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ABSTRACT

In order to estimate subjective video quality, we usually deal with

a large number of features and a small sample set. Applying re-

gression on complex datasets may lead to imprecise solutions due to

possibly irrelevant or noisy features as well as the effect of overfit-

ting. In this work, we propose a No-Reference (NR) method for the

estimation of the quality of videos that are impaired by both com-

pression artifacts and packet losses. Particularly, in an effort to es-

tablish a robust regression model that generalizes well to unknown

data and to increase Mean Opinion Score (MOS) estimation accu-

racy, we propose a frame-level MOS estimation approach, where

the MOS estimate of a sequence is obtained by averaging the per-

frame MOS estimates, instead of performing regression directly at

the sequence-level. Since it is impractical to obtain the actual per-

frame MOS values through subjective experiments, we propose an

objective metric able to do this task. Thus, our proposed NR method

has the dual benefit of offering improved sequence-level MOS esti-

mation accuracy, while giving an indication of the relative quality of

each individual video frame.

Index Terms— Estimation accuracy, frame-level quality esti-

mation, MOS, objective metric, sequence-level quality estimation.

1. INTRODUCTION

Continuous technological advancements have enabled the prolifer-

ation of streaming video services and consequently, the matter of

Video Quality Assessment (VQA) has become very popular. Since

the goal of each video communication product is to satisfy user ex-

perience, subjective quality assessment is the most reliable way of

evaluating its quality. Nonetheless, the carrying out of subjective

tests faces many challenges. For example, a large number of view-

ers are required and the viewers are not always available or willing to

rate a large variety of video sequences with different kinds of impair-

ments. In addition, through subjective experiments we are unable to

get instantaneous measurements of video quality due to many practi-

cal limitations. Thus, a single quality value for the whole video does

not provide any information about the individual quality of the video

frames, making it impossible to know which parts of the video have

the greatest influence in forming the viewer’s judgement.

An alternative approach to subjective VQA is to automatically

get video quality scores, through the use of objective metrics [1, 2],

where an ideal objective metric is able to provide quality scores that

highly correlate with human ratings. In the literature, many works

construct objective metrics through the use of various machine learn-

ing techniques, such as Partial Least Squares Regression (PLSR) [3],

Neural Networks (NN) [4], Support Vector Machines (SVM) [5],

and Support Vector Regression (SVR) [6]. Each considered regres-

sion model takes as input a number of quality-relevant features that

account for different types of distortion and influence the accuracy

of MOS estimations [7, 8]. Theoretically, the larger the number of

features, the better the estimation power of the regression model.

However, having a large number of features along with a possibly

small number of observations (sample set) involves the risk of fitting

the model to the noise of the training data, being unable to generalize

well to unseen data (testing data). For this reason, a feature selection

procedure often takes place before video quality estimation [9, 10].

In this work, we propose a No-Reference (NR) quality estima-

tion method for videos that are impaired by both compression ar-

tifacts and packet losses. Our goal is two-fold: i) to improve the

per-sequence MOS estimation accuracy through the development of

a model which is robust and has a good generalization capability,

and ii) to provide a reliable indicator for the quality of each frame

of a video, offering an intuition about their individual contribution

to the overall video quality score. In order to accomplish our goal,

we develop a new metric, which is able to provide quality estimates

for each individual frame. The requirement imposed on this metric

is that its average MOS value over the whole video sequence should

highly correlate with the actual MOS of the video sequence. The

results produced by the developed metric play the role of the target

variables in the regression procedure. Thus, we aim at the develop-

ment of a NR method for the estimation of the MOS for each frame

using features of the received video bitstream, which, when aver-

aged over the whole video sequence, give an accurate estimation of

the MOS of the video sequence.

The works presented in [11, 12] elaborated on the concept of

considering frame quality measurements and measurements over

small parts of video sequences that guide the overall video quality

rating. However, the goal of both [11, 12] is different from the one

of the current paper. In [11] a NR objective metric that provides two

video quality scores per second so as to align with the subjective

results of a Single Stimulus Continuous Quality Evaluation (SS-

CQE) method [13] was introduced, and in [12] the authors applied a

fusion mechanism in order to integrate the scores from some video

intervals into a final one, increasing in this way the correlation with

the MOS.

