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ABSTRACT 

 
In this paper, we propose two approaches for video 
sequence resolution enhancement using Maximum A 
Posteriori (MAP) estimation. Huber-Markov Random 
Fields (HMRF) are used as prior models. These models 
can better preserve image discontinuities (edges) when 
compared with Gaussian prior models. The two proposed 
approaches differ in the selection of image smoothness 
measure. The first approach employs a measure that is 
based on a discrete Laplacian kernel, while the second 
approach uses a finite difference approximation of second 
order derivatives at each pixel of the high-resolution 
image estimate. Experimental results are presented and 
conclusions are drawn. 

 

1. INTRODUCTION 
 
In many imaging systems, the resolution of the detector 
array of the camera is not sufficiently high for a particular 
application. Furthermore, the capturing process introduces 
additive noise and the point spread function of the lens 
and the effects of the finite size of the photo-detectors 
further degrade the acquired video frames. The goal of 
resolution enhancement is to estimate a high-resolution 
image from a sequence of low-resolution images while 
also compensating for the above-mentioned degradations. 
 
In this paper, we propose two approaches for video 
sequence resolution enhancement using a joint Maximum 
A Posteriori (MAP) registration and high-resolution 
image estimation algorithm. The motion between the 
frames (registration) and the high-resolution image are 
jointly estimated. A Huber-Markov Random Field 
(HMRF) is used as prior model for the high-resolution 
image. The use of HMRF model better preserves image 
discontinuities when compared with a Gaussian prior 
model. 
 
In this paper, we extend our previous work in [1] and [2] 
where a Gaussian prior image model was used. In [3], 
MAP estimation of a high-resolution image from a single 
low-resolution image using a HMRF prior model was 
presented. A finite difference approximation of second 
order derivatives was employed as a smoothness measure. 

The algorithm in [3] was extended in [4] to perform high-
resolution image estimation from a sequence of low-
resolution images. The relative motion between the 
frames (registration) was performed prior to the MAP 
estimation of the high-resolution image. In this paper, we 
propose a joint MAP registration (estimation of the 
relative motion between frames) and high-resolution 
image estimation algorithm using an HMRF prior model. 
We propose a smoothness measure based on a Laplacian 
kernel and compare its performance with the smoothness 
measure in [3] and [4].  
 
The rest of the paper is organized as follows. In section 2, 
the MAP-based resolution enhancement algorithm is 
presented along with two different HMRF-based prior 
models. In section 3, experimental results are presented. 
Finally, in section 4, conclusions are drawn.  
 

2. MAP-BASED RESOLUTION ENHANCEMENT 
 
Several resolution enhancement techniques have been 
proposed in the literature. In this review, we concentrate 
on Bayesian methods. Maximum A Posteriori (MAP) 
estimation with an edge preserving Huber-Markov 
random field image prior is studied in [3], [4]. MAP 
based resolution enhancement with simultaneously 
estimation of registration parameters has been proposed 
[1], [2], [5]. In the following, we use the same model and 
notation as in [1].  

 
2.1 Observation Model 
 
We order all vectors lexicographically. We assume that p 
low-resolution frames are observed, each of 
size . The desired high-resolution image z is of 

size  and  and  represent the 
down-sampling factors in the horizontal and vertical 
directions, respectively. Thus, the observed low-
resolution images are related to the high resolution image 
through blurring, motion shift and subsampling. Let the 
kth low-resolution frame be denoted as 

 for and 

where . The full set of p observed low-
resolution images can be denoted as 
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The observed low resolution frames are related to the 
high-resolution image through the following model:  
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for  and . The weight 

 represents the “contribution” of the rth high-
resolution pixel to the mth low resolution observed pixel 
of the kth frame. The vector s , is 
the K registration parameters for frame k, representing 
global translational shift, rotation, affine transformation 
parameters, or other motion parameters. This motion is 
measured in reference to a fixed high resolution grid. The 
term  represents additive noise samples that will be 
assumed to be independent and identically distributed 
(i.i.d.) Gaussian noise samples with varianceσ . 
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It will be convenient to represent the observation model in 
matrix notation.  
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where  contains the values and 

. Note that since the elements of 
are i.i.d. Gaussian samples, the multivariate pdf of is 

given by 
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We can form a MAP estimate of the high-resolution 
image and the registration parameters s simultaneously, 
given the observed low resolution images y. The 
estimates can be computed as 
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Using Bayes rule, assuming that all possible motion 
vectors are equally probable and after some algebra, the 
joint estimates can be expressed as: 

[ ] [ ]{ }.)(log)(logminarg zsz,ys,z
sz,

rr PP −−=))   (6) 

 
2.2 Cost Function Using a Gaussian Image Prior 
 
The prior image can be chosen to be a Gaussian random 
field with density of the form: 
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where C is the  covariance matrix of z . More 
information can be found in [1], [2]. The assumption of a 
Gaussian prior model tends to produce a high-resolution 
estimate with smooth edges. Huber-Markov models 
address this problem, as explained in the next section. 
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2.3 Approach I: Cost Function with HMRF and 
Laplacian Smoothness Kernel 
 
By making the assumption of a Gaussian prior model, 
edges are statistically unlikely to appear in the MAP 
estimate. Effectively, high-frequency components are 
suppressed by the image model, since it assumes that 
smooth edges will be more highly probable than sharp 
discontinuities. A more realistic assumption is that the 
image data are piece-wise smooth; i.e., the image consists 
of smooth regions which are separated by discontinuities. 
A general form of the HMRF density is 
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where A is a constant, is the temperate or tuning 
parameter of the density, c is a local group of points 
called clique and C denotes the set of all cliques in the 
image. is a coefficient vector for clique c and  is 
the Huber function: 
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where T is the threshold of Huber function.  

