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ABSTRACT

In error–prone communications, packet loss results in missing in-
formation of shape, motion and texture of a video object (VO). Er-
ror concealment refers to the recovery of lost information at the de-
coder. In this paper, we propose a spatial shape error concealment
technique. We consider a geometric representation of the shape of
a VO consisting of its boundary, which can be extracted from the
received α-plane. Some boundary parts are missing due to errors.
We propose a method for modeling the received boundary based on
a shape-preserving approximation that uses T–splines. Such an ap-
proximation provides a good estimation of the direction of a missing
boundary segment, which we use to construct a concealment spline
that joins smoothly with the received boundary parts.

Index Terms— Shape coding, error concealment, T-splines.

1. INTRODUCTION

In wireless networks and the Internet, transmitted information is sub-
ject to errors. As retransmission of lost or damaged packets may
incur delay, error resilient methods have been developed to detect
and correct transmission errors. Post processing error concealment
includes estimation of the lost information by making use of the in-
herent correlation among spatially and temporally adjacent samples.

In MPEG-4, a video coder is composed of two parts: the shape
coder and the conventional motion and texture coder. Shape, texture
and motion information can be encoded and transmitted separately.
Due to the encoding of arbitrary shape VOs, shape information is
critical for the representation of a VO. If only texture is lost, shape
and motion can be tapped to conceal texture, while if shape/motion
is lost, the whole packet is discarded. For these reasons shape error
concealment techniques are of great importance.

Three categories of techniques for shape error concealment have
been developed. Temporal techniques use information from previ-
ous video frames. Spatial techniques are based on information of
the neighbouring to the lost part area. Techniques combining both
temporal and spatial information are referred to as temporal-spatial
techniques.

In this paper, we propose a spatial error concealment technique
based on a contour representation of the object shape, i.e., the bound-
ary of its texture (Fig. 1). Channel errors result in broken parts of
the boundary (Fig. 2). The techniques proposed to solve this prob-
lem include the modeling of the received boundary parts and the
construction of a concealment curve based on the modeling curve
(Fig. 3). In [1], Hermite cubic polynomials are used as concealment
curves. An estimation of the first derivatives of the received bound-
ary is necessary to construct the polynomial curve. On each side of
the missing segment, a boundary part is approximated by a quadratic

(a) hammer α-plane (b) hammer boundary

Fig. 1: Binary (a) and contour (b) representation of an object shape.

polynomial. A similar reconstruction based on cubic Bezier curves
is proposed in [2], where the approximation error is minimised by an
iterative algorithm. However, a small approximation error does not
guarantee a good estimation of the first derivative.

As simple polynomials often fail to represent a natural boundary
[3], we propose a concealment technique based on a spline represen-
tation. Moreover, we need an approximation that does not introduce
changes in the boundary slope. We propose an appropriate model-
ing of the received boundary based on a spline approximation that
preserves the characteristics defining the shape. Such an approxima-
tion provides a good estimation of the first derivative, leading to the
construction of a smooth and natural concealment spline curve.

Our problem formulation is presented in section 2. The proposed
boundary modeling and concealment methods are described in sec-
tions 3 and 4, respectively. In section 5, error concealment is applied
to a boundary encoded with B–splines. In section 6, experimental
results are presented. Finally, in section 7, conclusions are drawn.

2. PROBLEM FORMULATION

The basic unit of coding in MPEG-4 is the Video Object Plane
(VOP). A binary shape is described by a binary mask. In the binary
α-plane, pixels of a VOP belonging to the object are assigned an
α-value equal to 1, whereas pixels belonging to the background an
α-value equal to 0. In this paper, we use a geometric description of
the object shape, its boundary. We define the boundary of an α-plane
as the collection of points belonging to the background, which have
at least one 4-connect neighbour (that is with pixels above, below,
to the left and to the right) that belongs to the object (that is their
value is 0 in the α-plane) (Fig. 1). We assume that the boundary is a
closed non-intersecting curve.

