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ABSTRACT 

 

In this work, which addresses issues related to the efficient 

hiding of watermark information in the transform domain, 

we propose to model the transform coefficients with the 

Student-t distribution through the multiplicative rule of 

embedding. Based on the observation that the statistical 

distribution of the transform coefficients has heavy tailed 

behavior, we design a new class of watermark detectors 

following the multiplicative rule of embedding. We present 

experimental results that compare the proposed method with 

known state-of-the-art multiplicative watermark detectors 

and demonstrate its effectiveness in terms of sensitivity and 

robustness. 

Index Terms—multiplicative image watermarking, 

Student-t, DWT, DCT 

 

1. INTRODUCTION 

 

Towards copyright protection and authentication of data, 

digital image watermarking has been an attractive solution. 

The main idea is to hide the known data –the watermark– 

into the digital medium –the host data– in order to provide a 

kind of data protection [1]-[3]. In previous years, various 

methods have been proposed in the image watermarking 

literature, based on statistical decision theory [22]. 

Generally, based on the embedding/detection domain these 

methods are classified as: spatial domain [4]-[7] and 

transform domain [7]-[11]. Common transforms that are 

selected for image watermarking are Discrete Cosine 

Transform (DCT), Discrete Fourier Transform (DFT) and 

Discrete Wavelet Transform (DWT).  

Working in the transform domain, DWT has been proven 

a popular choice [9], [11], [12].  The energy compaction 

property exhibited in the transform domain suggests that the 

distortions introduced by the watermark into a set of 

transform coefficients will be spread over all components in 

the spatial domain so as the change in the pixel values is less 

significant. Depending on the embedding rule used in a 

watermarking system, the secret information is often 

embedded in an additive [4]–[14] or multiplicative way 

[15]–[20].   

Many detectors rely on the Gaussian distribution of the 

data [8], [22], [23]. Although well justified, it has been 

proven suboptimal in transform based watermarking. This 

kind of distribution assumption on the host signal’s 

characteristics does not hold in practice [5]. Various 

previous works [8]-[11] show that the distribution of the  

transform coefficients is far from Gaussian since it contains 

outliers, which cause the distribution to be heavy tailed. 

Thus, following the additive rule of embedding, the 

correlator detector is optimal only when coefficients follow 

Gaussian distribution [2], [8].  But, following the 

multiplicative rule of embedding, the correlator detector 

fails to achieve optimal performance [15]. Working in 

environments like the DFT domain, the correlator still 

works, but it is optimal only when the magnitudes follow 

e.g. the exponential distribution [15].  

An improvement toward better detectors asks for more 

accurate statistical models. From a statistical detection 

theory viewpoint, the original data modeling is very 

important and its influence on detector sensitivity is a crucial 

point [22], [23]. Thus, various pdfs like Gaussian [4], [5], 

Generalized Gaussian Distribution (GGD) [8], Laplacian 

[16], modified Gauss-Hermite [14], Student-t [13] and 

Bessel-K form density [12], have been proposed for the 

DCT or DWT domain for the additive watermarking 

problem.  

Hernandez et al. in their work [8], proposed an extension 

of the Gaussian distribution, known as Generalized Gaussian 

distribution  [16]. Based on this distribution, they modeled 

the 8x8 DCT coefficients, providing a new detector structure 

which outperformed the correlator detector. The same 

statistical model was used in the work of Cheng and Huang 

[7], where they proposed a new DWT based watermark 

detector based on GGD.  Using the DFT domain, a very 

good candidate was Weibull distribution, for which Barni et 

al. [19] proposed an optimum detector. Trying to exploit the 

heavy-tailed distribution of DWT subband coefficients, 

Kwitt et al. [11] proposed the Cauchy member of SaS 

(Symmetric alpha Stable) family distributions. Recently, 

Bian and Liang [12] proposed the application of Bessel-K 

form density and derived appropriate watermark detectors 

for the additive problem. 



In the multiplicative case, robust optimum detectors have 

been proposed for all the aforementioned domains. In the 

work of Cheng and Huang [15], an investigation on robust 

optimum detection of multiplicative watermarks has been 

proposed. Another distribution that has been used in 

multiplicative watermarking in DWT was the Laplacian 

distribution in the work of Ng [16]. This distribution is a 

special case of generalized Gaussian and optimality issues 

can be found in the work of [20]. The Cauchy probability 

model has been proposed in the framework of DCT domain 

multiplicative watermarking by Yin et al. [17].  

