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ABSTRACT 

 

In this work, we consider contourlet based image 

decomposition as a convenient framework for localized 

representation of images simultaneously in space, frequency 

(scale) and orientation. Since the subband marginal 

distributions of natural images in the contourlet domain are 

highly non-Gaussian with leptokurtotic behavior, we 

propose the Student’s t probability density function (pdf) as 

a prior for modeling the contourlet coefficients of natural 

images. As an extension, we also consider the bivariate form 

of Student’s t pdf in order to capture the across scales 

dependencies of the contourlet transform. We validate our 

proposal by adopting subjective and objective measures. 

 

Index Terms— Natural scene statistics, Student’s t 

distribution, contourlet transform, univariate and bivariate 

model 

 

1. INTRODUCTION 

 

Since modeling the statistics of natural images is a 

challenging task (partly because of the high dimensionality 

of the signal), the power of statistical models can be 

substantially improved by transforming the signal from the 

pixel domain to a new representation [1]-[5]. For example, 

in the watermarking problem, based on a specific modeling 

we can construct a class of statistical detectors with even 

higher detection sensitivity [5], [6], [18]. In this framework, 

the accurate characterization of transform coefficient 

distribution has been a fundamental approach [1].  

Multiscale decomposition has been a valid framework for 

algorithm development and coding standards evolution [1]. 

Transform domains like DWT (Discrete Wavelet 

Transform) have very attractive properties, where images 

exhibit highly kurtotic behavior with non-Gaussian subband 

marginal distributions [1]-[3]. 

In this framework, the contourlet domain has also attracted 

much attention due to its additional advantages [3] 

compared with e.g. the wavelet domain. In general, the 

marginal distribution of subband image contourlet 

coefficients is non-Gaussian, symmetric and sharply peaked 

around zero with heavy-tails [3]. In addition, the wavelet’s 

restriction of fixed number of directions can be potentially 

overcome in contourlets with more directions, trying to see 

the smoothness along contours [3].  

The sparseness of contourlet coefficients makes it 

reasonable to assume that essentially only a few large detail 

coefficients contain information about the underlying image. 

It is then legitimate to impose a prior that is designed to 

model the sparsity of these coefficients. Thus, a variety of 

parametric models have been proposed all these years, 

including the SaS (Symmetric alpha Stable) family of 

distributions, the Laplacian, or the GGD distribution [1], [5], 

[9], [12].  

Many of the aforementioned non-Gaussian statistical models 

can be unified under the flexible density family known as 

the GSM (Gaussian Scale Mixture) model [9]. Thus, trying 

to investigate the validity of the proposed modeling, we 

consider a suitable representative of this class, meaning the 

Student’s t-distribution in the framework of modeling the 

subband marginal distributions of natural images in the 

contourlet domain [4], [13]. The heavy tail characteristic 

justifies the use of Student’s t for signals that are impulsive 

in nature.  

The remainder of this work is organized as follows. In 

Section 2, an overview of contourlet domain image 

modeling is provided. In Section 3, we describe our 

motivation, whereas in Section 4 we give details about our 

proposal, along with experimental results. Finally, 

conclusions and future work are provided in Section 5. 

 

2. CONTOURLET DOMAIN IMAGE MODELING 

 

2.1. Statistical properties of contourlet coefficients 

 

It is well known that contourlet coefficients exhibit non 

Gaussian properties [3]-[5]. Undoubtedly, it is true that the 

kurtosis in the various contourlet sub-bands shows a clear 

departure from Gaussianity, which is confirmed by the 

values clearly greater than 3 in all subbands. In Figure 1, 

based on 200 images of the dataset in [15], we can verify the 

above departure from normality, since the median value of 

all kurtosis values either in the first scale or in higher scales, 



are greater than 3. Non-stationary processes like natural 

images in the transform domain cannot be regarded as i.i.d. 

signals, even though they can be regarded as decorrelated 

signals. Nevertheless, the tractability of i.i.d. models and the 

low complexity of the obtained solution is a good 

motivation to consider this model.  

