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ABSTRACT

In this work, we propose a novel scheme to minimize drift in scal-
able wavelet based video coding, which gives a balanced perfor-
mance between compression efficiency and reconstructed quality
with less drift. Our drift control mechanism maintains two frame
buffers in the encoder and decoder; one that is based on the base
layer and the one that is based on the base plus enhancement lay-
ers. Drift control is achieved by switching between these two
buffers for motion estimation and compensation and base layer in-
formation is used for predicting enhancement layers. Our coder
is designed for variable bit rate wireless channels and offers high
compression efficiency and sustained video quality.

1. INTRODUCTION

Wavelet transform of a signal provides a multi-resolution/multi-
frequency representation in both the spatial and frequency domains.
Wavelet based image coding has achieved tremendous success both
in coding efficiency and in scalability. Many researchers are trying
to exploit the advantages of wavelet transforms in video coding.
Several works have been recently proposed for motion estimation
and compensation in the wavelet domain [1][2].

Layered coding together with error protection techniques of-
fers high error resilience to channel induced errors [3][4]. In tradi-
tional coders, motion estimation/motion compensation (ME/MC)
is only based on the base layer and it ignores all the enhancement
layer information, which may not be always available at the re-
ceiver. By neglecting the enhancement layers in the prediction,
traditional coders will lose in compression efficiency. Including
the enhancement layer in the ME/MC loop introduces drift, de-
fined as the propagation of errors due to partial reception of en-
hancement information. Base layer prediction using enhancement
layers is of particular importance because it offers very good com-
pression efficiency though it suffers from drift in a lossy network.
Recent works have shown that drift need not be completely elimi-
nated, but it can be managed in Discrete Cosine Transform (DCT)
based video coders [5][6]. Our proposed coder uses both base and
enhancement layers for ME/MC in a wavelet based video coder
that allows some drift but has a mechanism of managing it.

Another way to totally eliminate drift is to use 3-D subband
coding methods. In 3-D subband coding, a group of frames is
processed at a time to compress the video sequence [7][8]. Mo-
tion compensation in the temporal domain (either 2D+t or t+2D)
and with lifting techniques offers high compression and scalability

[9][10]. However, 3-D techniques require the availability of future
frames for ME/MC. This introduces a delay, which makes them
unsuitable for real time video applications.

Our work is an attempt to control drift in wavelet based video
coders where enhancement layers are used to predict the base layer
information. The proposed coder eliminates the need to transmit
an intra frame at regular intervals to completely eliminate drift.
The focus of this work is to manage drift in a wireless transmis-
sion system with Unequal Error Protection (UEP)/variable bit rate
channels that have a known loss rate.

The rest of the paper is organized as follows: In Section 2,
we explain our coder architecture and drift control mechanism. In
Section 3, we deal with the channel modeling. Finally, in Sec-
tion 4, we present the simulation results for different packet loss
probabilities.

2. DRIFT CONTROLLED CODER

The proposed encoder and decoder are shown in Figure 1 and Fig-
ure 2 respectively. The first frame is treated as an intra frame and
transformed in the discrete wavelet domain. The Discrete Wavelet
Transform (DWT) coefficients are coded using Set Partitioning in
Hierarchical Trees (SPIHT) coder [11] to produce a bitstream. The
bitstream is partitioned into blocks of data such that there is one
block per layer per frame. A block of the embedded bitstream that
contains the most significant information forms the base layer. The
remaining blocks are used to form one or more enhancement lay-
ers. The SPIHT decoded intra frame will be the reference frame for
ME of the current (second) frame. The reference frame is trans-
formed in the overcomplete discrete wavelet transform (ODWT)
domain and the current frame is transformed using DWT. Motion
vectors are estimated using the low band shift method [1]. The
prediction error is encoded using the SPIHT coder.

The encoder maintains two frame buffers: Base Buffer Enc BB
for base layer only prediction and Enhancement Buffer Enc EB for
prediction based on base plus enhancement layers. The decoder
also maintains two buffers: decoder base buffer (Dec BB) and de-
coder enhancement buffer (Dec EB). The Enc BB and Dec BB
will maintain a predicted frame using only the base layer, though
the ME is done with the Enc EB information. If the base layer is
assumed to be received in full, Enc BB and Dec BB have identical
data and hence can be used to control drift in the Dec EB. Given
the approximate channel conditions and the rate, the encoder com-
putes a measure of drift (MD) for the Enc EB output. The MD is
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compared with a threshold, which we call as enhancement thresh-
old (ET) and if MD exceeds the preset ET, the drift is significant
in the encoder output. Switching the prediction to be based on
the Enc BB for the next frame eliminates the drift introduced in
the system. For subsequent frames prediction is again based on
Enc EB.

The use of Enc EB motion estimation information in Enc BB
for MC will progressively decrease the quality of the Enc BB.
When switching to the base buffer is done, a poor quality Enc BB
would yield poor prediction. Thus, although drift will still be elim-
inated, compression efficiency will be low. Hence, it is a precau-
tionary measure to arrest any considerable drop in the quality of
Enc BB. Initiating a switching action when the difference between
the quality of Enc BB and Enc EB (DB) rises above a base thresh-
old (BT) will maintain the Enc EB quality.

