correlation calculations, to O(N log N), which is the
complexity for multiplication in the DFT (Discrete Fourier Transform) domain.

2.1.2. Denoising in PnP-ADMM

Next, we describe the algorithm we employ in the PnP-ADMM context of Algorithm 1,
and specifically for the denoising step (line 4). The algorithm we employ, as a denoising sub-
problem of the general super-resolution algorithm (Algorithm 1), is in essence a special case
of the VBPS algorithm in ref. [20], where there is no blurring or decimation. Mathematically
speaking, this means that the imaging operator DH is the N×N identity matrix I, as shown
in line 8 of Algorithm 2.

More specifically, the imaging model assumed for the denoising step is a simplified
form of Equation (2.1) in ref. [20], because it is now DH = I (i.e., no blur/decimation, so it
is just the identity matrix). Also, in this form, zk + uk−1 has the role of the “noisy image”
and xk is the uncorrupted one, meant to be estimated by the denoising algorithm.

Algorithm 2 is the result of the adoption of both the imaging model mentioned above
and the prior (5) for x. Lastly, note that the denoising Algorithm 2 selects, automatically,
in the initialization step, the noise variance β, among other parameters.

Algorithm 2 Variational Bayes Patch Similarity Denoising

Input: Noisy image zk + uk−1.
Output: Denoised image xk.

Initialization:
Image initial estimate: Set αnew = α/2, where α is the regularization parameter obtained
from [24]. Then, set m(0) = xStat, where xStat is the super-resolved image obtained after
setting α = αnew. Parameter selection: Set t = 0, and β = N/∥x− z∥2

2, λ = 103αnew, ν = 7,
rmax = 280, MAXITER = 25 and err= 10−7.



Information 2024, 15, 770 7 of 13

Algorithm 2 Cont.

1: while ∥m(t) −m(t−1)∥2
2/N > err AND t < MAXITER do

2: for every δ in D do
3: vδ ← Qδm(t)

4: for every w in Ω do
5: Calculate the expectations of the following model’s random variables:

⟨aw,δ⟩(t) =
1 + ν

λϵ̂w,δ + ν
,

⟨zw,δ⟩(t) =
e−

λ
2 ⟨aw,δ⟩(t) êw,δ− ν

2 log⟨aw,δ⟩(t)

∑δ e
− λ

2 ⟨aw,δ′ ⟩(t) êw,δ′−
ν
2 log⟨aw,δ′ ⟩(t)

,

where ϵ̂ is the ϵ in (8), calculated with the image estimation provided in the
previous iteration t− 1,

6: calculate b(t)
δ (w) = ⟨aw,δ⟩(t)⟨zw,δ⟩(t), for all w and δ,

7: set Λ
(t)
δ = diag{b(t)

δ ∗ g} (convolution),
8: t← t + 1
9: Obtain m(t) by solving the linear system

(
βI + λ ∑δ QT

δ Λ(t)
δ Qδ

)
m(t) = βy with

the Conjugated Gradients algorithm.
10: end for
11: end for
12: end while
13: T = t; xk = m(T).

We implemented our method in SCICO [25], which is an open-source library for
computational imaging that includes implementations of several algorithms. We used
the main ADMM code implementation from SCICO, which we modified to take into
consideration rigid transformation and to use our custom prior.

To evaluate our method, the widely used publicly available dataset named the cancer
image archive (TCIA) [26] was used in order to compare our results to the previously
proposed method. Specifically, we conducted experiments using a dataset of LR brain MRI
images and a corresponding HR reference dataset.

3. Results

The datasets used in this study were obtained from the Cancer Imaging Archive,
focusing on two distinct collections referred to as Dataset 1 and Dataset 2. Dataset 1 consists
of 26 MRI slices of brain images, while Dataset 2 consists of 28 MRI slices of brain images,
providing diverse imaging conditions for a comprehensive evaluation of our method.
Figures 1 and 2 showcase examples of these images (specifically, slice 001 from Dataset 1
and slice 261 from Dataset 2), but our analysis extends beyond these individual slices.