In this paper, we propose to measure the image 
smoothness at a given pixel using a Laplacian kernel, 

i.e., d with a Laplacian smoothness 

kernel defined as  
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The corresponding cost function is: 
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and is the complement set of . C
TN

2.4 Approach II: Cost Function with HMRF Image 
Prior and Finite Difference Approximation to Second 
Order Derivatives as Smoothness Measure 



 
We next present the smoothness measure in [3], [4]. The 
Huber-Markov Random field model and Huber function 
are same as those in equation (8), (9). The difference is 
that image smoothness is measured by finite difference 
approximation to second order derivatives, i.e., is 
defined differently. 

zd t
i

The quantity d  is the spatial activity 

measure that can be computed at each pixel (x, y) in the 
high resolution image, given by the following second 
order finite differences: 
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The smoothness measure in this approach is contributed 
from four directions of the current high-resolution pixel: 
horizontal, vertical and two diagonal directions, while in 
approach I, only an overall smooth quantity at the high-
resolution pixel is used and it is directionless.  
 
The corresponding cost function of approach II is: 
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The first frame of the low video sequence is shown in 
Fig.1. In Fig. 2, bilinear interpolation of the first frame is 
shown as a comparison to the reconstructed high-
resolution images using Joint MAP algorithm with HMRF 
image prior shown in Fig 3 and 4 respectively. In Fig.5, 
the difference between the two approaches is displayed. 

2.5 Joint MAP Registration Algorithm 
 
The above cost functions can be minimized using the 
coordinate-descent method. This iterative method starts 
with an initial estimate of z obtained using interpolation 
from a low resolution frame. Then, for a fixed z, the cost 
function is minimized with respect to s. Thus, the motion 
of each frame is estimated. Then, for fixed z, a new 
estimate for z is obtained. This procedure continues until 
convergence is reached, i.e., z and s updated in a cyclic 
fashion. In order to update the estimate z, we first 
estimate 
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Also, the gradient can be obtained from 
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The step size ε  can be found by solving n
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Then z can be updated recursively as 
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until convergence is reached. n is the iteration number 
starting from 0. 
 

3. EXPERIMENTAL RESULTS 
 
We use real data of a truck video sequence provided by 
the Naval Research Laboratory (Washington, DC) to test 
the reconstruction results. 20 frames of low-resolution 
image with size 128x128 pixels are used. The up-sample 
ratio was L1= L2=4. The point spread function is pre-
determined before the resolution enhancement. For our 
case, we used a Gaussian blur with variance 1.7. The 
variance of noise is estimated at a “smooth” area of the 
low-resolution. The first frame is selected as reference 
frame and bilinear interpolation of the first frame is 
chosen as the first estimate of high-resolution image z. To 
estimate the motion, the current z is compared with the 
low-resolution frames as shown in equation (14). Three 
Point Search (TSS) with search window and Sum of 
Squared Errors (SSE) criterion are applied to decide the 
motion vector of current macro block. When 
reconstructing the high resolution image, these motion 
vectors are used to compensate the motion. The threshold 
of Huber function is set at T=1 for both approaches. The 
coordinate-descent method is carried out for 20 iterations 
or until convergence is reached
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4. CONCLUSION 

 
Both approaches give a good reconstruction result and 
preserve more information at the edges than that using 
Gaussian prior model in [2]. The smoothness measure in 
approach II is contributed from four directions of the 
current high-resolution pixel while in approach I, only an 
overall smoothness quantity is used and it is directionless. 
This gives approach I (which proposed in this paper) less 
computation cost compared to approach II (from [3], [4]) 
with almost the same visual result. We should notice that 
the result is highly dependent on the choice of threshold T 
and there is no explicit rule of selection for T. Also, the 
high-frequency term of the cost function is weighted by 
the inverse of the tuning parameter, whose selection is 
empirical for most cases. As increases, the MAP 
estimate approaches the Maximum Likelihood (ML) 
estimate and the choice of T has less influence on the 

λ



superresolution result. More research needs to be done on 
this topic. 
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Fig. 1 Original image (first frame of truck sequence) 

 
Fig. 2 Bilinear interpolation of first frame 

 

 
Fig.3 Reconstructed high-resolution image using joint 

MAP with HMRF, approach I 
 
 

 
Fig. 4 Reconstructed high-resolution image using joint 
MAP with HMRF, approach II 
 

 
Fig. 5 Difference between the reconstructed high-
resolution Image using approach I and II (peak value=2.5) 
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