The switching decisions are made in the drift control box based
on the two threshold settings and the measure of drift. The switch-
ing instances are conveyed to the decoder as control information.
The drift control box in the decoder examines the received control
information and does the switching between the buffers at exactly
the same instance as in the encoder.

2.1. Drift Estimation and Drift Control

We consider the channel model explained in Section 3. The em-
bedded coder generates a bitstream with ��������� bits per frame.
The encoder assumes that all bits are received by the decoder for
given ���	���
� and computes three peak to signal noise ratio (PSNR)
values to calculate the measure of drift (MD) and difference be-
tween the quality of Enc EB and Enc BB buffers (DB). The three
values are PSNR of Enc EB at rate ��������� ( ��
�� ), PSNR of Enc BB
at base rate ��� ( ����� ) and the PSNR at the average rate of ������� �
and � � ( ����� ). Then MD and DB are calculated as follows:����� � 
���� � ����� (1)��� � � 
��!� � ���"� (2)

The switching between Enc EB and Enc BB occurs when the fol-
lowing conditions are met:���$#&%('*),+-���.#&�('0/

(3)

If this switching is done very often or less frequently, it affects the
compression efficiency.

3. CHANNEL MODELLING

The wireless video transmission system consists of an encoder,
wireless channel and a decoder. Transmission over a wireless
channel is subject to loss and hence the received bits will be fewer
than the encoded bits. We assume a wireless medium with a known
a priori probabilistic model, which has a feedback channel for er-
ror detection and re-transmission [12]. The encoded video frame is
partitioned into packets of fixed size of 1 bits. Packets are indexed
sequentially and transmitted at regular time intervals 2,3 . These link
layer packets are transmitted with a certain success probability 4 .
Packet losses are statistically independent and the lost packet is
retransmitted at the next time instant (instantaneous feedback is
assumed).

Let the frame rate be 5�6,78� frames/sec. Then, the number of
packets per frame, 9 � 78�:6,2�3 . Let ;=< be a random variable
where > � 5 �@?��8AB� /	/
/ � 9 . ; < � 5 denotes a successful packet

transmission with probability 4 and ; < � C denotes a lost packet
with probability 5 � 4 . The random variable

' < defines the number
of successfully received packets after > transmission attempts,' < � <DE8F�G ; E where >IHJ9 / (4)' < is binomially distributed since we assumed statistically inde-
pendent packets.

� +BKL' < �NM�OP�RQ >MTS 4 < K 5 � 4 O <VU E / (5)

Therefore, the received number of bits per frame is given by, �W� �1 ' < . At the encoder, the bits per frame will be always equal to,���	��� � � 1X9 .

3.1. Selection of Base Rate

In layered coding, the channel should at least guarantee the lossless
delivery of the base layer to the receiver. With the knowledge of
success probability and the number of fixed size packets required
per frame, we can estimate the base rate for lossless delivery. For
our channel model discussed, the base rate is selected as � � �1 MZY�\[	]_^ , where

M`Y�\[	]_^ is the minimum value of
M �\[	]_^ that satisfies

the inequality, aD< F`E_bdc@egf Q 9 > S 4 < K 5 � 4 O
a Uh<ji � + �\[�]g^,� (6)

where � + �\[	]_^ is the probability of successfully receiving the base
layer packets.

In the ideal case, � + �\[	]_^ would be equal to 1, i.e., absolutely
no base layer packet loss. However, when � + �\[	]_^ is equal to 1, it
results in a very low value for the base rate, which is undesirable.
In practice, � + �\[	]_^ can be selected to be less than but very close
to 1. The selection of � + �\[	]_^ is discussed in Section 4.2.

4. EXPERIMENTAL RESULTS

A wavelet based video coder is implemented using the low band
shift method [1]. A Daubechies (9,7) filter with a three level de-
composition is used to compute the wavelet coefficients. The mo-
tion estimation is performed in the overcomplete domain using the
block matching technique. The residues are encoded using the
SPIHT coder. We use the “Foreman”, “Susie” and “Carphone”
video sequences to analyze the performance of the proposed coder.
A frame rate of 5 C frames/sec is maintained for all sequences and
only one intra frame is used in all the simulations.