For the statistical analysis presented in Table 1, we calculated metrics across a broad
sample of slices from each dataset to ensure robustness and reliability. The term “per-slice”
refers to individual MRI slices within each dataset, with slice numbers (e.g., 001, 261)
indicating specific locations within the MRI volume. Additionally, we conducted repeated
convergence runs during our experiments to verify the stability of our algorithm and ensure
consistent results across various slices and datasets.

Our method achieved notable improvements in image quality, as demonstrated by
Figures 1 and 2.

To objectively evaluate the effectiveness of our improved technique, we calculated
the PSNR (Peak Signal-to-Noise Ratio) and conducted comparisons with both alternative
approaches and enhanced versions of our own method.
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Figure 1. Result of image 001 from Dataset 1.

Figure 2. Result of image 261 from Dataset 2.

PSNR computes the peak signal-to-noise ratio between two images in decibels (dB).
This ratio is a quality measurement between the original and the compressed image. PSNR
can take values up to infinity; the higher the PSNR, the better the compressed image quality.
Since the MRI exams in the TCIA dataset contain 16-bit images, in this case, the PSNR is
computed as [27]:

PSNR = 10 log10

(
(216 − 1)2

MSE

)
(11)
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where MSE =
∑N−1

i=0 ∑M−1
j=0 (x(i,j) − x̂(i,j))2

NM , with x(i, j) and x̂(i, j) corresponding to the pixel
value at position (I, j) of the ground truth x (original uncompressed image) and the com-
pressed image x̂ of dimensions N × M, respectively. Note that the term 216 − 1 is the
maximum pixel value in the input image data type.

Specifically, we compared against PPPV1 [18], APGM (Accelerated Proximal Gradient
Method) [13], BM3D (block matching and 3D filtering) [16], total variation [14], RAISR
(Rapid and Accurate Image Super-Resolution) [17] and MIRNetv2 [28], as well as with the
pseudo-inverse and the denoised pseudo-inverse images. The difference between PPPV1
and the currently proposed method is that now we use a custom prior instead of DnCNN
for the denoising, while we use the same rigid transformation. The outcomes, detailed in
Table 1, demonstrate that our method surpasses others in delivering higher image quality.
Finally, the runtime of our method per frame is 14 s, run in Google Colab with T4 GPU.

Table 1. PSNR statistics for the two datasets of all the methods.

Dataset 1 Dataset 2

Average St.Dev Average St.Dev

PPPV1 22.49 0.44 25.26 0.25

Pseudo-inverse 19.52 0.56 22.81 0.26

Denoised pseudo-inverse 20.36 0.51 23.73 0.28

APGM 19.91 0.34 23.78 0.22

MIRNetv2 14.05 0.27 14.26 0.18
PPP 26.59 0.49 25.67 0.65

BM3D 20.58 0.82 23.72 0.36

TV 22.48 0.44 23.50 0.29

RAISR 21.99 0.43 25.77 0.32

The Wilcoxon signed-rank test was used to compare the PSNR values of the proposed
method with the respective values for PPP V1, Pseudo-inverse, Denoised Pseudoinverse,
APGM, BM3D, and TV methods for Dataset 1. The results obtained with those statistical
tests are shown in Figure 3 and indicate statistically significant differences between the PPP
and the other six methods since no per-slice data were available for RAISR and MIRNetv2.

As for the subjective quality evaluation, it is based on the Natural Image Quality
Evaluator (NIQE), which provides a score to assess the quality of images without requiring
a reference. This no-reference quality metric is valuable because it does not need prior
knowledge of specific types of image distortions or perceived degradation. NIQE works
independently of any manually degraded data, which potentially makes it more adaptable
to unexpected quality issues in images. A lower NIQE score suggests a higher perceptual
quality of the image [29].