The rest of the article is organized as follows: Section 2 presents

the objective metric that offers the ground truth of frame video qual-

ity. Section 3 summarizes the extracted features that are used for the

MOS estimation procedure. Our approach for estimating MOS at the

frame-level is analyzed in Section 4 along with experimental results

and a comparison with regression applied directly at the sequence-

level and other recently proposed competing methods. Last, in Sec-

tion 5 conclusions are drawn.



2. FRAME QUALITY GROUND TRUTH

In order to estimate the MOS per frame, it is necessary to obtain the

ground truth for each frame, MOSfr. For this purpose, we propose

here a mathematical tool to help us achieve our goal. Although we

use the term “MOS per frame”, it is clear that ground truth cannot be

obtained using subjective tests where the viewers look at the whole

video sequence. Thus, the proposed MOS per frame can be seen as a

Full-Reference (FR) objective metric, which produces quality scores

for each individual frame. As mentioned previously, it is important

that the average MOS value over all frames of a sequence, MOSfr,

highly correlates with the actual MOS for each sequence, MOSs,

obtained via subjective tests.

The research conducted in [14] proved that an exponential func-

tion can map Peak Signal to Noise Ratio (PSNR) to MOS with high

accuracy, considering the temporal and spatial activity levels of the

video sequence in question. This function is given by:

MOSs = exp

(

PSNRs − a

b

)

− 1 (1)

where the parameters a and b represent the vertical shift and the

steepness of the curve, and MOSs, PSNRs correspond to the MOS

and PSNR, respectively, for each sequence.

In this paper, we propose to use Eq. (1) at the frame level in order

to obtain the ground truth for the MOS per frame. For our experi-

ments, we employ the database of [15] for 4 Common Intermediate

Format (4CIF) resolution sequences (704 × 576 pixels). Our test

material comprises the “Ice”, “Harbour”, “Soccer”, “CrowdRun”,

“DucksTakeOff” and “ParkJoy” sequences of 238, 298, 298, 250,

250 and 250 frames, respectively; the former three sequences are

at 30 frames per second (fps) and the latter three at 25 fps. The

Group Of Pictures (GOP) structure is IBBP with a GOP size of

16 frames. The sources are encoded using the JM 14.2 version of

H.264/AVC reference software using the High profile, where a full

row of MacroBlocks (MBs) is coded as a separate slice and each

of the sequences is corrupted with a Packet Loss Rate (PLR) of

0.1%, 0.4%, 1%, 3%, 5% and 10%, for two channel realizations.

Thus, our dataset consists of 72 distorted versions of the six orig-

inal video sequences (6 original sequences × 6 PLRs × 2 channel

realizations). In addition, in [15] subjective MOS results from the

Ecole Polytechnique Fédérale de Lausanne (EPFL) and Politecnico

di Milano (PoliMi) are also provided. It is to be noted that, in this pa-

per, we conducted experiments using both EPFL and PoliMi MOS

values and a very similar performance was observed. Due to this,

and in order to save space, we present results using only the PoliMi

MOS.

Since the metric proposed in [14] was only tested on CIF res-

olution sequences with a frame rate of 30 fps, it was necessary to

verify if Eq. (1) also fits well to 4CIF resolution sequences at both

30 fps and 25 fps. Experiments carried out on each separate se-

quence showed that the coefficient of determination R2, which is an

indicator of how well the observed outcomes are replicated by the

model, was always greater than 0.92. Based on these results, it is

clear that the exponential shape of Eq. (1) accurately describes the

MOS-PSNR relationship also for 4CIF sequences.

In this direction, for each of the 72 video sequences, we calcu-

late their PSNR values, PSNRs (for the whole sequence), and using

the MOS values of [15], MOSs, we apply Ordinary Least-Squares

(OLS) optimization in order to solve for the parameters a and b of

Eq. (1). Afterwards, we calculate the PSNR values for each frame

of all considered 4CIF sequences, PSNRfr , and next we compute

MOSfr by applying Eq. (1). In other words, we use Eq. (1) for

each frame (instead of the whole sequence as originally proposed

in [14]) in order to obtain the ground truth of the MOS per frame.

For the validation of the quality of the obtained values, we average

the per-frame MOS values to obtain a representative value for each

sequence, MOSfr, and check for correlation with the corresponding

measured values, MOSs.

