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ABSTRACT

In this work, we propose a new temporal filter set to minimize de-
lay in 3D wavelet based video coding, which gives a performance
at par with existing longer filters. Our filter set will not have any
boundary effects at the group of frames (GOF). The length of the
GOF can vary from five to any number of frames depending on de-
lay requirements. We also propose a novel technique of assigning
priorities to temporal subbands at different levels to control distor-
tion fluctuation inside a GOF. Experimental results are presented
and conclusions are drawn.

1. INTRODUCTION

All current video compression standards are based on the Motion-
Compensated Discrete Cosine Transform (MC-DCT) paradigm and
its variations. This paradigm has been in use for over two decades
and is widely used in a wide range of applications. However,
wavelet-based compression is known to outperform DCT-based
compression for image coding and the JPEG-2000 image com-
pression standard is wavelet-based. In order to have efficient video
compression, the temporal redundancy in the video data has to be
properly exploited. Initial approaches to applying motion compen-
sation to the Discrete Wavelet Transform (DWT) were not very
successful. If motion compensation is performed in the spatial
domain, as in MC-DCT based codecs, and the prediction error is
encoded using DWT instead of DCT, compression efficiency will
not be good since the DWT is not well suited to the statistics of
the prediction error. Also, band-to-band motion compensation in
the DWT domain is not efficient because the DWT is not shift-
invariant and the wavelet coefficients of the current frame can-
not be accurately predicted from the coefficients of the previous
frame.There are two main theoretical developments that promise
efficient wavelet-based video codecs: Temporal filtering using lift-
ing , and motion compensation in the Overcomplete Discrete Wavelet
Transform (ODWT) domain.

3D wavelet-based video coding schemes employ a three di-
mensional wavelet transform. Thus, temporal redundancy in the
video source is exploited using temporal filtering. 3D schemes
offer drift-free scalability. The tradeoff is an increase in delay re-
quirements, since, in contrast to 2D methods, frames cannot be en-
coded one by one but processing is done in groups of frames. Thus,
a number of frames need to be available to the encoder before cod-
ing can begin. Furthermore, the whole group of frames needs to
be received by the receiver before decoding can start. Thus, 3D
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video coding schemes offer better performance but also relax the
causality of the system.

The three-dimensional wavelet decomposition can be performed
in two ways: two-dimensional spatial filtering followed by tem-
poral filtering (2D+t) [3, 1, 2] or, temporal filtering followed by
two-dimensional spatial filtering (t+2D) [4, 5, 6]. We propose to
perform the two-dimensional spatial filtering first and then per-
form motion-compensated temporal filtering using lifting in the
Overcomplete Discrete Wavelet Transform domain.

The rest of the paper is organized as follows: In Section 2, we
explain the motion-compensated temporal filtering (MCTF) using
lifting and related problems. In Section 3, we discuss our proposed
methods: Section 3.1 explains our new filter set to minimize delay
and Section 3.2 addresses bit allocation for temporal subbands.
Finally, in Section 4, we present the simulation results.

2. MOTION-COMPENSATED TEMPORAL WAVELET
TRANSFORM USING LIFTING

Lifting allows the incorporation of motion compensation in tempo-
ral wavelet transforms while still guaranteeing perfect reconstruc-
tion. Any Finite Impulse Response (FIR) filter can be implemented
using lifting. Let us consider as an example the Haar wavelet trans-
form:

he(z,y) =

lk(z,y)

fart1(z,y) — for(z,y) 6]
%[fi’k(wvy) + f2k+1(w7y)]7

where fi(z,y) denotes frame k and hx(z,y) and lx(x,y) repre-
sent the high-pass and low-pass subband frames. Using lifting, the
Haar filter can be implemented as:

hk($,y) = f2k+1(177y) - fzk(d?,y) (2)
W(@y) = farle,y) + 3he(a,v).

It is possible to modify the above equations in order to incor-
porate motion compensation. Let W;_,;(f;) denote the motion-
compensated mapping of frame f; into frame f;. Thus, the oper-
ator W;_,;(.) gives a per pixel mapping between two frames. No
particular motion model is assumed. Thus, the above equations are
modified as

he(z,y) =

lk(a"7 y)

fort1(z,9y) — Wakosoet1(for)(z,y)  (3)
for(z,y) + %W2k+1—>2k(hk)(90, Y).-
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These equations correspond to taking the Haar transform along the
motion trajectories [7].

