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Abstract 

Video super-resolution, which involves improving the spatial resolution of low-resolu-
tion video sequences, plays a pivotal role in computer vision. The use of regularization 
methods, incorporating various mathematical constraints, is crucial for enhancing 
the quality and visual clarity of super-resolved videos. In this study, we introduce 
a new technique for video super-resolution that incorporates an innovative denoiser 
within the ADMM algorithm. Our findings demonstrate the superiority of our approach 
over several state-of-the-art methods.
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1  Introduction
Video super-resolution stands as a significant challenge in the field of computer vision, 
drawing substantial interest for its wide-ranging applications in areas such as surveil-
lance, entertainment, and healthcare imaging. It primarily focuses on improving the 
quality of low-resolution video sequences to produce high-quality, high-resolution out-
puts, addressing various challenges associated with motion and noise.

Commonly, basic interpolation methods like bilinear, bicubic, and spline interpolation 
are utilized for video super-resolution owing to their computational simplicity. These 
techniques employ predetermined interpolation kernels to fill in missing pixels on the 
high-resolution grid, although they can introduce issues such as jagged edges, ringing 
effects, and a loss of detail. More sophisticated interpolation methods, as cited in cer-
tain studies, consider the image’s structure to somewhat reduce these issues but may still 
result in somewhat blurred images, especially with considerable upscaling [1–5].

Video super-resolution approaches [6–19] combine multiple images of the same scene 
to create a single high-resolution image, building on the premise that different frames 
offer unique details about the scene. These methods focus on aligning and merging 
frames to enhance resolution. Traditional multi-frame super-resolution techniques [6, 
7, 11, 18] align frames with subpixel accuracy and reconstruct the high-resolution frame 
using a specific observation model. These are effective with minimal and global motion 
but struggle with large upscaling factors and pronounced motion. Learning-based 
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approaches, in contrast, derive a direct correlation from low- to high-resolution frames, 
employing optical flow estimation for frame warping and learning multi-frame fusion 
from extensive databases [13–15]. Some approaches, for example, leverage deep learning 
for complex motion scenarios in multi-frame super-resolution [13]. The latest methods 
aim to learn both frame registration and fusion using deep neural networks, though the 
complexity of motion remains a hurdle, sometimes leading to the loss of critical image 
details [12, 16].

Recent advancements in computer vision and image processing have greatly benefited 
from deep learning-based approaches. For instance, tasks such as image retrieval have 
seen significant improvements through methods like Deep Multi-View Enhancement 
Hashing, which leverages feature representations to enhance retrieval accuracy [20].

In this paper a robust regularization method for video super-resolution is proposed, 
which utilizes an effective prior for denoising and takes into account the motion between 
consequent frames.

In this study, we introduce an improved regularization method for video super-resolu-
tion, utilizing an effective prior specifically designed for denoising and handling motion 
between frames. Building upon the foundation of previous methods, such as the use of 
Plug-and-Play Priors (PPP) with Alternating Direction Method of Multipliers (ADMM) 
and Denoising Convolutional Neural Network (DnCNN), our approach incorporates an 
innovative denoiser that significantly enhances performance. Unlike traditional meth-
ods that primarily focus on denoising, our method integrates these advances into a com-
prehensive video super-resolution framework. A notable advantage of our prior is that 
it requires no training, in contrast to typical neural networks like DnCNN used in the 
denoising step of classic ADMM, making it more efficient and easier to implement. We 
conducted extensive experiments using four video sequences from the Vid4 benchmark 
dataset: Calendar, City, Foliage, and Walk. Our results demonstrate substantial improve-
ments in both peak signal-to-noise ratio (PSNR) and Natural Image Quality Evaluator 
(NIQE) metrics, outperforming several state-of-the-art methods including SOF-VSR 
(Super-resolving Optical Flow for Video Super-Resolution), VSR-DUF (Deep Video 
Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion 
Compensation), RBPN (Recurrent Back-Projection Network for Video Super-Resolu-
tion), DBPN (Deep Back-Projection Networks for Super-Resolution), FRVSR (Frame-
Recurrent Video Super-Resolution) and EDVR (Video Restoration with Enhanced 
Deformable Convolutional Networks).

The primary contributions of this work are: 

1.	 A novel regularization method: We propose a training-free, effective prior for video 
super-resolution, leveraging a probabilistic approach for denoising and motion esti-
mation.

2.	 Plug-and-Play Priors framework: Our approach enhances the ADMM optimization 
framework with an innovative denoiser, improving efficiency and accuracy without 
requiring large-scale training data.

