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ABSTRACT 
 
In many imaging systems, the resolution of the detector 
array of the camera is not sufficiently high for a particular 
application. Furthermore, the capturing process introduces 
additive noise and the point spread function of the lens 
and the effects of the finite size of the photo-detectors 
further degrade the acquired video frames. The goal of 
resolution enhancement is to estimate a high-resolution 
image from a sequence of low-resolution images while 
also compensating for the above-mentioned degradations. 
In this paper, we propose a technique for image resolution 
enhancement with adaptively weighted low-resolution 
images (channels) and simultaneous estimation of the 
regularization parameter. The weight coefficients work as 
the cross-channel fidelity to each low-resolution image, 
while the regularization parameter acts as the within-
channel balance between data and prior model for each 
channel. Experimental results are presented and 
conclusions are drawn. 
 
 

1. INTRODUCTION 
 
Resolution enhancement using multiple frames is possible 
when there exists subpixel motion between the captured 
frames. Thus, each of the frames provides a unique look 
into the scene. An example scenario is the case of a 
camera that is mounted on an aircraft and is imaging 
objects in the far field. The vibrations of the aircraft will 
generally provide the necessary motion between the focal 
plane array and the scene, thus yielding frames with 
subpixel motion between them and minimal occlusion 
effects. 
 
In this paper, we extend our previous results in [1] and [2] 
by proposing a technique for the adaptive update of cross-
channel weights and the simultaneous estimation of the 
regularization parameter of each channel. The rest of the 
paper is organized as follows. In section 2, a regularized 
cost function is addressed for image resolution 
enhancement. In section 3, we rewrite the cost function in 
multi-channel form to establish the relationship between 
the overall regularization parameter and the individual 
parameters for each channel. We then develop our 
technique for the estimation of both the cross-channel 

weights and the regularization parameter. In section 4, 
experimental results are presented. Finally, in section 5, 
conclusions are drawn. 
  

2. MAP-BASED RESOLUTION ENHANCEMENT 
 
The problem of resolution enhancement is an active 
research area. In this review, we concentrate on Bayesian 
methods. Maximum A Posteriori (MAP) estimation with 
an edge preserving Huber-Markov random field image 
prior is studied in [3], [4]. MAP based resolution 
enhancement with simultaneous estimation of registration 
parameters has been proposed in [1], [2], [5]. Resolution 
enhancement with estimation of the regularization 
parameter for each low-resolution image has been studied 
in [6]. In our recent work in [2], a method for 
simultaneous estimation of the regularization parameter 
was also proposed. In this paper, we extend the result in 
[2] to more general case considering a different noise 
level for each low-resolution image (channel). 

 
The image degradation process is modeled by a linear 
blur, motion, subsampling by pixel averaging and an 
additive Gaussian noise process. All vectors are ordered 
lexicographically. Assume that p low-resolution frames 
are observed, each of size 21 NN × . The desired high-

resolution image z is of size 2211 NLNLN =  and 1L  

and 2L  represent the down-sampling factors in the 
horizontal and vertical directions respectively. The kth 
low-resolution frame can be denoted as 

[ ]TT
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TT yyyy ,,, 21 L=  for pk L,2,1= . The system 
can be modeled as 
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where matrix [ ]TT
p

TT
,2,1, ,,, ssss WWWW L= contains the 

operation of blur, motion, subsampling by pixel 
averaging. The vector [ ]TKkkkk sss ,2,1, ,, L=s contains 
the K registration parameters for frame k measured in 
reference to a fixed high-resolution grid. In contrast with 
[1], [2] and [5], we assume that the noise samples 

[ ]Tpnnnn L,, 21= are independent Gaussian, but with 



variances 2
kσ that are not necessarily identical. We 

propose to determine z and s by minimizing the following 
regularized cost function: 
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where λ is the tuning parameter and D represents a high-
pass filter. The above cost function can be also obtained 
from MAP estimation using a Gaussian-Markov random 
field (GMRF) image prior model as in [1], [2], [5]. 
 
3. ADAPTIVE UPDATE OF CHANNEL WEIGHT 
AND ESTIMATION OF THE REGULARIZATION 
PARAMETER 
 
Alternatively, we can rewrite the cost function in 
Equation (2) as the sum of individual smoothing 
functionals for each of the p low-resolution images as:  

{ }∑

∑

∑

=

=

=

+−=









+−=









+−=

p

k
kkk

k

p

k k

k
kk

k

p

k k
kk

k

L

1

22
,2

1

2
2

2
,2

1

22
,2

1

1

11),(

DzzWy

DzzWy

DzzWysz

s

s

s

α
σ

λ
σ

σ

λσ
,      (3) 

where kα is the regularization parameter for each channel 
defined as 
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and kλ  is the tuning parameter of each channel. If the 
noise samples have different variance for each channel, 
we can not drop the factor 2/1 kσ from Equation (3). 
Instead, we should give different fidelity to each channel. 
As in [2], we assume no prior information of the noise 
variance 2

kσ  and we propose the following method to 
adaptively update the weight assigned to each channel 
and the regularization parameter: 
 