As mentioned previously, instead of the Haar transform, any
two-channel FIR subband transform can be implemented using
motion-compensated lifting. For the case of the biorthogonal 5/3
wavelet transform, the analysis equations are

hi(z,y) = fart1(z,y) — %(Wl’k—)?k-f—l(f%)(zvy)
+Wakt2-2k+1(far+2)(2,9))

(@) = for(,9) + 3 (Wak-1an(hur) (2,0)
+Wakt1-2k(he) (2, 9))- @

In the lifting operation, the prediction residues (temporal high-
pass subbands) are used to update the reference frame to obtain
a temporal low subband. We will refer this as update step in the
following discussions.

If the motion is modeled poorly, the update step will exhibit
ghosting artifacts to the lowpass temporal subbands. The update
step for longer filter depends on more number of future frames.
Also, the grouping of video frames of finite size becomes difficult
for longer filters. If the entire sequence is treated as a single Group
of Frames (GOF), then this approach is reasonable for algorithm
simulation but not for real world applications.

If a video sequence is divided into a number of GOFs that are
processed independently, without using frames from other GOFs,
when 5/3 lifting is used, high distortion will be introduced at the
GOF boundaries. The distortion will be in the range of 4-6 dB
(PSNR) at the GOF boundaries irrespective of the motion content
or model used [6, 1, 8]. To reduce this variation at the boundaries,
we need to use frames from past and future GOFs. Thus, it is clear
that the introduced delay (in frames) is greater than the number
of frames in the GOF. The encoding and decoding delay will be
very high as the encoder has to wait for future GOFs. In [6], the
distortion at the boundaries is reduced to some extent by using a
sliding window approach. This method with GOF=8 frames, needs
the current GOF plus 14 frames, for a three level 5/3 temporal
decomposition. For an additional level of temporal decomposition,
the delay will be almost doubled. We should note that, even when
the delay is high, the low pass temporal subbands are not free from
ghosting artifacts.

In temporal filtering, we also notice distortion variation within
a GOF, which is not directly related to the motion in the sequence
as in the case of hybrid video coding schemes. The distortion fluc-
tuation is more pronounced in longer filters and is undesirable at
low bitrates [6, 1].

By skipping entirely the update step for 5/3 filter [7, 9], the
analysis equations can be modified as,

he(z,y) = fart1(z,y) — %(Wzkazkﬂ(fzk)(fﬂ,y)

+Wakto2k+1(fan+2)(2,Y)) 3)
Ik (CC, y) = ka (CC, y)

We refer to this filter set as 1/3 transform.

Filters without update step, will allow us to group frames of
finite size and with less ghosting artifacts in the low pass temporal
subbands. Hence, by avoiding the update step, we get high quality
temporal scalability. But at full frame rate resolution, the 1/3 filter
suffers in compression efficiency compared to the 5/3 filter.

So far, an overview of motion compensated temporal filtering
and the problems were discussed.

3. PROPOSED 3D-CODER

Our proposed 3D-coder addresses the following :

e Design of Temporal Filtering Schemes to Minimize Delay
Requirements

e Bit Allocation Between Temporal Subbands.

3.1. Design of Temporal Filtering Schemes to Minimize Delay
Requirements

In 3D coding schemes, high level of compression is achieved by
applying temporal filter for a group of frames. The number of
frames in a buffer will increase with the length of the filter and the
number of temporal decomposition levels. This introduces a delay
both at the encoder and decoder.

We propose a new filter set that minimizes delay and performs
at par with longer filters. In this filter design, lowpass temporal
frames are created at the beginning and at the end of a group of
frame at the first level temporal decompostion. Unlike Haar or
longer filters like 5/3, which require GOFs to be in some power
of 2, the proposed filter does not have any constraints on GOF
length.The proposed filter set is perfectly invertible. This can be
applied for both t+2D and 2D+t schemes.