 

 

Figure 1. Median values of kurtosis values for 200 images. 

Contourlet transform of three levels of decomposition (8, 8 and 4 

directions in each scale). Median values are getting smaller as we 

add more levels of decomposition, but they remain greater than the 

value of 3. 

Most commonly, the distributions of contourlet coefficients 

are modeled as Generalized Gaussian density (GGD) and 

recently as SaS distributions [5], [8], [18]. Both models are 

families of distributions that are in general non-Gaussian 

and heavy tailed. GGD advantages are related with the 

availability of analytical expressions for their pdfs as well as 

of efficient parameter estimators [8]. Researchers in [5] 

claim that the SaS family of distributions are more flexible 

and rich. But, no closed-form expressions for the general 

SaS pdf are known except for the Gaussian and Cauchy 

members. Thus, several times due to the lack of a closed 

form, the Cauchy is used (e.g. in the case of transform based 

watermarking) [12] as a valid alternative. For example, in 

the watermarking problem the lack of a closed-form 

expression for the alpha stable distribution can result in 

computationally expensive solutions [18].  

In addition, when one statistical model can be transformed 

into another one by imposing constraints on the parameters 

of the first model, then we define these models as nested. 

For example, the set of all SaS distributions has, nested 

within, the set of Cauchy distributions [12].  Notice that the 

same happens for the Student-t distribution since it has 

nested within it the set of Cauchy and Normal distributions 

[16].  

 

3. MOTIVATION 

 

The motivation for this work, is the GSM model [2], [3], 

which has been very useful for accounting for both the 

marginal and joint statistics of subband decomposition 

coefficients of natural images [2], [3] where the vector is 

formed by clustering a set of neighboring e.g. wavelet 

coefficients within a subband, or across neighbouring 

subbands in scale and orientation. 

 

Figure 2. Tail behavior of various forms of Student’s t, including 

the Cauchy (ν=1) and the Gaussian distribution (large values of 

degrees of freedom). 

A GSM vector is defined as the product of a zero mean 

Gaussian vector and an independent positive scalar random 

variable [10], [11]. If we define τ  as a d-dimensional zero 

mean Gaussian vector and z as a positive scalar variable, 

then we can construct zx τ  independent of .z  The 

density of x  is determined by the covariance matrix, Σ , of 

the Gaussian vector and the density of z [3]: 
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where  zp z is the probability density of the mixing variable 

z . As a family of probability densities, GSM includes many 

common kurtotic distributions. For example, if z  follows 

an inverse gamma distribution, then the resulting GSM 

density reduces to a multivariate Student’s-t distribution [2].  

 

4. PROPOSED DISTRIBUTION 

 

4.1. Student’s t distribution modeling 

 

In what follows, we examine properties of the class of 

Student’s t family of distributions, and we show that these 

densities can accurately characterize both the marginal and 

joint distributions of natural image contourlet coefficients. 

More specifically, we define the univariate t-pdf in order to 

characterize the marginal statistics of contourlet subbands 

and as extension we provide the bivariate form of Student’s 

t distribution trying to model the across scales dependencies 

between the contourlet coefficient’s parents and children 

[4]. 

The proposed definition of the univariate distribution of 

Student’s t is: 
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where 1,...,i N ,   is the number of degrees of freedom,  

x     and   is the Gamma function 

1

0
( ) a xx e dx


    . The Student’s t distribution is 

symmetric around zero, which is consistent with the fact that 

its mean is 0 and skewness is also 0. Notice that the Cauchy 

distribution is a member of Student’s t distribution with 

degrees of freedom equal to 1. Thus, in Figure 2, we can 

observe the tail behavior of various forms of t prior, due to 

various values of degrees of freedom. This is an indication 

that Student’s-t is capable of expressing the fat tail and 

excess kurtosis more accurately than e.g. the normal 

distribution.  

