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ABSTRACT

We propose a novel approach for the optimized network resource

management of a Direct Sequence Code Division Multiple Access

(DS-CDMA) visual sensor network. The visual sensors monitor dif-

ferent scenes of varying motion levels, thus different network re-

sources need to be allocated to each sensor. For each recorded scene,

our approach considers its individual content-related parameters, in

contrast with previous methods that group the sensors according to

the amount of motion present in the scene and assign the same trans-

mission parameters to all members of a group. Cross-layer optimiza-

tion is used across the physical, link and application layers. Based

on quality-driven criteria (under the constraint of constant chip rate),

we allocate to each node a suitable continuous power level, a discrete

source coding rate and a discrete channel coding rate. The resulting

problem is solved using the Particle Swarm Optimization algorithm.

Experimental results demonstrate the performance and efficiency of

each criterion.

Index Terms— Cross-layer Optimization, Visual Sensor Net-

work, Nash Bargaining Solution, DS–CDMA, Particle-Swarm Opti-

mization

1. INTRODUCTION

The present work focuses on wireless Direct Sequence Code Divi-

sion Multiple Access (DS–CDMA) Visual Sensor Networks (VSN).

VSN provide a variety of multimedia services like environmen-

tal monitoring, surveillance, automated tracking, etc. Wireless

VSN comprise two parts: a) low-weight distributed nodes that are

equipped with video cameras and b) a centralized control unit. The

nodes communicate with the centralized control unit over the net-

work layer. The centralized control unit applies channel and source

decoding to obtain the received video from each node. A significant

issue that the control unit has to deal with is the resource allocation

among the nodes. Having a network of sensors that are monitor-

ing different scenes means that each sensor has different resource

requirements. Besides this, the issue of interference to the transmis-

sion of the other nodes and the degradation of the received video

quality arises. Owing to all these, a joint strategy for the optimal

allocation of network resources (transmission power, source coding

and channel coding rate) is demanded in order to maintain good

end-to-end video quality.

In previous cross-layer optimization schemes [1, 2, 3], the clas-

sification of the nodes into two classes, low-motion and high-motion,

was performed according to the amount of motion in the scenes they

are imaging. Thus, the power and network resources were allocated

equally for all sensors within each class. In our work, we consider
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each node as individual and not as part of a class, with its own

time-varying video and transmission parameters, requesting a fair

resource allocation.

In this paper, we propose the use of the Nash Bargaining So-

lution (NBS) from Game Theory as an optimization criterion. The

NBS has been used before in video transmission, as in [2, 4]. In

[2], it was used for the cross-layer optimization of a DS–CDMA vi-

sual sensor network with partitioning of the nodes into two classes,

low-motion and high-motion, according to the amount of motion in

the scene they were imaging. All bargaining powers for both classes

were considered equal. In [4], the NBS was used in video streaming

for the problem of allocating the total bit rate among a few video

nodes. Two assumptions were made for the assignment of the bar-

gaining powers to each user: a) using equal bargaining powers and

b) using different bargaining powers, which affects the resource al-

location tradeoffs. The different bargaining powers were assigned

using an algorithm that aims to achieve similar quality levels at the

cost of overall system performance. In the present work, a novel

content-aware version of NBS is introduced. A weight that is tuned

according to the motion level is assumed for each user resulting in

different bargaining powers, and not necessarily equal as considered

in previous works [2].

Furthermore, the transmission power is allowed to take contin-

uous values within a reasonable prespecified range [3], instead of

assuming only specific discrete values as in [1, 2]. The source cod-

ing rate and the channel coding rate can assume only discrete values.

Due to the fact that the resulting optimization problem is a mixed-

integer problem, a stochastic optimization technique is deployed, the

Particle Swarm Optimization (PSO) [5].

The rest of the paper is organized as follows. In section 2, the

basic architecture of the considered VSN is described. The proposed

optimization criteria are detailed in section 3. The experimental re-

sults are presented in section 4, and conclusions are drawn in section

5.

2. CONSIDERED DS–CDMA VSN

In the physical layer, DS–CDMA is used, where all nodes trans-

mit on the same frequency. For a single bit transmission, L chips are

transmitted by a node, hence each node k is associated with a spread-

ing code sk (vector of length L). This means, that in order to transmit

the i-th bit of a bitstream, node k actually transmits bk(i)sk, which

is a vector of L chips with bk(i) taking the values 1 or −1 according

to the value of the transmitted bit [1]. As in [6], we assume that the

interference received from all other nodes at the node of interest can

be modeled as additive white Gaussian noise. Background and ther-

mal noise are considered negligible compared with the interference

and reasonably ignored. Assuming that the VSN comprises K nodes,

each user k operates at power level Sk = EkRk in Watts, where Ek

is the energy-per-bit, and Rk = Rs,k/Rc,k with k = 1, 2, ..., K,
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is the total bit rate used for source and channel coding (Rs,k is the

source coding rate and Rc,k the channel coding rate for node k).