A broken boundary can be caused by the loss of a packet con-
taining information corresponding to several boundary points, yield-
ing one or more missing boundary segments. We refer to the points
that touch a missing segment as “connecting points”. We also re-
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Fig. 2: Broken boundary
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Fig. 3: Boundary modeling and error concealment

fer to the boundary slope at each connecting point as the boundary
direction. Our shape error concealment technique consists of two
steps: First, we model the received boundary by solving an approxi-
mation problem; second, we estimate the boundary direction and use
it to construct a curve representing the missing segment (Fig. 3). We
require the new curve direction to coincide with the received bound-
ary direction, so that C1 continuity is achieved. Consequently, the
direction estimation is critical to the construction of a smooth con-
cealment curve.

3. RECEIVED BOUNDARY MODELING

Regarding the modeling of the received boundary, traditional B–
splines could be a solution, if they didn’t fail to preserve essential
properties of the boundary points [4]. In Fig. 4, a B–spline approx-
imation is decreasing to the right of the connecting point, not pre-
serving the zero slope of the boundary at the connecting point. In
order to prevent the approximation from introducing changes of the
boundary direction, we will use monotone least squares splines.

In [4], Beliakov proposed a simple way of producing a monotone
least squares spline by selecting T–splines as basis functions and im-
posing linear inequality restrictions on spline coefficients. The linear
least squares problem becomes a non–negative least squares prob-
lem; for such problems effective and robust methods exist.

3.1. Least squares spline approximation
Let SB be a set of boundary points, SB = (Q0, Q1, . . . , QNB

),
Qi = (xi, yi), i = 0, . . . , NB . A least squares spline approxima-
tion is a piecewise polynomial C,

C(u) =
n∑

i=0

bi · fi(u), u ∈ [0, 1], (1)

which forms a solution to the problem

min
bi∈R2

NB∑
k=0

[Qk −C(ūk)]2 , (2)

Boundary points
T-spline approximation
B-spline approximation
Tangent vectors
Connecting point

Fig. 4: T–spline approximation and estimation of the tangent vec-
tor at the connecting point, where the boundary slope is zero. T–
spline approximation provides the right slope estimation as it pre-
serves boundary monotonicity. B-spline approximation results in a
wrong (negative) slope estimation.

where fi are the spline basis functions and bi are the unknown spline
coefficients or approximation control points. For the calculation of
the values of ūk, k = 0, . . . , NB that affect the parameterization of
the curve, the “chord length” method could be used [3].

3.2. Monotone spline approximation using T–splines
According to [4], if we use second degree T–splines basis functions,
we can construct an increasing quadratic approximation. The nec-
essary and sufficient condition for monotonicity is bi ≥ 0, i =
0, . . . , n. For a definition of T–splines see [5]. Under the mono-
tonicity condition, the linear least squares problem (2) becomes a
non-negative least squares problem.

Morever, in our problem we need the approximation to interpo-
late connecting points. Interpolating the first point is achieved by
setting b0 = Q0. A practical way to force the approximation to pass
through the last point, without making the above problem more com-
plicated, is to assign a weight w to the last term of the sum in (2). A
very large value for w may lead to trivial solutions. A value that is a
little greater than the number of data points is an acceptable choice
for w.

Under all restrictions above, (2) finally becomes

min
bi≥0

[
NB−1∑
k=1

(
Qk − C(ūk)

)2
+ w ·

(
QNB

−C(ūNB
)
)2

]
, (3)

which can be solved using Matlab’s subprogram lsnonneg.
Having computed the control points bi, we can use B–spline

conversion formulas [4] to get a stable and effective calculation of
the approximation curve C. For monotonically decreasing splines,
the results are analogous.

Fig. 4 shows an approximation curve that was constructed with
the above method, providing a good estimation of the boundary di-
rection, a goal that cannot be achieved by a B–spline approximation.