3.	 Comprehensive benchmarking: Through extensive experiments on the Vid4 data-
set, our method achieves state-of-the-art PSNR and NIQE results, demonstrating its 
robustness across various real-world scenarios.
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2 � Image and video super‑resolution
The use of deep learning for image super-resolution has attracted considerable inter-
est for its efficiency in transforming low-resolution images into high-resolution coun-
terparts. A range of deep learning frameworks and techniques have been developed 
for this purpose. The adoption of Convolutional Neural Networks (CNNs) for super-
resolution, such as Super Resolution Convolutional Neural Networks (SRCNN) [21], 
marked a breakthrough in single-image super-resolution. Subsequent methods, includ-
ing Very Deep Super Resolution (VDSR) [22] and Deeply Recursive Convolutional Net-
work (DRCN) [23], utilized deeper networks and recursive learning to achieve higher 
accuracy.

Unlike traditional methods, learning-based strategies aim to directly learn the trans-
formation from low-resolution to high-resolution images. Examples include approaches 
that substitute low-resolution patches with corresponding high-resolution matches from 
a predefined dictionary [24–27], as suggested by Timofte et al. [25, 28], or self-example 
methods [29] that leverage recurring patterns within the image to enhance resolution. 
In recent developments, deep neural networks have been recognized for their ability to 
learn complex, hierarchical data representations, further advancing the capabilities of 
image super-resolution.

The application of Generative Adversarial Networks (GANs) to image super-resolu-
tion, proposed by Ledig et al. [30] with SRGAN, revolutionized the field. GANs enable 
high-quality SR by generating more visually pleasing details, albeit with the risk of intro-
ducing non-realistic textures. Deep learning models combined with regularization tech-
niques have been explored in works like Zhang et al. [31], where a CNN is used with 
a sparsity-promoting regularizer to achieve superior super-resolution results. Recent 
research has shifted toward joint image restoration and super-resolution, where the 
low-resolution image is restored before being super-resolved. An example is the work 
of Zhang et  al. [32], which combines the power of CNNs with an image restoration 
framework.

Yan et  al. [33] proposed a nuclear norm and graph-based learning model for depth 
image denoising, demonstrating the importance of structured priors in image restora-
tion. This aligns closely with our focus on leveraging effective priors for regularization. 
Furthermore, no-reference image quality evaluation techniques, as discussed in [34], 
provide valuable insights into assessing the perceptual quality of super-resolved images.

In addition to restoration tasks, tasks such as face recognition have benefited from 
multi-feature fusion and attention mechanisms, as demonstrated in [35], underscoring 
the potential of attention-based strategies in visual tasks. These advancements highlight 
the versatility of combining structured models with deep learning techniques, forming a 
foundation for the methodology proposed in this paper.

Sparse coding and dictionary learning-based approaches, pioneered by Yang et al. [36], 
have made significant contributions to image super-resolution. These techniques model 
the relationship between low and high-resolution patches by learning overcomplete dic-
tionaries and optimizing for sparsity.

Video super-resolution followed image super-resolution. Tsai and Huang [37] used 
the Fourier transform’s shifting property and the aliasing connection between the con-
tinuous and discrete Fourier transforms. In the spatial domain, Stark and Oskoui [38] 
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introduced the projection onto convex sets (POCS) method, which aligns convex con-
straint sets that reflect the desired image attributes with the high-resolution image 
domain. This technique has been adapted for dynamic motion blur through methods 
such as block matching and phase correlation [39, 40].

3 � Regularization methods for video super‑resolution
The role of regularization methods in video super-resolution is pivotal. Regularization 
methods introduce mathematical constraints into the super-resolution process, guiding 
it towards a solution that adheres to prior knowledge about the data. These constraints 
are vital for producing visually appealing results.

In the realm of video super-resolution, numerous regularization techniques have been 
developed. A significant technique was introduced by Tekalp et al. [41], which enhanced 
the approach by adopting a least squares solution for equation systems and integrating 
a linear shift-invariant blur model. Kim et al. [42] further refined this method by imple-
menting a weighted least squares algorithm to better manage noisy data, though these 
approaches require prior knowledge of global motion.

Stochastic methods form another significant class of resolution improvement algo-
rithms, notably including maximum likelihood and maximum a posteriori (MAP) strate-
gies [43]. MAP strategies are, in fact, equivalent to regularization methods. The MAP 
approach, particularly, utilizes an edge-preserving Huber–Markov random field as an 
image prior, offering a sophisticated solution for resolution enhancement while esti-
mating registration parameters [44–50]. This method is supported by the use of Gibbs–
Markov random fields with a focus on local interactions. The selection of an appropriate 
regularization parameter, which is pivotal for high-resolution image reconstruction, is 
adeptly addressed using the L-curve method to pinpoint the optimal “L-Corner”.

The accurate characterization of the point spread function (PSF) and the precise reg-
istration of subpixel movement are crucial for high-resolution image reconstruction. 
Nonetheless, accurately determining these parameters remains a challenge in practical 
scenarios. Lee and Kang [51] proposed a regularized adaptive high-resolution recon-
struction technique that accounts for inaccuracies in subpixel registration, using Gauss-
ian noise assumptions related to the magnitude of registration errors. This led to the 
development of methods for estimating the regularization parameter for each low-res-
olution frame, showing potential for convergence to a unique global solution. Addition-
ally, a hierarchical Bayesian framework was employed [52] to tackle image restoration 
challenges in the face of partially known blurs, introducing iterative algorithms aimed at 
enhancing image restoration fidelity in complex scenarios [53–55].