1. Introduce the cross-channel weight coefficient kc and 
rewrite the cost function as: 
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where coefficient kc  satisfies: (a) kc is proportional 

to 2/1 kσ , or equivalently, inversely proportional to the 

residual norm 
2
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is a positive constant. In this paper, we choose pc = , 
the number of low-resolution images. This constraint can 
avoid the trivial solution of the cost function. The solution 
for criteria (a) and (b) with choice pc = is: 
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where aveR is the average residue norm defined as 
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2. An iterative algorithm can be used to reconstruct the 
high-resolution image, i.e., z can be updated iteratively as 
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until convergence is reached. n is the iteration number 
starting from 0. The cost function can be minimized using 
the coordinate-descent method. This iterative method 
starts with an initial estimate of z obtained using 
interpolation from a low resolution frame. Then, for a 
fixed z, the cost function is minimized with respect to s. 
Thus, the motion of each frame is estimated. Then, for 
fixed s, a new estimate for z is obtained. This procedure 
continues until convergence is reached, i.e., z and s are 
updated in a cyclic fashion.  
 
The gradient )ˆ,ˆ( nn

rg sz can be obtained from 
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3. Following the same procedure as in [2], [7], we impose 
the following requirements for each kα  in the resolution 
enhancement scenario: it should be a function of the 
regularized noise power of the data and its choice should 
yield a convex functional whose minimization would give 
the high-resolution image. The imposed properties 
on kα require a linear function between kα and each term 
of the cost function: 
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Thus, the choice of regularization parameter kα for the 
regularization functional is given by 
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Also, following the same procedure for convergence 
requirement as in [7], we get  
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where )(max ⋅φ stands for the maximum eigenvalue of a 
matrix. We show in [2] that 
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Therefore, inequality (12) becomes 
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If we select step sizeε  as  
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inequality (12) will become 
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As in [2], a simple fixed choice
22/1 kk y=γ is used in 

this paper to satisfy convergence. Thus, we can obtain the 
simultaneous estimation of regularization parameter for 
each channel as 
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Now, the weight coefficients kc in Equation (6) work as 
the cross-channel fidelity, while the regularization 
parameter kα in Equation (17) acts as the within-channel 
balance between data and prior model for each channel. 
 
 

4. EXPERIMENTAL RESULTS 
 
To test the validity of our algorithm, we used the 256x256 
“cameraman” image for a synthetic test in this paper. The 
original high-resolution image was blurred with a Point 
Spread Function (PSF), globally shifted, subsampled and 
added with AWGN noise to produce a sequence of 16 
low-resolution images. The PSF was generated from a 
Gaussian blur with variance 1.7. The down/up sampling 
ratio was L1= L2=4. Global shift T

ks belongs to the set 
generated from the Cartesian product of 
{ } { }3,2,1,03,2,1,0 × . Four cases, Case I-IV, as listed 
in Table 1, were tested. In case IV, eight unrelated low-
resolution images were generated from the “Lena” image. 
The first frame was selected as reference frame and 
bilinear interpolation of the first frame was chosen as the 
first estimate of high-resolution image z. The algorithm 
was carried out for 20 iterations or until convergence was 

reached when 6221 10ˆ/ˆˆ −+ <− nnn zzz .  

Table 1. Four cases of synthetic test for “cameraman” 

 p=16: Number of low-resolution frames 2
kσ  

Case I 16 frames of “Camerman” 1 
Case II 16 frames of “Camerman” k 
Case III 16 frames of “Camerman” k2 

Case IV 8 frames of “Camerman” followed by 8 
unrelated frames of “Lena” 

1 

 
The PSNR of the reconstructed image for “cameraman” 
using the three methods (Bilinear, Proposed Method, 
Non-channel-weighted Simultaneous Method) are listed 
in Table 2. The bilinear interpolation of the reference 
frame is shown in Fig. 1. The reconstructed images from 
Proposed Method and Non-channel-weighted 
Simultaneous Method of “cameraman” in Case III, IV are 
listed in Fig. 2~5, respectively. 
 
Table 2 Results of “cameraman” using the three methods 

PSNR (dB) Bilinear Proposed 
Method 

Non-channel-
weighted 
Simultaneous Method 

Case I 21.26 24.07 24.07 
Case II 21.26 23.96 23.94 
Case III 21.26 23.70 22.78 
Case IV 21.26 24.00 16.07 
 

5. CONCLUSION 
We have proposed a technique for adaptively weight 
update of each low-resolution image (channel), and 
simultaneous estimation of the regularization parameter 
for digital image resolution enhancement. The weight 
coefficients work as the cross-channel fidelity to each 
low-resolution image, while the regularization parameter 
acts as the within-channel balance between data and prior 
model for each channel. Our experimental results 
demonstrate the performance of the proposed algorithm, 
which can be easily applied to real data. In all the cases 
considered, the proposed algorithm gives a good 
reconstruction. 
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Fig. 1. Bilinear interpolation of reference frame 

 
Fig.2 Reconstructed image of “cameraman” from 

Proposed Method (Case III) 

 
Fig. 3 Reconstructed image using non-channel-weighted 

Simultaneous Method (Case III) 

 
Fig.4 Reconstructed image of “cameraman” from 

Proposed Method (Case IV) 

 
Fig. 5 Reconstructed image using non-channel-weighted 

Simultaneous Method (Case IV) 