Then, the energy per bit to Multiple Access Interference (MAI) ratio

becomes
Ek

N0

=
Sk/Rk

∑K

j 6=k
Sj/Wt

(1)

where N0/2 is the two sided noise power spectral density due to

MAI in Watts/Hertz, and Wt is the total bandwidth in Hertz.

The H.264/AVC video coding standard is used for the source

coding of the captured videos. For channel coding, Rate Compat-

ible Punctured Convolutional (RCPC) codes are deployed [7], and

Viterbi’s upper bounds are used for bit error probability estimation.

The network resources are allocated to the nodes by the central-

ized control unit at the network layer. This control unit manages

the nodes and may request changes in the transmission parameters

(transmission power, source coding and channel coding rate) with

the aim to achieve optimal performance, under the constraint that the

chip rate Rchip is the same for all nodes. Since we assume that the

spreading code has the same length L for all nodes and the transmis-

sion bit rate is Rk = Rchip/L, the constraint on Rchip corresponds

to a constraint on Rk.

3. PROPOSED METHOD

Our work considers and proposes an efficient method for solving

the following problem; given the constraint that imposes the same

transmission bit rate Rk to all nodes, determine for each node k the

source coding rate Rs,k , the channel coding rate Rc,k and the power

level Sk, so that a function of the overall end-to-end expected dis-

tortion E{Ds+c,k} is minimized. This distortion related function

depends on the deployed criterion. The first criterion results in the

minimization of the average end-to-end distortion (MAD) among all

nodes of the network, whereas the second focuses on the minimiza-

tion of the maximum distortion (MMD). Both criteria have been pro-

posed and tested in our previous work [1, 3], for the case where the

nodes were partitioned into classes according to the motion. The

third and fourth criterion derive from Game Theory and exploit the

bargaining concept to provide an effective network resource tradeoff

among multiple nodes. The VSN optimal performance depends on

the application requirements, which determine the ”fairness” of the

network resource allocation, and hence the preferable criterion.

In order to estimate the expected video distortion due to lossy

compression and channel errors for each user k, we assume the fol-

lowing model, as in [8]:

E{Ds+c, k} = a
[

log10

( 1

Pb

)]−b

, (2)

where Pb is the bit error probability, and parameters a (a > 0) and

b (b > 0) depend on the amount of motion of the video sequence

and the source coding rate. Particularly, a values tend to be low for a

low motion amount in video sequences, and are increasing as motion

gets higher. This means that the values of parameter a are a salient

metric for the motion level. Parameters a and b are determined using

mean square optimization from a few (E{Ds+c,k},Pb) pairs. The

E{Ds+c,k} values are estimated at the encoder using the recursive

optimal per-pixel estimate (ROPE) proposed in [9].

3.1. Criteria based on the Nash Bargaining Solution

We next describe the criteria that are based on the Nash Bargaining

Solution [10]. Each node joins the bargaining game with the aim

of achieving, through cooperation with other nodes, a higher utility

than what it could achieve if it were to operate selfishly, without

cooperation. Clearly, each node would agree to cooperate only if the

utility it would get was at least as high as what it would get without

cooperation. The utility each node can get without cooperation is the

disagreement point (dp).

Let the utility function Uk be the PSNR of the received video:

Uk = 10 log10
2552

E{Ds+c,k}
, (3)

where E{Ds+c,k} is the expected video distortion for node k (where

k = 1, . . . , K, with K being the number of nodes). Both Uk and

E{Ds+c,k} depend on the source coding rate Rs,k and channel cod-

ing rate Rc,k of node k, and the transmission powers Sk of all nodes

(k = 1, . . . ,K) [1].

We define the feasible set U as the set of all possible utility

allocations U = (U1, U2, . . . , UK), which can be achieved using

the available choices of transmission power, source coding rate, and

channel coding rate for each node. The Nash bargaining solution

F (U, dp) is a member of the feasible set that satisfies the following

axioms [10]:

• F (U, dp) ≥ dp

• y > F (U, dp) ⇒ y /∈ U

• Given any strictly increasing affine transformation τ (.),
F (τ (U), τ (dp)) = τ (F (U, dp)).

• If dp ∈ Y ⊆ U , then F (U, dp) ∈ Y ⇒ F (Y, dp) =
F (U, dp).