As discussed in Section 3, the bitstream is broken down into
link layer packets of length 1 � Ak? C bits and time interval 2l3 �m

ms. Simulations are performed for five different values of 4
=
CB/ n m � CB/ n:o � CB/ p � CB/ p A and

CB/ p m
. The number of packets and the

bits per frame are calculated as, 9 � 78�:6l2
3 � ? C and �q�	���
� �1X9 �srlt:C:C bits.
The encoder assumes that the transmission channel is capa-

ble of delivering
rlt:CuC

bits per frame under lossless conditions.
In our implementation, we have one base layer and one enhance-
ment layer. The partitioning of the two layers is done according
to base layer rate selection. The results presented for each experi-
ment were averaged over

m C
simulations.
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4.1. Drift, Optimum and Base Case

Drift is introduced in a single layer coder due to prevailing varia-
tions in the channel rate. To gauge the performance of our pro-
posed coder, we compared with three different encoder setups.
Drift Case: The video sequence is encoded at

rlt:CuC
bits per frame

and all the bits are used for prediction. Due to lossy channel con-
dition, the drift is introduced at the decoder. Optimum Case: We
assumed that each frame is encoded using the number of bits that
are actually received by the decoder. Though this not practically
achievable, this would serve as the upper bound for the proposed
coder. Base Case: We also evaluated the traditional layered coding
concept, where only the base layer information is used for predic-
tion and enhancement layers are added only to improve the overall
quality. The base layer rate is the same rate used by the proposed
coder cases.

4.2. Base layer Selection

As explained in Section 3.1, the base layer is a function of � + �\[	]_^ .
Hence, we ran simulations for different values of base probability� + �\[	]_^ ���,CB/ p � CB/ pup � CZ/ p:pup � CB/ pup:pup � CB/ pup:pupup�� that would yield
different base layer rates. For each � + �\[�]g^ , we calculate a base
layer rate for different 4 . The results from our simulations for the
“Foreman” sequence to identify the base rate is plotted in Figure
3. For any 4 , it is observed that when � + �\[�]g^ �TCB/ pupup , we get the
best quality. When � + �\[	]_^ # CB/ pup:p , it results in a lower value for
base rate, which will reduce the base quality. So when switching
is performed, it reduces the overall quality of the decoder output.
When � + �\[	]_^�� CB/ pupup , the base rates will be higher, but the base
layer is also subjected to higher loss probability. Hence we obtain
a relatively better performance when � + �\[	]_^ �sCZ/ p:pup .
4.3. Threshold Setting

Threshold setting is a crucial parameter and decides the switch-
ing instances. The range of the enhancement threshold ET is ap-
proximately identified by calculating the qualities (PSNR) of the
received frames for 4 � 5 , 4 � CB/ p m and 4 � CZ/ n m in the
“Drift case”. The lower and upper limits are set from the dif-
ference between 4 � 5 and 4 � CB/ p m and 4 � 5 and 4 �CB/ n m

respectively. From our experimental results for different se-
quences, we found these limits to be between 1.1 dB and 2.3 dB.
The base threshold BT is used to monitor the Enc BB quality,
which is obviously lesser than the quality of Enc EB. Our ex-
periments were performed with five different sets of ET and BT,�
'�� G � K ?��@? / m O � '��
	 � K 5 / r � 5 / p:O � '���� � K 5 / ?B� 5 / m O � '���
 �KVCB/ n � 5 / C:O � '��
� � KVCB/ t � CB/ r:O�� in dB. Figure 4 show PSNR as a
function of 4 for different threshold sets that operate using the
optimum base layer rate. From our results, we observed that the
threshold set

'����
gives the best performance. This threshold set

is used for all the sequences reported.

4.4. Results

The average PSNR of the received frames for the “Foreman” and
“Susie” are plotted in Figure 5 and Figure 6 for different values
of 4 . The threshold set is selected as

K 5 / ?�� 5 / m O dB and base rate
corresponding to � + �\[	]_^ � CB/ pup:p is used for the proposed coder.
Traditional “Base case” does not suffer from drift but the PSNR
is less than the optimum by 0.5-0.7 dB. The results also show that
the proposed coder is very close to the ideal case (unrealizable)

and outperforms the “Base case” by 0.4-0.5 dB. From the plots, we
can infer that the drift has been regulated without compromising
on coding efficiency and quality.

The base layer rate and the thresholds that were used with the
“Foreman” and “Susie” sequences were also tested on the “Car-
phone” sequence. Figure shows the performance of PSNR vs.
frame number for the “Carphone” sequence decoded at 4 ��CZ/ n m .
When there is no drift management, we can see that the quality
degrades with each successive frame. This is because the refer-
ence frame at the decoder is not exactly the same as in the en-
coder. With the proposed buffer switching action, we control drift
without using an intra frame. This confirms that our selection of
the thresholds and the base rates suits the “Carphone” sequence as
well.

5. CONCLUSION

The drift problem in traditional motion compensated predictive
coders can be completely eliminated by using the base layer pre-
diction only as in the MPEG4-FGS case. Also, a periodic introduc-
tion of intra frames will erase drift. But in both the cases, we need
more bits to eliminate drift. In wavelet based video coders using 3-
D subband coding methods, drift is eliminated and it also achieves
high compression efficiency. But, the 3-D scheme has to process a
group of frames to take wavelet transforms, it introduces unaccept-
able coding delays in transmission. We proposed a novel scheme
that gives a performance better than the traditional ME/MC coders
and without any delays in transmission. Our proposed coder con-
trols drift without significant loss in compression efficiency. We
optimized the coder performance for a wireless variable bit rate
channel.
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