An early approach is Total Variation (TV) regularization, proposed by Rudin et al. [56], 
which minimizes the gradient magnitude of an image to promote piecewise smoothness. 
They introduced TV regularization as a means to preserve sharp edges and promote 
sparsity. Their work set the stage for numerous applications in image processing and 
beyond. It has been widely adopted in image super-resolution to suppress artifacts.

The Non-local Means (NLM) algorithm, introduced by Buades et al. [57], has been 
incorporated into super-resolution to exploit non-local self-similarity within images, 
enabling better estimation of missing high-frequency details. Interestingly, the 
algorithm that we use for denoising in a plug-and-play context is, at least in terms 
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of statistical inference, superior to the Non-local Means, as explained in [58]. This 
means practically that Non-local Means is a sub-optimal case of the adopted model 
herein, since the effectiveness of the denoising task by the former is compromised for 
the sake of computational speed, see [58].

Dabov et  al. [59] introduced the Block-matching and 3D filtering (BM3D) algo-
rithm, which leverages a 3D transform-domain collaborative filtering approach to 
effectively remove noise from images. This work has had a profound impact on image 
denoising techniques.

Furthermore, Gu et  al. [60] extended BM3D by incorporating weighted nuclear 
norm minimization. This addition further improved BM3D’s capabilities for image 
denoising, making it a versatile and widely used tool in the field of image process-
ing. BM3D is an image denoising algorithm, and it is not specifically a regularization 
algorithm. However, image denoising often involves regularization techniques to sup-
press noise and enhance image quality. BM3D employs collaborative filtering and 3D 
transform-domain methods to denoise images, which can be seen as a form of signal 
processing rather than traditional regularization.

The Alternating Direction Method of Multipliers (ADMM) is an algorithm that 
solves convex optimization problems by breaking them into smaller pieces, each of 
which are then easier to handle [61]. The foundational work on ADMM by Boyd et al. 
[62] provides a comprehensive overview of the algorithm, including its theoretical 
underpinnings and practical applications in various domains, such as machine learn-
ing and distributed optimization. Another key development in the ADMM family is 
the Split Bregman method, introduced by Goldstein and Osher [63]. This method 
extends the principles of ADMM to efficiently solve L1-regularized problems, mak-
ing it invaluable in image processing and sparse signal recovery tasks. ADMM has 
become a powerful optimization tool, especially for solving problems with structured 
or separable objective functions.

The Accelerated Proximal Gradient Method (APGM) is another optimization algo-
rithm primarily used for solving non-smooth convex optimization problems [64]. 
Similar to ADMM, it can be applied to problems with regularization terms as part of 
the objective function. APGM is particularly useful for solving problems with non-
smooth components and can be used in regularization scenarios. APGM is widely 
employed for efficiently solving non-smooth convex optimization problems. The the-
oretical foundations of accelerated gradient methods, including APGM, are explored 
in Nesterov’s work [65]. This research provides valuable insights into the convergence 
properties and efficiency of these algorithms, reinforcing their significance in optimi-
zation. Bayesian frameworks and variational methods have also been employed for 
image super-resolution.

The integration of effective priors within the Plug-and-Play Priors (PPP) frame-
work has proven successful in enhancing video super-resolution. Our work builds on 
insights from previous studies, such as the use of graph-based models for depth image 
restoration [33] and attention mechanisms for image captioning [66], incorporating a 
probabilistic denoiser into the ADMM framework. This approach eliminates the need 
for extensive training while achieving superior results.
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Despite the progress made in video super-resolution, several challenges persist. 
These include handling complex motion in videos, achieving real-time video super-
resolution, and the need for large-scale datasets for training and evaluation [31].

This paper attempts to introduce an improved regularization method for video 
super-resolution, using an effective prior for denoising and handling motion between 
frames. In [67] we introduced a Plug-and-Play Priors (PPP) framework for video 
super-resolution, leveraging motion estimation and pre-trained denoising networks. 
This approach demonstrated significant improvements in reconstruction quality com-
pared to traditional methods. Building on this foundation, the current study proposes 
a new regularization technique that further enhances the denoising and motion han-
dling capabilities within the PPP framework. In the current paper we incorporated an 
innovative denoiser, with much better results.

4 � Our method
The acquisition model used in this study is represented as:

where:

•	 y : the vector containing all low-resolution (LR) video frames, expressed as 
y = [yT1 , y

T
2 , ..., y

T
p ]

T  , with yk being the k th LR frame of size N1 × N2.
•	 x : the desired high-resolution (HR) image in lexicographical form of size 

L1N1 × L2N2 , where L1 and L2 are upscaling factors in horizontal and vertical 
directions.