MOS results obtained using subjective tests are typically com-

pressed at the ends of the 5-point rating scale [15]. In order to impose

the same behavior to our estimates, we apply a non-linear mapping

on the MOSfr values, before computing any of the performance

metrics discussed later. Specifically, we use the cubic polynomial

function given by [16]:

MOS′
fr = a1 MOSfr

3

+ a2 MOSfr
2

+ a3 MOSfr + a4 (2)

which is found to perform well empirically. The weights a1, a2, a3

and the constant a4 are calculated by fitting the function to the data

(MOSfr,MOSs) with the goal of maximizing their correlation.

The relationship between MOS′
fr and MOSs is given by the

scatter plot of Fig. 1, for all 4CIF sequences. From this figure, we

confirm a nearly perfect linear relationship in terms of the Pearson

Correlation Coefficient (PCC) [16], which is equal to 0.99. It is to be

noted that PCC = 1 indicates a perfect positive correlation between

the measured and estimated data.
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Fig. 1: Correlation results.

The estimated a and b parameters as well as the PCC for each

separate sequence are depicted in Table 1. As we can see from this

table, if we apply the parameters a and b to Eq. (1), the subjective

results can be estimated with a nearly perfect precision.

Table 1: Estimated a and b values.

PoliMi MOS

CrowdRun DucksTakeOff Harbour Ice ParkJoy Soccer

a 15.62 15.35 12.08 16.55 15.39 15.97
b 9.99 9.06 14.26 13.44 9.79 12.16
PCC 0.98 1.00 0.99 0.98 0.98 1.00

More light about the efficiency of the aforementioned FR metric

is shed by the results presented on Table 2. A comparison of the em-

ployed metric used for taking per-frame MOS quality values with the

state-of-the-art Perceptual Evaluation of Video Quality (PEVQ) [17]

and Video Quality Metric (VQM) [18] reveals that although all of

these metrics correlate well with MOS, the metric proposed in this

article is even more efficient in terms of PCC [16], Spearman Rank

Order Correlation Coefficient (SROCC) [19] and RMSE [16]. Thus,



our experimental results verify the suitability of the proposed MOS

per frame metric for estimating the actual MOS per sequence.

Table 2: FR objective metrics comparison.

Proposed PEVQ VQM

PCC 0.99 0.96 0.96
SROCC 0.99 0.97 0.96
RMSE 0.18 0.38 0.54

3. FEATURES CAPTURING VIDEO DISTORTION

Except for the ground truth, which is required in supervised learn-

ing regression problems and plays the role of the target variable that

needs to be estimated, a design matrix that includes the values for the

explanatory variables is also assumed so as to be taken as input to a

considered regression model. In this work, we use a large number

of bitstream-based features, 45 in total, that are expected to affect

perceptual video quality. The specific features account for compres-

sion artifacts and packet-loss impairments and, based on how they

relate to the different types of distortion, can be characterized as fea-

tures related to video content characteristics, signal features, error

features, motion features and features related to the effectiveness of

the error concealment technique. Particularly, they are described as

follows:

• Intra[%] is the percentage of I coded MBs in a slice.

• I4× 4inIslice[%] is the percentage of MBs of size 4× 4 in

an I slice.

• I16× 16inIslice[%] is the percentage of MBs of size 16 ×
16 in an I slice.

• IinPslice[%] is the percentage of I coded MBs in a P slice.

• P[%] is the percentage of P coded MBs in a slice.

• P Skip[%] is the percentage of MBs coded as P Skip in a

slice.

• P16× 16[%] is the percentage of P MBs coded with no sub-

partition of MBs in a slice.

• P8× 16[%] is the percentage of P MBs coded with 8 × 16
and 16× 8 partition of MBs in a slice.

• P8× 8[%] is the percentage of P MBs coded with 8 × 8
partition of MBs in a slice.

• P8× 8 Sub[%] is the percentage of P MBs coded with 8×8
in a sub-partition of MBs in a slice.

• P4× 8[%] is the percentage of P MBs coded with 4× 8 and

8× 4 sub-partition of MBs in a slice.

• P4× 4[%] is the percentage of P MBs coded with 4 × 4
sub-partition of MBs in a slice.

• B modes correspond to the same features as referred above

from feature P[%] to feature P4× 4[%], but for B MBs.