It is obvious from Table 2 that our method gives promising results. While the PPP method
shows significant improvements over traditional SR techniques on most datasets, it does not
outperform RAISR on Dataset 1 and provides only slight enhancements compared to PPPV1.
This result may be attributed to the inherent characteristics of Dataset 1, such as lower noise
levels, smoother image textures, and prominent edge orientations, which align well with
RAISR’s strengths. As noted in ref. [17], RAISR is a learning-based SR method that adapts
its filters to local image features like gradients and edge orientations, offering computational
efficiency and speed, which make it particularly effective for datasets with these characteristics.
Additionally, the minimal performance difference between PPP and PPPV1 indicates that
certain aspects of our proposed improvements may not fully leverage their potential under
specific conditions. Taking these into consideration, we could say that the results demonstrate
the robustness and effectiveness of our method in enhancing the natural quality of super-
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resolved videos for this specific dataset. It should be mentioned that for a lower upscaling
factor (e.g., 2) the superiority of our method over the other ones was even greater.

Figure 3. Scatter plot representation and the Wilcoxon signed-rank test results of the comparison
for each of the six super-resolution methods (PPP V1, Pseudo-inverse, Denoised Pseudoinverse,
APGM, BM3D and TV) with the PPP method regarding PSNR values for Dataset 1. Four stars
(****) are less commonly used than one, two, or three asterisks in standard practice. The p-values
were calculated using pairwise comparisons of the distributions, performed with MATLAB (version
R2020a). A p-value close to zero, such as p = 0.000 or p = 0.001, is interpreted as statistically significant
for this analysis but should not be overemphasized as an absolute correlation. Notably, RAISR and
MIRNetv2 were excluded from these comparisons due to a lack of comparable data.

Table 2. NIQE statistics for the two datasets of all the methods.

Dataset 1 Dataset 2

Average St.Dev Average St.Dev

PPPV1 6.14 0.15 6.66 0.17

PPP 5.82 0.15 6.39 0.16

Pseudo-inverse 14.13 0.36 14.08 0.35

Denoised pseudo-inverse 14.13 0.36 14.08 0.35

APGM 13.86 0.35 13.03 0.33

BM3D 10.66 0.27 11.92 0.30

TV 12.22 0.31 12.82 0.32

RAISR 5.87 0.15 9.61 0.24

MIRNetv2 7.18 0.18 7.95 0.20

Visually, the PPP images exhibit several distinguishable enhancements. For instance,
the edges are sharper and more defined, which is particularly evident when examining
regions with high-frequency details. Additionally, the noise levels in the PPP images are
noticeably reduced, maintaining the integrity of important structures. This results in a
clearer depiction of fine details essential for accurate diagnosis. In comparison, images
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from conventional methods often display a trade-off between noise suppression and detail
preservation, leading to either excessive smoothing or noise retention.

The segmented comparisons presented in Figures 4 and 5 highlight the visual perfor-
mance of various super-resolution (SR) techniques, including the PPP method, in enhancing
MRI image quality. Observing the segments, it is evident that the PPP method achieves
a notable balance between detail preservation and noise reduction, demonstrating its
superiority over other SR methods.

Figure 4. Segment of image 001 from Dataset 1.

Figure 5. Segment of image 261 from Dataset 2.

4. Discussion

In summary, the results presented in this study highlight the superior performance
of the proposed method in the field of video super-resolution. This method outperforms
state-of-the-art techniques, as demonstrated by the substantial PSNR gains observed on the
datasets used for evaluation. The following key takeaways can be drawn:

• The experimental results demonstrate the superiority of our approach over existing
techniques, underscoring its potential for clinical applications in neuroimaging.

• The practical implications of our results suggest that our method holds great promise
for applications where MRI slice quality enhancement is paramount.

• An advantage of our method lies in its computational simplicity. Unlike deep-neural-
network-based methods, our approach does not rely on neural networks or require
training, which reduces resource demands. However, we acknowledge that the
runtime of our method per frame is 14 s, as measured on Google Colab with a T4 GPU.



Information 2024, 15, 770 12 of 13

While this runtime may not be suitable for real-time applications, it provides a balance
between computational efficiency and the quality of the output, especially for tasks
where real-time processing is not a critical requirement.

These findings make a strong case for the adoption of our method in MRI enhancement
and upscaling tasks. We believe that the approach we suggest has the potential to contribute
significantly to the field of video super-resolution and benefit a wide range of applications.
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