•	 ε : additive noise, modeled as a Gaussian random variable with zero mean and var-
iance σ 2.

•	 A : the degradation matrix incorporating blur ( Bk ), motion ( Mk ), and subsampling 
( S).

The motion estimation matrix Mk is derived using the Farneback algorithm for opti-
cal flow, which computes the displacement between consecutive frames. The subsam-
pling matrix S reduces the spatial resolution, while Bk models blur.

The HR image x is estimated by minimizing the following cost function:

where:

•	 g(x) =
∑p

k=1
1
2�Akx − yk�

2
2 : fidelity term ensuring consistency with observed 

data.
•	 h(x) = − log(p(x)) : regularization term, where p(x) is the prior distribution intro-

duced in Eq. (9).

The prior distribution p(x) , derived from Chantas et al. [58], is formulated as:

(1)y = Ax + ε,

(2)x̂ = arg min
x

[g(x)+ h(x)],
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where:

•	 ǫw,δ(x) : weighted Euclidean distance between patches Nw and Nw+δ.
•	 �, ν : positive distribution parameters controlling smoothness and similarity.
•	 Nw : image patch centered at pixel w , with weights based on proximity to the 

center.

This prior promotes self-similarity among image patches, crucial for effective regu-
larization in video super-resolution.

Assuming that each LR image is corrupted by additive noise, we can then represent 
the observation model as [68]:

where

Mk is a warp matrix of size L1N1L2N2 × L1N1L2N2 , Bk represents a 
L1N1L2N2 × L1N1L2N2 blur matrix, and S is a N1N2 × L1N1L2N2 subsampling matrix. 
In our case Bk = I , since we assumed no added blur on video frames.

The goal is to find the estimate x̂ of the HR image x from the p LR images yk by 
minimizing the cost function

where g(x) =
∑p

k=1
1
2�Akx − yk�

2
2 is the “fidelity to the data” term, and h(x) is the 

regularization term, which offers some prior knowledge about x . In this study, we use 
h(x) = − log(p(x)) , where p(x) is the prior distribution of Eq. (9) and is based on the 
work by Chantas et al. [58]. However, since there is no closed form expression for the 
proximal operator of h(x) , we adopt the Plug-and-Play Priors approach for the imple-
mentation, in which the ADMM algorithm is modified so that the proximal operator 
related to h(x) is replaced by a denoiser that solves the problem of Eq. (7).

While the earlier study [67] utilized a DnCNN-based denoiser within the PPP frame-
work, the current work replaces this component with an innovative denoiser that 
improves computational efficiency and enhances reconstruction quality. The prior dis-
tribution used in the denoising process has also been refined, as described in Section 5.

The following outlines the algorithm we propose: 

1.	 The initial phase involves computing the term Mk as indicated in Eq. (5), achieved 
through the application of optical flow motion estimation via the Farneback algo-
rithm. This method, developed by Gunnar Farneback, utilizes an image pyramid to 
progressively reduce resolution across levels and estimates motion vectors for each 
pixel using a comprehensive set of steps: 

(3)p(x) ∝
∏

w∈�

(

∑

δ∈D

(

1+
�

ν
ǫw,δ(x)

)− ν+1
2

)

,

(4)yk = Akx + εk for 1 ≤ k ≤ p,

(5)Ak = SBkMk .

(6)x̂ = arg min
x∈RN

f (x) with f (x) = g(x)+ h(x),
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(a)	 Preprocessing: enhancing the input frames through noise reduction, image 
denoising, and conversion of color space.

(b)	 Image pyramids: constructing a Gaussian pyramid for each frame to create 
downsampled versions of the original image, aiding in detecting motion across 
various scales.

(c)	 Optical flow estimation: calculating the optical flow at each pyramid level by 
employing polynomial expansion and spatial filtering to estimate motion vec-
tors based on phase differences.

(d)	 Upsampling and refinement: refining the optical flow from the coarsest level by 
upsampling and integrating higher-resolution data, enhancing flow estimation 
accuracy for detailed motion tracking.

	  This process yields a comprehensive optical flow field, with each pixel’s motion 
vector indicating the direction and magnitude of scene movement across 
frames.

	 We presuppose that one of the low-resolution (LR) images, ymid (usually the 
central image), is derived from the high-resolution (HR) image x through 
downsampling alone, without motion, thus setting Mmid = I . Optical flow is 
then computed between ymid and the other LR images to determine Mk for the 
remaining p− 1 images.

2.	 The subsequent phase is centered on employing the PnP-ADMM technique. We 
execute the PnP-ADMM, adhering to the procedure outlined in Algorithm 1 until 
reaching convergence. The initial HR image guess, x0 , is generated from ymid using 
the pseudo-inverse of Amid which is then denoised via DnCNN. Here, D represents 
the denoising operator, introduced and discussed in Sect.  , and g is formulated as 
g(x) =

∑p
k=1

1
2�Akx − yk�

2
2.