• mvx dif, mvy dif are the average measures of motion vector

difference values for x and y direction in a slice.

• mvx av, mvy av are the average measures of motion vector

values for x and y direction in a slice.

• mv zero[%] is the percentage of motion vector values equal

to zero for x and y direction in a slice.

• mv zero dif[%] is the percentage of motion vector differ-

ence values equal to zero in a slice.

• Motion Intensity 1 equals
∑N

i=1

√

mvx av2i +mvy av2i ,

where N is the total number of MBs in a slice.

• Motion Intensity 2 equals
√

mvx av2 +mvy av2.

• mvx abs, mvy abs are the average measures of absolute mo-

tion vector values for x and y direction in a slice.

• Motion Intensity 3 equals
∑N

i=1

√

mvx abs2i +mvy abs2i .

• Motion Intensity 4 equals
√

mvx abs2 +mvy abs2.

• DistToRef is the distance in frames between the current frame

and the reference frame used for concealment.

• FarConceal is a boolean factor, which is true if |DistToRef|
≥ 3.

• LostSlicesInFrame is the number of lost slices in a frame.

• Height is the vertical location of a lost slice within a frame.

• TMDR is the number of frames affected by a lost slice.

• SpatialExtend is the number of consecutive lost slices in a

frame.

• SXTNT2 is a boolean variable, which is true if SpatialEx-

tend=2.

• SXTNTFrame is a boolean variable, which is true if all slices

of a frame are lost.

• Error1Frame is a boolean variable, which is true if TMDR=1.

• MaxResEngy, MeanResEngy are the maximum and mean

residual energy over all the MBs of a slice.

• NotStill is a boolean variable, which is true if the magnitude

of a slice (as it is computed from feature Motion Intensity 2)

is over 1/10 of the highest magnitude value of all sequences.

• HighMot is a boolean variable, which is true if the magnitude

of a slice is over 8/10 of the highest magnitude value of all

sequences.

Some of the aforementioned features are related to the occur-

rence of a packet loss and thus, they are computed at the slice level,

while the features that are related to motion vectors are computed

at the MB level. For our frame-level regression problem, all feature

observations that are calculated at the MB- or slice-level are aver-

aged to obtain representative values for each frame. On the contrary,

for the regression problem at the sequence-level, the frame-level fea-

ture observations are averaged further to get a feature value for each

separate sequence.

4. MOS ESTIMATION PROCEDURE

Having collected the feature observations as well as the MOS ground

truth, we proceed with applying regression. For the frame-level case,

we construct a regression model that generates per-frame MOS es-

timates, EMOSfr, which will be next averaged to provide an over-

all MOS value for each sequence, EMOSfr. For comparison pur-

poses, we also develop a regression model that operates directly

in the sequence-level domain and produces per-sequence MOS es-

timates, EMOSs. Our frame-level dataset includes 19008 feature

observations (one feature value for each frame) and the sequence-

level dataset consists of 72 feature observations (one feature value

for each sequence). Next, we apply Ridge regression [20, 21] in

both the frame- and sequence-level domains.



Table 3: Performance statistics.

Raw dataset Processed dataset Related works

Sequence-level Frame-level Sequence-level Frame-level G.1070E [7] SLRIP + SLRB [8]

PCC 0.87 0.96 0.96 0.97 0.93 0.96
SROCC 0.85 0.96 0.96 0.97 0.91 −
RMSE 0.58 0.34 0.31 0.28 0.37 0.34

Ridge is an extension of the OLS regression method and is able

to improve the OLS estimates by allowing a little bias in order to

reduce the variance of the estimated values. It solves the problem:

min
w

(

1

2

n
∑

i=1

(yi − w
⊤
φ(xi))

2 +
λ

2
‖w‖2

)

(3)

where y includes the measured quality values for all n observations

and xi includes the values for all features for a specific observation

i. The parameter λ ≥ 0 is a regularization parameter, which shrinks

regression coefficient values towards zero. For λ = 0, no shrinkage

is performed and the solution of the OLS is obtained, while for larger

λ values, the closer to zero the regression coefficient estimates. In

our experiments, we set λ = 10−5 in the regression models of both

domains. Therefore, Ridge tradeoffs the sum of squared errors (first

term of Eq. (3)) and the penalty (second term of Eq. (3)).