In this work we investigate the statistical characterization 

of marginal distribution of the wavelet detail subband 

coefficients (Fig.1) and the distribution of DCT coefficients, 

based on Student’s t distribution [13] and the consequent 

study of its application in the multiplicative watermarking 

problem.  

This paper is organized as follows. The multiplicative 

watermarking problem is briefly explained in Section 2. The 

proposed statistical model of the DWT/DCT coefficients 

and the derived test statistic are given in Sections 3 and 4 

respectively. The models of comparison are given in Section 

5, whereas the numerical results are shown in Section 6. The 

work is concluded in Section 7. 

 

2. MULTIPLICATIVE WATERMARKING PROBLEM 

AND PROPOSED TEST STATISTIC 

Let 1 2[x ,x ,...,x ]T

Nx   be the N -sequence transform 

coefficients of the original image in vector notation, whereas 

the watermark signal that is embedded is defined by 

1 2[w ,w ,...,w ]T

Nw . The watermark is generated based 

on a pseudo-random sequence taking the values {+1,-1} 

with equal probabilities.  Based on these definitions the 

commonly used multiplicative embedding rule [1]–[3] is 

defined by [22]: 

 y x 1 wi i i  , 1,...,i N   (1) 

where 1 2[y ,y ,..., y ]T

Ny   is the sequence of watermarked 

data in vector format and   is the known parameter that 

controls the strength of  the watermark, providing a tuning 

tool between robustness and imperceptibility of the 

watermark [1]–[3]. In order to avoid high degrees of 

distortion a common way of embedding is following an 

adaptive embedding procedure like the multiplicative rule. It 

is well known that the multiplicative watermark detection 

problem can be formulated as a binary hypothesis problem 

where the observation is the possibility that watermarked 

data can be viewed as a noisy environment in which we seek 

for the presence or absence of the hidden information-

watermark [22]: 
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where 
0  is the null hypothesis and 

1  is the alternative 

one.  In order to define a decision rule we resort to the LRT  

(likelihood ratio test): 
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where  0| Hyp y ,  1| Hyp y  are the conditional pdfs under 

the two hypotheses. In addition, assuming that the transform 

coefficients are i.i.d. (independent and identical distributed) 

with pdf   xx ip , we can express the likelihood ratio test as: 
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The i.i.d. assumption is a mechanism that has been proved 

effective over the years [1]-[14]. Even though real images 

are non-stationary processes and cannot be realized as i.i.d. 

signals, they can be regarded as decorrelated signals. 

Nevertheless, for many years the tractability of i.i.d. models 

and the low complexity of the obtained solutions are a good 

motivation to consider this class of models in extent. 

 

3. PROPOSED STATISTICAL MODEL 

It is well known that coefficients of DWT detail/DCT 

coefficients are symmetric, with mean value close to zero 

obeying  leptokurtotic marginal densities (e.g. densities with 

heavy tailed characteristics).  The Student-t distribution is 

defined as [13], [21]: 

 
 

 

1 1

2 21 2
x | 0, , 1 x , 1,...,

2
i iSt i N



  
 

  




     
     

    

 (5) 

where   is called “degrees of freedom”  and is responsible 

for the heavy tailed shape of the distribution. Note that, 

depending on the value of   we can have either the Cauchy 

distribution ( 1)   or the Gaussian distribution ( 10)  . 

The ability of the distribution to capture the whole range of 

the tail’s decay behavior (from a slow decay to a more rapid 

one), results in a robust model with respect to heavy tailed 

data description. The   parameter is called a “precision” 

parameter and is in essence a scale parameter. The proposed 

distribution may be obtained as a compound distribution, 

derived from the normal and the gamma distributions [21]. 

Thus, the application of a Student-t distribution consists of a 

two-level data generation process. Assuming that we have 

the i.i.d. random variable i  that follows Gamma pdf:  

 ( ) / 2, / 2ip Gamma     (6) 

then the wavelet coefficient x i
 is drawn from a Gaussian 

distribution with zero mean and precision parameter λτi : 



    1
x | 0, λτi i ip N


    (7) 

In order to estimate the values of the parameters of our 

interest we resort to the known EM (Expectation 

Maximization) algorithm [13].  

 

 
Fig. 1 Probability density functions of the empirical data, the 

Student-t model and the Gaussian model applied in the second 

level of the wavelet transform for Lena image (horizontal details). 