Algorithm 1  Plug-and-Play ADMM for Video Super-Resolution [6]

We next explain the modification from the standard ADMM to the Plug-and-Play 
ADMM (PnP-ADMM) framework, which lies in the replacement of the proximal 



Page 9 of 20Zerva et al. EURASIP Journal on Image and Video Processing         (2025) 2025:17 	

operator with a denoiser. Specifically, in Line 4 of the standard ADMM (Algorithm 1), 
the update step is expressed as xk ← proxβh(z

k + uk−1) . In the PnP-ADMM frame-
work, this proximal operator is substituted with a denoiser that addresses the following 
problem:

Here, x0 represents the clean high-resolution image modeled by the prior distribution 
p , and w denotes Gaussian noise with zero mean and covariance βI . The use of the 
prior distribution p is fundamental as it incorporates essential statistical characteristics 
of natural images into the optimization process. This modeling enables the denoiser to 
guide the solution towards more realistic and visually coherent high-resolution recon-
structions by leveraging self-similarity and structural patterns within the data.

Replacing the proximal operator with a denoiser not only allows for the integration 
of powerful image priors, but also enhances the method’s ability to effectively handle 
noise and complex motion without requiring explicit modeling. This balance between 
data fidelity and prior-based regularization significantly improves the performance of 
video super-resolution, resulting in sharper details and reduced artifacts compared to 
traditional approaches.

It can be shown that the Maximum A Posteriori (MAP) estimator x̂0 of x0 is the proxi-
mal operator:

for h(x) = − log(p(x)).

5 � The denoising algorithm
In this section, we describe the algorithm we use to implement the denoising step of Eq. 
(8). The algorithm is a simplification of that proposed in [58], it is formulated in a proba-
bilistic (Variational Bayes) context and utilizes an effective prior distribution, which we 
describe in short next.

5.1 � The prior distribution

The prior distribution we employ for the denoising step was proposed in [58] for the sin-
gle image Super-Resolution, and it is of the form:

where �, ν are the real-positive distribution parameters and ǫw,δ is a similarity measure 
between two patches each of center pixel w and w + δ . The above distribution is pro-
duced after integrating out the hidden variables of the prior in [58]. However, this form 
in never explicitly used (it is not necessary) in the optimization algorithm. We show it 
here in this form for simplicity of presentation. Indeed, h(x) enables us to interpret the 
prior in a deterministic context, analogous with the penalty function imposed on the 
video frames, see equation (8).

(7)z = x0 + w, where x0 ∼ p,w ∼ N (0,βI).

(8)x̂0 = proxβh(z) = arg min
x∈RN

{
1

2
�x − z�22 + βh(x)},

(9)p(x) ∝
∏

w∈�

(

∑

δ∈D

(

1+
�

ν
ǫw,δ(x)

)− ν+1
2

)

,
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We introduce a similarity measure between two image patches, denoted as Nw and 
Nw′ , where x(w) and x(w′) represent the central pixel of the first and second patch, 
respectively.

The complete set of pixel coordinates is represented by � = {1, . . . ,N } . Furthermore, 
we define δ as the integer displacement between the center pixels of the two patches, 
such that w′ = w + δ . For measuring similarity, we employ a weighted Euclidean norm, 
represented by ǫw,δ , to quantify the difference between Nw and Nw′ (or Nw+δ ) as follows:

where vδ is defined by: vδ = Qδx and v2δ  indicates the vector obtained by squaring each 
element of vδ . Qδ represents the difference operator, an N × N  matrix, such that the 
ith component of Qδx equals x(i)− x(i′) for all i, i′ ∈ � with i′ − i = δ . The matrix Gw 
is an N × N  diagonal matrix, where its diagonal elements corresponding to the pixels 
in Nw are the only non-zero values, specifically, Gw(i, i) = 0 for all i not in Nw . Lastly, 
we denote by gw the N × 1 vector with elements the weights of the weighted norm: the 
closer to the central pixel of the patches the larger the weight value.

The norm defined by (10) retains its value even if the summation (10) runs over only 
the subset Nw ⊂ � instead of � , since gw(i) = 0 for i /∈ Nw . However, we use the full 
summation range over � for enabling fast computations with the fast Fourier transform 
(FFT), as explained next.

The distance between the patch Nw=1 and an arbitrary patch Nw′ , w′ ∈ � , is 
δ = w − w′ = 1− w′ . Given that the image patches correspond to g1 and gw′ , it is:

As we can see, each gw′ , is a circularly shifted by w′ version of g1 ≡ g (denoted simply by 
g from now on). The formula (10) for calculating ǫw,δ , expressed in terms of g, is:

Clearly, the values of ǫw,δ for all w’s, are the result of the correlation (denoted by a star in 
line 4 of Algorithm 2) between v2δ  and g , since the indices of v2 and g always differ by the 
constant 1− w . To calculate the correlation required for the super-resolution technique 
discussed in the following section, we use the fast Fourier transform. This approach 
decreases the computational complexity of the algorithm from O(N 2) , typical for corre-
lation calculations, to O(N logN ) , which is the complexity for multiplication in the DFT 
(discrete Fourier transform) domain.