It can be shown that, in order to find the Nash bargaining so-

lution F (U, dp), we have to maximize the Nash Product. Given a

total target bit rate Rk we determine the vectors of optimal source

coding rates R∗
s , channel coding rates R∗

c , and powers S∗, such that

the Nash Product is maximized:

F (U, dp) = argmax
U

(U1−dp1)
bp1(U2−dp2)

bp2 . . . (UK−dpK)bpK

(4)

subject to the constraint (Uk − dpk) > 0 and ΣK
k=1bpk = 1.

In the present work, we assume that dp ∈ U is the minimum

acceptable PSNR and is determined by the system designer. The

bargaining powers bp are assigned according to the rules of the bar-

gaining game and show which player (node) is more advantaged.

Based on the bargaining powers, we consider two different criteria:

1. e.NBS Criterion: We assume that all nodes are treated

equally. Thus, the bargaining powers are equal to 1/K
for all K nodes.

2. c.NBS Criterion: We propose the assignment of content-

related bargaining powers to the nodes.

Particularly for c.NBS, the resource allocation can be determined

based on the available resources and the video content characteristics

(level of motion) of the participating nodes. The latter characteristic

is represented by the bargaining power of each user. A salient metric

for the level of motion in a video sequence is parameter a from the

deployed rate-distortion model from equation (2). The higher the

motion level in a video sequence is, the higher the value of parameter

a and vice versa. Thus, for the c.NBS criterion, let us define the

bargaining power of each node k as the fraction:

bpk =
ak

ΣK
k=1

ak

(5)
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under the constraint: ΣK
k=1bpk = 1. This implies that the higher the

motion level of a user is, the higher its bargaining power is.

3.2. Employed Optimization Algorithm

Particle Swarm Optimization (PSO) is a stochastic optimization

algorithm that draws inspiration from the social dynamics of liv-

ing organisms. It utilizes a population (called a swarm) of search

points (called particles) that iteratively move within the search

space with an adaptive velocity (position shift), locating the most

promising regions [11]. Each particle has a memory where it stores

the best position it has ever encountered during its movement, i.e.,

the position with the lowest function value. Also, the particles can

exchange information based on abstract communication schemes.

These schemes can be represented by graphs where nodes corre-

spond to particles and interconnections represent communication

links among them. The form of such a scheme is called the neigh-

borhood topology, and it has a crucial impact on the information

flow within the swarm [5].

Let S = {x1, x2, . . . , xN} be a swarm consisting of N par-

ticles, each one defined as an n–dimensional vector, xi ∈ S, i =
1, 2, . . . , N , where S is the search space. Let also vi denote the cor-

responding velocity and pi ∈ S the best position of the i–th particle.

If t denotes the current iteration of the algorithm, then the veloc-

ity and current position of xi are updated according to the equa-

tions [5, 12]:

vi(t+ 1) = χ
[

vi(t) + c1R1

(

pi(t)− xi(t)
)

+

+ c2R2

(

pgi(t)− xi(t)
)

]

, (6)

xi(t+ 1) = xi(t) + vi(t+ 1), (7)

where χ is a parameter called the constriction coefficient; c1, c2 are

positive acceleration parameters called cognitive and social parame-

ter, respectively; and R1, R2 are vectors with components uniformly

distributed in the range [0, 1]. All vector operations in Eqs. (6) and

(7) are performed componentwise. Also, the best position of each

particle is updated as soon as it discovers a better one.

Clerc and Kennedy [12] studied the stability of PSO, propos-

ing parameter values that promote convergence of the algorithm to-

wards the most promising solutions in the search space. Based on

this study, the default set of parameters is defined as, χ = 0.729,

c1 = c2 = 2.05. Its efficiency and the minor required implemen-

tation effort, rendered PSO one of the most popular intelligent opti-

mization approaches. Up–to–date, PSO accounts a vast number of

applications in science and technology, with impressive results [5].

4. EXPERIMENTAL RESULTS

For the evaluation of our proposed criteria, we have considered sev-

eral testing cases, of which two have been chosen to be presented.

The first one is designed as an example to demonstrate the tradeoffs

involved using each of the proposed criteria. It assumes a VSN with

three nodes that view a low, medium and high motion scene rep-

resented by the “Akiyo”, “Salesman” and “Foreman” QCIF video

sequences of 15 frames/s, respectively. The second testing case has

been created with the aim to remain close to reality, where each cam-

era node may record a different motion scene, and therefore a and

b parameters have been randomly assigned for each node. Particu-

larly, video sequences with various motion levels have been consid-

ered and a range from the the lowest motion to the highest has been

Users 1.Foreman 2.Akiyo 3.Salesman

MAD S (Watts) 9.6097 5.0000 7.6583

CS 3 3 3

PSNR (dB) 39.3569 41.1732 39.7637

MMD S (Watts) 11.2150 5.0000 8.6920

CS 3 3 3

PSNR (dB) 39.9345 39.9345 39.9345

e.NBS S (Watts) 8.1560 5.0000 6.9390

CS 3 3 3

PSNR (dB) 38.5607 42.2113 39.8105

c.NBS S (Watts) 15.0000 5.0000 8.3580

CS 3 1 3

PSNR (dB) 42.3753 36.5033 37.9800

Table 1. Testing Case 1: Comparison of Power Allocation and

PSNR results per tested criteria for three nodes.

defined for both a and b. It has been noticed that motion levels affect

a values the most, while b values are moving within a narrow range.