The column “Raw dataset” of Table 3 presents the PCC, SROCC

and RMSE statistics, when regression is applied in both the frame-

and sequence-level domains, by employing all 45 features extracted

from the bitstreams. For the frame-level case, the MOS estimates for

each frame obtained from Ridge are averaged to obtain a MOS value

for each video sequence, EMOSfr and next, we compare these re-

sults with the actual sequence-level MOS values, MOSs. For the

sequence-level case, the actual MOS values, MOSs, are compared

with the MOS values obtained from Ridge, EMOSs. Examining

the “Raw dataset” results of Table 3, it is clear that regression on

the frame-level dataset guarantees exceptionally good performance

statistics that are definitely better than the statistics achieved by per-

forming regression on the sequence-level dataset.

In an effort to enhance the strength of the sequence-level re-

gression model in making precise estimations, we apply Stepwise

regression [22] so as to elaborate on the extracted features and keep

only the most beneficial of them as well as to make use of their most

favorable pairwise interactions. The specific method starts with an

initial dataset and then compares the explanatory power of incremen-

tally larger or smaller datasets. Algorithm 1 below summarizes the

basic idea of this methodology.

Algorithm 1 Stepwise Regression

Initialize: No predictors in the model.

1: repeat

2: if F-test p-value ≤ 0.05 then // predictors not in the model

3: Add the predictor with the smallest p-value;

4: else if F-test p-value ≥ 0.10 then // predictors in the model

5: Remove the predictor with the largest p-value;

6: else

7: return ;

8: end if

9: until return

This procedure is performed separately in the sequence- and

frame-level domains, and thus, some of our initial features are elim-

inated from each corresponding dataset. At the same time, pairwise

feature interactions are added in order to ameliorate the precision of

the estimations. After conducting Stepwise regression, we end up

with a sequence-level dataset of dimension 72 × 26 and a frame-

level dataset of dimension 19008× 95. This means that the number

of features is significantly reduced in the sequence-level dataset and

considerably increased in the frame-level dataset. Due to space lim-

itations, we do not show in this paper the selected features as well as

their pairwise interactions utilized by the regression models for each

case.

On the processed sequence-level and frame-level datasets, we

again apply Ridge regression (Eq. (3)) to obtain the new MOS es-

timates. The column “Processed dataset” of Table 3 presents the

performance statistics, when regression is performed by employing

only the features and their interactions as indicated after applying

Alg. 1 in both the sequence- and frame-level domains. The provided

results reinforce our claim that a more stable model is achieved when

regression is applied at the frame-level, which offers more precise

MOS estimations compared to the model built at the sequence-level.

Interestingly, only a minor improvement is observed compared to the

already high frame-level performance statistics of the raw dataset.

Regarding the sequence-level case, the correlation measures as well

as the RMSE are considerably improved in this case, compared to

the case of regression on the raw dataset.

Continuing, Table 3 not only includes the comparison of our pro-

posed regression model that operates in the frame-level domain with

the regression procedure performed directly in the sequence-level

domain, but also presents comparison with recent related works [7,

8] (column “Related works”) that develop NR video quality metrics,

based on a similar rationale of using perceptually-driven features.

Both [7] and [8] use the database of [15], and estimate MOS directly

for each sequence. An overall look at the results of this table makes

clear that our approach of exploiting a much larger number of fea-

ture observations as well as the concept of making estimations at the

frame level lead to very good performance statistics that outperform

the results of competing approaches.

5. CONCLUSIONS

In this paper, we proposed a novel No-Reference method for the

quality estimation of videos that are impaired by both compression

artifacts and packet losses. We introduced a Full-Reference met-

ric, which is able to provide the quality ground truth for each frame

and next, we developed a regression method for its estimation, us-

ing a number of features extracted from the received video bitsteam.

The MOS of the video sequence was estimated as the average of the

estimated MOS per frame values. The presented experimental re-

sults show that the proposed frame-domain approach provides more

accurate estimates of the actual MOS of a video sequence than a

sequence-domain approach, and also outperforms recently-proposed

competing methods. Moreover, the proposed method offers the ad-

ditional benefit of providing an indication of the quality of each in-

dividual frame, something that sequence-domain approaches cannot

do.
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