3.3. Shape-preserving boundary approximation
In order to apply the T–splines approximation method, we have to
select a suitable boundary part. We search along the boundary to
choose NB + 1 consecutive points. NB + 1 should be equal to
the estimated number of lost points. This value may be reduced
as the selected part must satisfy the following conditions: First,
we have to ensure that this part can be approximated by a func-
tion, i.e., to select points Qi = (xi, yi) that satisfy the condition
xi ≤ xi+1 or xi ≥ xi+1, ∀i = 0, . . . , NB . Second, we have to
select a part of increasing or decreasing monotonicity. However, a
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Fig. 5: Approximation of the received boundary on each side of the
missing segment and determination of new control points. The ap-
proximation control points and the estimated tangents at the connect-
ing points are used to find the new control points.

minor variation in monotonicity is allowed as it does not affect the T–
spline approximation results. In Fig. 4, the change in monotonicity
introduced by the fourth point before the connecting point is ignored
while selecting the boundary points.

Because of the free form of a boundary, it is difficult to prede-
fine the complexity of the approximation curve, which is determined
by the number of the spline segments or equivalently, by n + 1, the
number of the control points bi (Eq. (1)). In order to minimise the
approximation error, we may need to execute a few iterations of the
approximation method, in which we gradually increase n + 1. If
it reaches half the number of the boundary points and we still can-
not obtain an acceptable approximation, we gradually shorten the
selected boundary part. By removing boundary points we get a sim-
pler boundary form, easier to approximate. The detailed results of
the approximation method can be seen in Fig. 5.

4. CONCEALMENT CURVE CONSTRUCTION

4.1. New control points
Suppose we have found the left boundary approximation, Cl, which
is represented by the control points (P 0

l , . . . , P n
l ). We recall that Cl

interpolates P n
l , the left connecting point. The tangent line at P n

l

passes through control point P n−1

l [3]. We can find a new control
point, P s

l , on the tangent vector in the way that was proposed in
[2]; namely P s

l is symmetric to P n−1

l with respect to P n
l (Fig. 5).

This way the tangent vectors on each side of the connecting point
P n

l coincide and C1 continuity between the approximation and the
concealment curve is achieved. Similarly, we obtain another control
point P s

r at the right boundary part.

4.2. Concealment curve
Having two connecting points and two new control points, we can
use four control points (P0, P1, P2, P3) = (P n

l , P s
l , P s

r , P 0
r ) to get

a concealment curve. We could use various types of curves such as
cubic polynomials [1] or cubic Bezier [2]. We propose the quadratic
B–spline curve because it has a more natural appearance compared
to a cubic polynomial, passes closer to new control points compared
to a cubic Bezier and joins smoothly to the known boundary approx-
imation curves. The concealment B–spline curve is obtained by

C(u) =
3∑

i=0

Pi ·Ni,2(u), 0 ≤ u ≤ 1, (4)

with Ni,2 the i-th quadratic B–spline basis function. Figs. 3 and 6

Connecting points
Missing segment

Reconstructed boundary

Fig. 6: Boundary after concealment.

Dn,avg Dn,low Dn,high

hammer 0.011 0.000 0.025
fountain 0.004 0.000 0.010

fork 0.013 0.004 0.025

Table 1: Arithmetic results of the proposed method.

show the concealment results for the example illustrated in Fig. 2.

5. ERROR CONCEALMENT FOR A BOUNDARY
ENCODED WITH B–SPLINES

The previous discussion applies to the error concealment of any
boundary, regardless of how it was encoded. If the object boundary
encoding scheme is based on a spline approximation, the received
information consists of the approximation control points. If the
introduced distortion is small, the approximation curve can be con-
sidered a shape–preserving representation of the original boundary.
In such a case, the boundary modeling step is not necessary for error
concealment.