The proposed definition of the bivariate Student’s t  

distribution with zero mean is: 
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TABLE I 

Mean values of the degrees of freedom for 200 images in 

the three finest scales. 

 

Direction Scale 

Mean 

value of 

dof (ν) 

1 

I 

0.4272 

2 0.5144 

3 0.4757 

4 0.3938 

1 

II 

1.0090 

2 0.6572 

3 0.7441 

4 1.1311 

5 0.9841 

6 0.7847 

7 0.6215 

8 0.9104 

1 

III 

1.5585 

2 1.0433 

3 1.2316 

4 1.6443 

5 1.5241 

6 1.2862 

7 1.0811 

8 1.4589 

 

The bivariate Student’s t distribution has analogous 

parameterization, where 1,...,i N  and  is the number of 

degrees of freedom, x     and   is the Gamma 

function. Notice that the multivariate Student’s t distribution 

can be generated in a number of ways [16], where the 

choices for a corresponding bivariate density are discussed 

by Kotz and Nadarajah [17]. 

In order to find the employed parameters of the proposed 

model, we resort to the iterative EM (Expectation 

Maximization) algorithm as described in [7]. Notice that the 

form of hyper-parameterization in the proposed parametric 

model (random variable by itself) governs the detailed 

behavior of the model and thus allows a certain degree of 

adaptability of the model to different types of source 

material [1], [6].  

 
Figure 3. PDFs of empirical image data from Lena image (scale II, 

direction 5) and the fitted distribution of Student’s t and alpha-

stable distribution. 

 

As far as the values of degrees of freedom of the proposed 

distribution are concerned, in Table I, we observe that these 

values (for 200 images with size of 512x512 of the dataset 

in [15]) confirm the status of non-normality of the 

coefficients. More importantly, various degrees of non-

Gaussian characteristics are exhibited in different directional 

subbands of the contourlet transform. 

 

4.2. AIC (Akaike Information Criterion) 

 

AIC (Akaike Information Criterion) provides a means of 

model selection based on a goodness of fit (GoF) along with 

the complexity of the model under consideration [13]. Since 

different distributions with possibly different scalar 

parameter numbers can be fairly compared using the AIC 

approach [13], [14], the most accurate model has the 

smallest AIC. 

Thus, in order to examine which probability model best fits 

our data, we resort to the (AIC) [13]. Notice that AIC does 

not assume that one of the candidate models is the ”true” or 

”correct” model. Thus, all the models are treated 

symmetrically, unlike hypothesis testing. In addition, AIC 

can be used to compare nested as well as non-nested models 

and of course, it can also be used to compare models based 

on different families of probability distributions. The 

definition of AIC is: 
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where 
iy  denotes the histogram of the data,  ip x the pdf 

of the statistical model, k  is the number of bins in the 

histogram and q  is the number of parameters in the 

statistical model. Towards finding the best statistical model, 

we select the one with the lowest AIC score. 

 



4.3. Comparison of Marginal Statistic’s models 

 

We first investigate the marginal statistics of the contourlet 

coefficients of natural images. In Fig. 3, we can see a plot of 

the histogram of one of the eight directions of the finest 

subband of image Lena. There are many candidate models 

that could be used in our work. Due to lack of space, we 

compare our proposal with Symmetric alpha Stable family 

of distributions as it appears in [5]. In Table II, we can 

observe the results concerning the AIC for the alpha-stable 

and the proposed Student’s t pdfs of image contourlet 

coefficients in the three finest scales (for the three known 

images Baboon, Barbara and Bridge, each of size 512x512).  