We first describe the proposed filter design without including
any update step. Thus, the lowpass temporal frames are unfiltered
original video frames. Let IV be the length of the GOF and L be
the maximum number of temporal decomposition levels. Let I (
1 <1 < L) be the I*? level temporal decomposition. At any level
1, if the number of low pass temporal subband within a GOF is
greater than 2, bi-directional motion estimation is used to evalu-
ate highpass temporal subbands. If the number of lowpass tem-
poral subband is equal to 2, we can restrict ourselves to forward
estimation within the GOF or perform bi-directional estimation by
considering a lowpass temporal subband from the next GOF. The
lowpass temporal subband also happens to be the first frame of
the next GOF. Hence we need only the GOF or GOF plus one fu-
ture frame. At I*" level decomposition, if there is only one low
pass temporal subband and | < L, then we apply forward esti-
mation with adjacent GOF. The proposed filter set is pictorially
represented for GOF=5 in Figure 1.

At level I = 1, the lowpass temporal subbands are placed at
the beginning and the end of the GOF. If N is even, we will have
two sucessive lowpass subbands at tht end of the GOF (refer to
figure 2. In figure 1, at level [ = 2 we have two lowpass frames.
So, to estimate the LLH, we can either use the first frame from
the next GOF (LL) to do bi-directional motion estimation or just
use the forward estimation. At ! = 3, we have only one LLL
frame and hence forward estimation is carried out using the LLL3
from the next GOF. If GOF=8, we get two lowpass frames at [ =
3. We can make the GOF totally independent without using any
future GOFs or we can just take one future frame (refer to figure
2). One should note that four levels of temporal decomposition in
the proposed filter set actually correspond to three levels in Haar or
longer filters, in the sense that the same number of lowpass frames
exist in both the cases.

Also, Figure 2 is used to explain our proposed scheme for
GOF=8. At level 3, in figure 2, as we discussed earlier, we have
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Fig. 1. Proposed Filter for GOF=5.

two options: forward estimation (solid line) or bi-directional esti-
mation (dashed line).

To summarize, when the GOF length is less than 8, we need
only one future frame to get a compression efficiency equal to that
of 5/3 filters. If the GOF length is greater than or equal to 8, the
GOF can be coded without the knowledge of past and future GOFs.
This gives us flexibility in choosing the GOF length, based on de-
lay constraints and compression requirements. For the proposed
case, when GOF=5 frames and L = 4, then the initial coding de-
lay will be GOF+1 frames and it yields a performance comparable
to that of 1/3 filters, which require nine frames for a three-level
temporal decomposition. The longer the GOF length better will
be the compression efficiency. The total number of motion vectors
for the proposed filter set will never exceed 1/3 filter case.

The lifting update step can be included in the proposed filter
to increase the overall compression efficiency without increasing
the delay. In our proposed filter set, inclusion of an update step
will not change the delay. It will remain the same as in the case
without update. Our update procedure varies at different temporal
decomposition level and the design is such that, it will not use
future highpass temporal subbands from another GOF.

For our proposed case, if we increase our GOF length, we will
obtain better compression without increasing delay. The boundary
effects will not be seen in the proposed filter set.

3.2. Bit Allocation Between Temporal Subbands

All current wavelet-based video codecs that employ temporal fil-
tering exhibit a significant fluctuation in the PSNRs of the frame
within a GOF. This is true for both t+2D and 2D+t schemes. The
distortion fluctuation inside a GOF can be in the order of 1-4 dB
[1, 6]. It is well known that the average PSNR for the whole video
sequence alone is not an adequate indicator of subjective video
quality and the PSNR fluctuation should be taken into account.
Hence, the PSNR variation inside a GOF should be controlled.
We propose a novel technique of assigning priorities to tem-