Therefore, we have defined the wide range for a values, generated

randomly a values for all nodes, and according to those we assigned

a corresponding b value.

The continuous power levels were selected from the range S =
[5.0000, 15.0000] Watts. We assumed Binary Phase Shift Keying

(BPSK) modulation and RCPC codes with mother rate 1/4 as in

[7]. The link layer packet size is 400 bits and the target bit rate Rk

was selected to be 96 kbps. The total bandwidth Wt was different

for each testing case. The valid source and channel coding set (CS)

for all nodes is CS ∈ {1 : (32kbps, 1/3), 2 : (48kbps, 1/2), 3 :
(64kbps, 2/3)}. In the PSO algorithm implementation, the discrete

parameters were allowed to take continuous values for the position

and velocity update, although they were rounded to the nearest in-

teger for the evaluation of the particle. Since PSO is a stochastic

algorithm, for each problem instance we conducted 30 independent

experiments. The swarm size and the number of iterations depend

on the considered testing case, and the algorithm performance was

assessed on average. During each experiment, the best detected solu-

tion was recorded. It should be pointed out that the optimal power al-

location is not unique. From Eq. (1) it can be seen that Ek/N0 does

not change if all powers are multiplied by the same constant. This is

due to the fact that background and thermal noise were assumed to

be negligible. Thus, only the optimal power ratio can essentially be

determined. In our results, we have normalized the powers so that

the lowest allocated power is equal to 5.0000 Watts.

Table 1 depicts the four criteria performance on the three nodes

case. The channel bandwidth for this case was set to 1 MHz. The

number of the PSO problem parameters is six, the maximum num-

ber of iterations per experiment was set to 500 for the first testing

case, and the used swarm size was 30. We can see from the video

quality point of view that MAD and e.NBS favor the low motion

sequence, while c.NBS gives priority to the higher motion levels.

MMD achieves the same quality level for all three nodes. On the

other hand, from the power allocation point of view, we have to point

out that the e.NBS allocates lowest total power to the nodes in com-

parison to the other three criteria. The c.NBS assigns the highest

total power and this is considered as the “cost” of achieving higher

quality for the higher motion nodes.

In testing case 2 the number of nodes increases to 20, thus the

PSO problem parameters are now 40. The maximum number of PSO

iterations per experiment was set to 2000, and the used swarm size

was selected to be 200. The bandwidth for this case was set to 10

MHz. Figure 1 (c) depicts the randomly selected motion levels for

CS=3. The parameter a values and the motion level are directly re-
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lated, i.e. the higher the value of a is, the higher the motion level of

the video sequence is. Figures 1 (a) and 1 (b) draw the four criteria

performance on the 20 randomly selected video sequences case. A

first observation of the experimental results for testing case 2 shows

that the performance of all four criteria is in line with the results from

testing case 1. Another observation is that the power levels assigned

to each user are in accordance with the motion levels for all criteria.

Moreover, e.NBS assigns lower power levels for all nodes except for

the low motion nodes. On the other hand, c.NBS increases the power

of the high motion nodes, which are favored. Concerning the quality

performance of the criteria, we have to say that the ”fairness” has

to be decided with respect to the application requirements from the

system designer. If the system requires the best possible quality for

the high motion video sequences, then the recommended criterion

is c.NBS. If the opposite is required, then we recommend using the

e.NBS criterion. Finally, for the case that the system requirements

demand similar quality levels, we recommend the deployment of the

MMD criterion.
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Fig. 1. Testing Case 2: Comparison of Power Allocation and PSNR

results per tested criterion for 20 random nodes.

5. CONCLUSIONS

We have presented a resource allocation method for DS–CDMA

VSN using two criteria based on the NBS and two other optimization

criteria, MAD and MMD. Our approach moves beyond the state-

of-the-art for mainly two reasons. First, the visual sensors are not

grouped according to the amount of motion of the scene they are

imaging and their individual video content related parameters are

considered instead. Second, assigning bargaining powers according

to the motion level of each recorded video sequence, is a type of

content-aware “fairness” and should be useful in many applications.

The experimental results have proved that the relative appropriate-

ness and fairness of the used criteria has to be decided by the system

designer based on the application requirements.
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