 

4. PROPOSED TEST STATISTIC 

Taking the logarithm of the likelihood ratio test of Eq. (4), 

and using the conditional Student-t pdfs, under the two 

hypotheses, the decision rule becomes: 
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In either domain we work, by using Eq. (8), we employ N  

coefficients in total. Working in the DWT domain, if we 

need to apply the same test in more subbands, then we can 

follow a “subband adaptive” rule, where the test statistic 

takes the form: 
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Then, parameter k  denotes the specific subband and 

parameter K  the total number of subbands. Thus, in Eq. (9) 

we employ 
kN  coefficients for every subband we use.  

 

5. EMBEDDING 

In this work, we resort to Monte Carlo experiments, through 

“random watermark” experiments. Thus, 1000 

pseudorandomly generated watermarks are added to the two 

known standard test images as  depicted in Fig. 2 (Lena and 

Boat of size 512x512) at every run. Working in the DCT 

domain, we transform the image by 8x8 block-wise DCT. 

Then, we select low- and mid- frequency coefficients as host 

coefficients for watermark embedding. More specifically, we 

embed the watermark information in a total of 13 

coefficients from the third coefficient in a zig-zag order. 

Thus, we have 53248 identically distributed coefficients in 

total. Following the inverse DCT, we have the watermarked 

image. 

Working in the DWT domain, we apply a two-level wavelet 

transform using the db8 wavelet [24] and we embed the 

hidden information using the multiplicative rule of Eq. (2) in 

the second level’s detail subbands trying to balance between 

robustness and perceptual invisibility. The watermarked 

image is then obtained by applying the inverse wavelet 

transform. 

  
(a)   (b) 

  
          (c)            (d) 

Fig. 2 Two known images (watermarking in DWT domain): 

(a, b) Lena, original and watermarked, PSNR=54.48 dB, (c, 

d) Boat, original and watermarked, PSNR=56.14 dB. 

 

6. MODELS OF COMPARISON 

Generalized Gaussian Density (GGD) is a well-established 

model for wavelet detail subband coefficients and has been 

applied in the multiplicative watermarking problem with 

very good results [15]. In addition, we will compare our 

method with the alpha-stable family and more specifically 

with the Cauchy member, since it is the only non-Gaussian 

alpha-stable distribution with a closed form probability 

density function [17]. The modeling of the DWT 

coefficients using the Laplacian pdf and the consequent 

multiplicative detector is also a choice that is used for 

comparison reasons [16]. Though the Laplacian is a special 

form of the GGD distribution, we use it here for better 

comparison between the proposed classes of detectors. The 

Laplacian model has been investigated in the work of Ng 

and Garg in [16]. 

 

7. NUMERICAL EXPERIMENTS 

DCT domain: For low watermark to document ratios 

(WDRs) [13], in Fig. 3 and Fig. 4, we can observe that the 

proposed detector has superior detection performance 

compared with the other detectors. To draw valid 



conclusions about the robustness property, we also run many 

experiments under intentional or unintentional attacks. In 

Fig. 5 the performance under median filtering with size 

equal to 3x3 is depicted using the ROC curves only for the 

image Lena. It is again obvious that the proposed detector 

has better performance when we model the DCT coefficients 

using the Student-t distribution 

DWT domain: According to the experimental results, in Fig. 

6 we observe that the performance of the proposed detector 

is at the same high level with the case of GGD and 

Laplacian based detectors. Considering the case of image 

Boat in Fig. 7, we observe that the performance of the 

proposed detector is still the same, maintaining the same 

high performance level. In Figs. 8 and 9, considering the 

performance of the proposed detector under JPEG attack 

with quality factor of 10%, it is obvious that the proposed 

detector retains the ability to detect watermark better than 

the other detectors for the same WDR value. 

 

Fig. 3 Detection performance comparison in the DCT domain– Image 

Lena, WDR=-63.9 dB. 

 

Fig. 4 Detection performance comparison in the DCT domain – Image 

Boat, WDR=-63.6dB. 

 

Fig. 5 Detection performance comparison under median filtering with 

window size equal to 3x3 in the DCT domain– Image Lena, WDR=-53.5 

dB. 

 

Fig. 6 Detection performance comparison in the DWT domain– Image 

Lena, WDR=-57.02 dB. 

 

Fig. 7 Detection performance comparison in the DWT domain– Image 

Boat, WDR=-57.3 dB. 

  

Fig. 8 Detection performance comparison in the DWT domain under JPEG 

attack– Image Lena, WDR=-55.9 dB. 

 

Fig. 9 ROC curves for the detection performance comparison in the DWT 

domain under JPEG attack– Image Boat, WDR=-55.8 dB. 
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