In [6] a shape coding method is proposed, based on a bound-
ary approximation that uses quadratic B–splines. The approxima-
tion lies inside a distortion band along the original boundary. The
distortion band width defines the approximation quality. If the width
is kept small, the approximation curve does not introduce changes in
boundary direction.

In order to apply the proposed concealment method, the received
control points representing the boundary parts on each side of the
missing boundary segment can be used. New control points can be
determined in the way described in section 4.1 and a concealment
curve can be constructed according to (4).

6. EXPERIMENTAL RESULTS

A number of experiments were performed, some of which are pre-
sented here. In order to quantify the performance of the proposed
concealment method, we will use a relative measure, the ratio Dn

of the number of different pixels in the original and reconstructed
α-plane divided by the total number of object pixels in the origi-
nal α-plane. This is a quality metric used in MPEG-4 to evaluate
shape coding techniques. We will compare our method to the error
concealment method proposed by Soares and Pereira [2]. Finally,
reconstructed α-planes will be illustrated for subjective evaluation.

In our experiments we used three object shapes with different
smoothness level and concealing difficulty, namely hammer, foun-
tain and fork (Figs. 1 and 7). For every boundary, we assumed a
missing segment consisting of 20 points and applied the proposed
method. The corresponding α-plane was extracted after boundary
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(a) Original fountain and fork

(b) Corrupted fountain and fork

Fig. 7: Shapes used in experiments.

(a) Proposed method

(b) Soares-Pereira method

Fig. 8: Reconstructed α-planes for fountain and fork.

reconstruction. We repeated the experiment on many different miss-
ing boundary segments. The average Dn values associated with ev-
ery object are shown in Table 1. We also show Dn low and high
values observed for every object, corresponding to the best and the
worst concealment results. As can be seen in Table 1, only a small
percentage of the reconstucted object pixels differs from the original
ones. In most cases, such small differences are hardly visible.

The same samples were used in order to compare our method to
the method of Soares and Pereira. Results of this method are illus-
trated in Table 2. Comparing Tables 1 and 2, the proposed method
gives better Dn values for all three shapes. The improvement is
greater in the case of a less smooth boundary like fork. This is ex-
plained by the fact that a cubic Bezier curve can be effective in mod-
eling smooth boundaries, however, for complex boundaries a spline
curve is more appropriate.

In Table 3, we present experimental results for the case where
the original boundary was encoded using a quadratic B–spline
approximation [6]. The spline lies in a band of one pixel width

Dn,avg Dn,low Dn,high

hammer 0.014 0.002 0.035
fountain 0.004 0.000 0.013

fork 0.017 0.007 0.048

Table 2: Arithmetic results of Soares–Pereira method.

Dn,avg Dn,low Dn,high

hammer 0.006 0.001 0.015
fountain 0.011 0.006 0.024

fork 0.036 0.005 0.090

Table 3: Arithmetic results of the proposed method (B–splines en-
coding scheme)

along the original boundary, therefore, it can be considered shape-
preserving. Thus, as discussed in section 5, the computational
complexity of the error concealment algorithm is reduced by not
performing received boundary modeling. The number of the control
points is approximately 1/10 of the total number of the original
boundary points. We assume that information of two control points
are lost during transmission, which results in a missing segment
consisting of 30 original points. The low Dn values again indicate
successful concealment.

Obviously, arithmetic results cannot express the subjective im-
pact of the reconstructed boundary. As our approximation method
preserves original boundary characteristics, such as boundary direc-
tion, it leads to better subjective results than [2]. Fig. 8 illustrates
concealed α-planes of the corrupted samples of Fig. 7(b), for our
method and the method of [2].

7. CONCLUSIONS

We proposed a shape concealment method that replaces missing
boundary information with a natural spline curve. Our method
is based on the approximation of the received boundary in a way
that can represent its complexity level and preserve its direction
at the connecting points. The concealment curve is a quadratic
B–spline curve having the same direction at the connecting points.
Our method leads to better objective and subjective results than the
current state of the art.
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