Bi-directional
estimation
*

LLLL LLLH} pppp LLLH} LLLL
_

vo¥

LLLLL Forward motion LLLLH
estimation

LLLLL

GOF=8

Fig. 2. Proposed Filter with GOF=8

poral subbands at different levels to control distortion fluctuation
inside a GOF. Some temporal subbands will have larger impact on
the frames inside a GOF and take precedence over others. For ex-
ample, in a three level temporal decomposition for a Haar filter for
GOF of eight, the third level filtered temporal low and high bands
will have an effect on the entire GOF, while the first level filtered
temporal high frames will affect only one frame. For this exam-
ple, the third level lowpass temporal subbands should be treated
like an intra frame in hybrid video coders. Also, the higher the
temporal level, the higher the energy in the high pass temporal
subbands. This is because the distance between the frames get
doubled at each higher temporal level. Hence, different temporal
subbands will have different energy content and should be treated
differently. This proposed technique will also minimize quantiza-
tion error propagation from one level to another. In addition, at
different temporal resolutions we get a high quality output.

We propose a bit allocation procedure to determine the bits
to be encoded for each temporal subband. Let Rgor be the rate
allocated for a GOF, Rrow,, be the rate for low pass temporal sub-
band and Ry, be the rate for high pass temporal subband at level
0<I[< L. Then,

RLowL > RHL > RHL_1 > .. 'RHl > .. .RH1 (6)

Our experimental results have shown, that the PSNR fluctua-
tions within a GOF are greatly reduced for any type of filter used.

4. EXPERIMENTAL RESULTS

‘We have considered four standard test sequences, two in SIF (352 %
240) resolution: “Football” and “Flower Garden” and two in QCIF
(176 x 144) resolution: “Foreman” and “Susie”. A Daubechies
(9, 7) filter with a three level decomposition is used to compute
the wavelet coefficients. The motion estimation is performed in the
overcomplete wavelet domain using the block matching technique
for integer pixel accuracy. A 16 X 16 wavelet block is matched in
a search window of [—16, 16].

In the first set of experimental results, we gauge the perfor-
mance of the proposed temporal filters that offer reduced delay
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Table 1. Average PSNR values of Y component for 0.5bpp.

Sequence | Haar w/o update | Haar with update | 1/3 Filter | Proposed Filter (GOF=5) | Proposed Filter (GOF=8)
Football 27.63 dB 28.75dB 29.42 dB 29.24 dB 29.96 dB
Foreman 3526 dB 36.02dB 37.41dB 37.11dB 37.66 dB

Susie 41.18dB 42.81 dB 43.07dB 4298 dB 43.19dB

PSNR (dB)

—+— Proposed Filter with sub—optimal allocation
16 = 1/3 with sub-optimal allocation
“““ 1/3 w/o optimal allocation

T i T T

T T L L L
0 10 20 30 40 50 60 70 80 90 100
Frame No.

Fig. 3. Flower garden at 1Mbps .

requirements. The temporal subbands are compressed using 3D-
SPIHT coder [11]. The proposed temporal filter (version without
update) with a GOF of five and eight frames are compared with
1/3 and Haar filters with a GOF of eight frames. Table 1 gives the
average PSNR values of the Y component for an encoded bit rate
of 0.5 bpp. It can be seen from the Table 1 that the proposed filter
outperforms the Haar filters and is competitive with the 1/3 filter,
while having lower delay requirements. The proposed filter with
GOF=8, performs better than 1/3 filter.

In the second set of experimental results, we show the impor-
tance of bit allocation across temporal subbands. A suboptimal bit
allocation was tried that satisfied Eq. (6). The rates in bits per
pixel (bpp) used for selecting the bit allocation are

Rrows; =1.0> Rpgy =0.63 > Ry, =0.45 > Ry, =036 (7)

The 2D-SPIHT image coder [10] was used to encode each
temporal subband independently so that we could easily select the
number of bits to be used for each temporal subband. The “Flower
Garden” sequence was encoded at 1 Mbps using 1/3 filter without
bit allocation and the 1/3 and proposed filters with bit allocation.
The PSNR of each frame is plotted in Figure 3. It can be seen
that, with the bit allocation scheme the PSNR variation is greatly
reduced and the average PSNR is also increased.

5. CONCLUSION

We have proposed a novel temporal filter set with motion com-
pensation for 3D wavelet-based video coding along with a scheme
for bit allocation across temporal subband. The filter set described
offers flexible features for compression efficiency and delay re-
quirements. Our experimental results show, the effectiveness of
the proposed scheme.
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