TABLE IΙ 

AIC values for known images (D: Direction, Sc: Scale) 

D Sc Baboon Barbara Bridge 

  St-t      Stable St-t      Stable St-t      Stable 

1 

I 

0.4354    0.4361 0.4292    0.4300 0.4477    0.4487 

2 0.4180    0.4187 0.4037    0.4045 0.4215    0.4223 

3 0.4320    0.4333 0.3911    0.3916 0.4414    0.4420 

4 0.4489    0.4502 0.4023    0.4028 0.4771    0.4777 

1 

II 

0.7523    0.7540 0.7346    0.7232 0.7290    0.7308 

2 0.7768    0.7786 0.7407    0.7296 0.7881    0.7902 

3 0.7489    0.7509 0.6890    0.6898 0.7526    0.7547 

4 0.7097    0.7117 0.6246    0.6253 0.6899    0.6916 

5 0.7761    0.7782 0.6479    0.6367 0.7348    0.7367 

6 0.8061    0.8083 0.6219    0.6232 0.7782    0.7796 

7 0.8352    0.8372 0.6527    0.6535 0.8382    0.8391 

8 0.8176    0.8198 0.6787    0.6800 0.7699    0.7715 

1 

III 

2.4368    2.4438 2.1780    2.1321 2.3444    2.3532 

2 2.5676    2.5736 2.3790    2.3327 2.6026    2.6101 

3 2.4481    2.4547 2.3905    2.3436 2.4421    2.4508 

4 2.2982    2.3052 2.0288    1.9830 2.1974    2.2059 

5 2.6045    2.6115 2.0302    2.0323 2.3826    2.3909 

6 2.8169    2.8234 1.7283    1.7332 2.5241    2.5319 

7 2.9569    2.9622 1.8110    1.8132 2.7264    2.7318 

8 2.7620    2.7704 2.1578    2.1597 2.4986    2.5070 

 

These values indicate that our proposal proves to be a valid 

candidate (due to better fit) compared to e.g. the stable 

family of distributions.  This kind of match appears in many 

other images. Therefore, for reasons of statistical 

significance, we apply the same criterion in the case of 

image dataset [15]. 

TABLE IΙI 

Percentage of fitted  histograms based on AIC values for the 

dataset of 200 images [15] 

 Student’s t Stable 

Percentage 73.03 26.97 

 

The results of the application, in a total of 4000 histograms, 

resulting from the transformation of images of the dataset 

into 3 levels in 4, 8 and 8 directions (20 histograms in total 

for each image) towards more detailed subbands, show a 

significant preference for the case of the proposed 

distribution. More specifically, almost three-quarters of the 

fitted histograms showed that these histograms are better 

fitted using Student’s t compared with stable family of 

distributions, as shown in Table III. 

 

Figure 4: Empirical joint parent-children histogram across 

two consecutive scales (1, 2) from lower to finer details. 

 
Figure 5: Possible configuration of the bivariate Student’s t 

distribution.  

 

4.4. Modeling as a Bivariate Distribution 

 

Notice that, even though coefficients in different subbands 

are considered as uncorrelated, this does not mean that are 

independent. Thus, in this Section, we investigate the joint 

statistics of contourlet coefficients at different positions, 

scales and orientations. In order to do that, we introduce the 

bivariate Student’s t pdf, given by Eq. (3), which is able to 

model the non-gaussian heavy-tailed behavior and the 

dependencies in a bivariate setting. The proposed bivariate 

distribution can suitably model the parent-children 

relationship of the contourlet coefficients across two 

consecutive scales, as depicted in Figures 4, 5.  

 

5. CONCLUSIONS AND FUTURE WORK 

 

Given the complex structure and enormous variation of the 

observed image contourlet domain histograms, we proposed 

and investigated the Student’s t distribution for modeling 

natural images in the contourlet domain. The proposed 

model accounts for the statistics of a wide variety of visual 

images. In the future, we intend to use these results to 

propose new watermarking schemes where the exploitation 

of hidden variables could be used as a perceptual guidance 

towards more advanced models during watermark 

embedding. Since a pdf for modeling a histogram of 

coefficients is an important, there is also an additional factor 

that plays critical role in the efficiency of some prior, 

meaning the form of the prior (e.g. exponential based, 

stretched exponential, etc), which should be taken into 

account. 
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