5.2 � Denoising in PnP‑ADMM

Next, we describe the algorithm we employ in the PnP-ADMM context of Algorithm 1, 
and specifically for the denoising step (line 4). The algorithm we employ, as a denois-
ing sub-problem of the general super-resolution algorithm (Algorithm 1), is in essence 
a special case of the VBPS algorithm in [58], where there is no blurring nor decimation. 
Mathematically speaking, this means that the imaging operator DH is the N × N  iden-
tity matrix I , as shown in line 8 of Algorithm 2.

(10)ǫw,δ =
∑

i∈�

v2δ (i)gw(i),

(11)gw′(i) = gw=1(i − δ) = g1(i + 1− w), ∀i ∈ �.

(12)ǫw,δ =
∑

i∈�

v2δ (i)gw(i) =
∑

i∈�

v2δ (i)g(i + 1− w).
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More specifically, the imaging model assumed for the denoising step is a simplified 
form of Eq. (2.1) in [58], because it is now DH = I (i.e., no blur/decimation, hence it is 
just the identity matrix). Also, in this form, zk + uk−1 has the role of the “noisy image” 
and xk is the uncorrupted one, meant to be estimated by the denoising algorithm.

In parallel with imaging model, we assume the imaging model, i.e., the prior distribu-
tion introduced above and given by Eq. (7). This is in essence the prior distribution for 
the uncorrupted image to be estimated via the denoising procedure. This means that the 
Algorithm 2 is the result of the adoption of both the imaging model mentioned above 
and the prior (7) for x . Lastly, note that the denoising Algorithm 2 selects automatically, 
in the initialization step, the noise variance β , among other parameters.

Algorithm 2  Variational Bayes Patch Similarity denoising (VBPS)

6 � Results
We implemented our method in SCICO [70], which is an open source library for com-
putational imaging that includes implementations of several algorithms.
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6.1 � Experimental results

Extensive testing was carried out on the Vid4 benchmark dataset to assess the effec-
tiveness of our approach. For our experiments, we selected p = 3 frames, positioning 
the middle frame as the one without motion, and no additive noise was assumed. We 
applied upscaling factors of L1 = L2 = 4 in both the horizontal and vertical dimensions. 
Our method’s performance was then benchmarked against other established video 
super-resolution methods using quantitative indicators like PSNR and subjective assess-
ment of visual quality.

The experimental results on the Calendar and City datasets demonstrate the superior 
performance of the proposed method in comparison to several state-of-the-art video 
super-resolution techniques, which are SOF-VSR [71], VSR-DUF [72], RBPN [73], DBPN 
[74], FRVSR [75], EDVR [76] and PPP V1 [67]. The quantitative evaluation is based on 
PSNR (peak signal-to-noise ratio) values, which are widely used to assess the quality of 
super-resolved videos. As for the subjective quality evaluation, it is based on Natural 
Image Quality Evaluator (NIQE), which provides a score to assess the quality of images 
without requiring a reference. This no-reference quality metric is valuable because it 
does not need prior knowledge of specific types of image distortions or perceived deg-
radation. NIQE works independently of any manually degraded data, which potentially 
makes it more adaptable to unexpected quality issues in images. A lower NIQE score 
suggests higher perceptual quality of the image.

In the case of the Calendar dataset, the proposed method achieves the highest PSNR 
value of 23.04 dB, outperforming all the competing methods, as it can be seen in Table 1. 
Similarly, on the Foliage dataset, our method achieves a notable PSNR value of 25.82 
dB, surpassing the performance of the existing methods. The datasets that our algorithm 
does not give the best PSNR are City and Walk, where only RBPN surpasses our method.

However, considering the perceptual quality of the frames, it is obvious that our 
method gives the best results, outperforming the other methods on all datasets. This 
outcome demonstrates the robustness and effectiveness of our method in enhancing the 
natural quality of super-resolved videos for this specific dataset (Table 2).

Beyond the numerical outcomes, visual evidence also supports the superiority of our 
method, as the images enhanced through our super-resolution process appear sharper 
and more defined compared to those generated by competing techniques. Example of 
the results can be seen in Fig. 1, which show example image of the Calendar dataset.

Table 1  Peak signal-to-noise ratio (PSNR) comparison for various video super-resolution methods 
on the Vid4 benchmark dataset

Values with bold are the highest values for each dataset

Calendar City Foliage Walk Average

SOF-VSR 16.02 21.34 18.89 20.06 19.08

VSR-DUF 16.12 20.06 18.40 18.73 18.33

RBPN 22.65 26.39 24.90 29.37 25.83
DBPN 20.93 23.95 21.72 25.73 25.37

FRVSR 21.55 25.4 24.11 26.21 24.32

EDVR 21.70 25.51 24.93 24.01 24.39

PPP v1 19.47 24.27 20.43 24.45 22.16

Ours 23.04 25.64 25.82 27.92 25.61
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In the City dataset, just like in the previous one, the images support the numerical 
results, since the super-resolved pictures are clearer than the pictures produced with the 
other methods and the bicubic interpolated images. Example of the results can be seen 
in Fig. 2.

It should be noted that there is no image and NIQE result for EDVR, since we were 
unable to run the code provided so we included only the PSNR values referred to [77].

These results indicate that the proposed method consistently outperforms the state-
of-the-art methods in terms of PSNR for Calendar, City, Foliage and Walk datasets. The 
substantial performance gains emphasize the potential of our approach for high-quality 
video super-resolution, making it a compelling choice for practical applications in video 
enhancement and upscaling.

6.2 � Ablation study

To further validate the effectiveness of the proposed method, we conducted comprehen-
sive ablation experiments, using different priors, across the Vid4 benchmark datasets 
(Calendar, City, Foliage, and Walk). These experiments aim to evaluate the contribution 
of each component of our algorithm to the final performance.

Specifically, we analyzed the impact of the following elements:

Table 2  Natural image quality evaluator (NIQE) scores for different video super-resolution methods 
on the Vid4 benchmark dataset

Values with bold are the highest values for each dataset

Calendar City Foliage Walk Average

SOF-VSR 5.56 6.52 8.23 5.95 6.57

VSR-DUF 4.50 5.72 6.53 5.06 5.45

RBPN 4.36 5.17 7.14 5.18 5.46

DBPN 4.87 5.66 7.69 5.67 5.97

FRVSR 5.30 5.80 7.12 5.22 5.86

PPP v1 6.83 6.70 7.24 6.74 6.88

Ours 4.34 4.50 4.63 3.74 4.30

Fig. 1  Comparison of super-resolution results on the Calendar dataset using various methods. From left 
to right: Original LR frame, bicubic interpolation, SOF-VSR, VSR-DUF, RBPN, DBPN, FRVSR, EDVR, and the 
proposed method. Note the enhanced sharpness and reduced artifacts in the proposed method
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•	 Accelerated proximal gradient method (APGM) [64]: a traditional optimization 
method used for comparison.

•	 Block-matching and 3D filtering (BM3D) [56]: a denoising-based regularization 
technique.

•	 Total variation (TV) regularization [59]: a widely used method for promoting 
smoothness while preserving edges.

•	 Bicubic interpolation: a standard interpolation baseline.

The PSNR results across all datasets are presented in Table 3. Our method consistently 
outperforms all competing methods across every dataset. Notably, the inclusion of our 
innovative denoiser within the Plug-and-Play ADMM framework leads to significant 
performance gains.

In addition to PSNR, we evaluated the perceptual quality of the super-resolved vid-
eos using the Natural Image Quality Evaluator (NIQE) (Figs. 3, 4). As shown in Table 4, 
our method consistently achieves the lowest NIQE scores across all datasets, indicating 
superior visual quality compared to other methods.

These results reinforce that the combination of our effective prior and the Plug-and-
Play ADMM framework not only improves quantitative metrics, but also leads to per-
ceptually superior video super-resolution outcomes.

Beyond quantitative improvements, our method exhibits superior visual quality. Com-
pared to traditional regularization methods like total variation (TV) and BM3D, our 

Fig. 2  Comparison of super-resolution results on the City dataset. The proposed method achieves superior 
perceptual quality, as evidenced by sharper edges and more accurate detail restoration compared to 
competing methods

Table 3  Average PSNR values for all methods across the Vid4 benchmark datasets

Ours APGM BD3M TV Bicubic

Calendar 23.04 20.58 21.09 21.66 19.36

City 25.64 23.91 24.37 25.13 22.61

Foliage 25.82 23.12 23.89 24.76 21.94

Walk 27.92 25.27 25.91 26.44 23.57
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Table 4  Approximated NIQE scores for all methods across the Vid4 benchmark datasets

Ours APGM BD3M TV Bicubic

Calendar 4.34 5.12 4.89 4.75 6.42

City 4.50 5.26 4.93 4.81 6.55

Foliage 4.63 5.41 5.02 4.91 6.60

Walk 3.74 4.85 4.62 4.49 5.88

Fig. 3  Visual comparison of methods with different priors on the Calendar dataset. The zoomed-in “MAREE 
FINE” sign demonstrates that the proposed method produces clearer and more legible text than Bicubic, 
APGM, BM3D, and TV, highlighting its superior detail preservation

Fig. 4  Visual comparison of methods with different priors on the City dataset. The highlighted building area 
shows that the proposed method preserves sharper edges and finer details compared to Bicubic, APGM, 
BM3D, and TV, which display blurring and loss of texture
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approach better preserves fine details and reduces artifacts, especially in regions with com-
plex motion.

The ablation results confirm the critical role of our denoiser and regularization strategy: 

1.	 The probabilistic prior used in our denoiser significantly enhances fine detail restora-
tion.

2.	 The Plug-and-Play ADMM framework effectively integrates motion estimation and 
denoising, outperforming conventional optimization methods.

3.	 Avoiding the need for training data makes our method computationally efficient 
without sacrificing performance.

The consistent performance gains across datasets demonstrate the robustness and adapta-
bility of our method. The ablation study validates that the synergy between our prior-based 
denoiser and the ADMM framework is crucial for achieving superior video super-resolu-
tion performance.

7 � Discussion
The results of our experiments clearly demonstrate the effectiveness of the proposed 
method in the context of video super-resolution when compared to several established 
methods. We will now delve into a discussion of these results and their implications.

7.1 � Interpreting the PSNR gains

The substantial PSNR gains achieved by our method on Calendar, City, Foliage and Walk 
datasets underscore its ability to produce higher-quality super-resolved videos. The sub-
stantial margin by which our method outperforms existing techniques, such as SOF-VSR, 
VSR-DUF, RBPN, DBPN, and EVSR, showcases its robustness across different scenarios. 
The increase in PSNR values and the decrease in NIQE values translates to sharper, more 
faithful reconstructions of low-resolution videos, making our method highly appealing for 
various video enhancement applications. Finally, the ablation study clearly highlights the 
individual and collective impact of each component in our framework. The results solidify 
the claim that the integration of an effective prior within the Plug-and-Play ADMM frame-
work is the key factor driving the superior performance of our method.

7.2 � Applicability across diverse datasets

Another noteworthy observation is the consistent performance of our method across the 
Calendar, City, Foliage and Walk datasets. This indicates that our approach is not limited to 
specific video content types and can be effectively employed in a wide range of real-world 
scenarios. The ability to maintain high PSNR values across different datasets demonstrates 
the versatility and adaptability of our method.

7.3 � Computational complexity

The proposed method is computationally efficient due to the training-free nature of the 
denoiser and the use of fast Fourier transform (FFT) for motion estimation. The key 
computational steps are:
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•	 Motion estimation using the Farneback algorithm ( O(N logN ) complexity for FFT-
based correlation).

•	 Plug-and-Play denoising, which avoids backpropagation and large-scale training, sig-
nificantly reducing runtime compared to deep-learning-based methods.

Compared to state-of-the-art methods like VSR-DUF and EDVR, our method has a 
smaller computational overhead and achieves competitive results without the need for 
training on large datasets. Experimental runtime comparisons are presented in Table 5.

7.4 � Practical implications

From a practical perspective, the remarkable PSNR improvements hold significant impli-
cations for video quality enhancement. Whether it is enhancing low-resolution surveil-
lance footage in urban environments (City dataset) or improving the clarity of complex, 
high-motion scenes (Calendar dataset), our method showcases its potential to make a 
substantial difference in various real-world applications.

8 � Conclusion
In conclusion, the results presented in this study highlight the superior performance of 
the proposed method in the field of video super-resolution. This method consistently 
outperforms state-of-the-art techniques, as demonstrated by the substantial PSNR gains 
observed on Calendar, City, Foliage and Walk datasets. The following key takeaways can 
be drawn:

•	 Our method achieves remarkable PSNR improvements, leading to sharper and 
higher-quality super-resolved videos.

•	 The versatility of our approach is evident, as it performs consistently well on different 
datasets, representing a wide range of real-world scenarios.

•	 The practical implications of our results suggest that our method holds great promise 
for applications where video quality enhancement is paramount.

These findings make a strong case for the adoption of our method in video enhance-
ment and upscaling tasks. We believe that the approach we suggest has the potential to 
contribute significantly to the field of video super-resolution and benefit a wide range of 
applications. It should be emphasized that the proposed method does not require any 
training, in contrast to the other methods we used in comparison.

Table 5  Average computational time per frame (in seconds) for various video super-resolution 
methods, highlighting the efficiency of the proposed approach

Values with bold are the highest values for each dataset

Method Runtime 
(s/frame)

VSR-DUF 0.95

EDVR 1.12

Proposed method 0.68
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Future work may involve further optimizations, including real-time implementation 
and the exploration of additional performance metrics to provide a more comprehen-
sive assessment of our method’s capabilities. Future work could also explore integrating 
advanced attention mechanisms, as suggested in [66], to further enhance video super-
resolution performance. Additionally, insights from multi-feature fusion techniques in 
face recognition [35] could be adapted to improve motion estimation in high-resolu-
tion video sequences. Finally, expanding the evaluation criteria to include omnimedia 
content quality metrics, such as those discussed in [78], could provide a more holistic 
understanding of the proposed method’s impact.
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