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ABSTRACT

Compressed sensing (CS) theory relies on sparse represen-

tations in order to recover signals from an undersampled set

of measurements. The sensing mechanism is described by

the projection matrix, which should possess certain proper-

ties to guarantee high quality signal recovery, using efficient

algorithms. Although the major breakthrough in compressed

sensing results is obtained for random matrices, recent efforts

have shown that CS performance could be improved with op-

timized non-random projections. Designing matrices that sat-

isfy CS theoretical requirements is closely related to the con-

struction of equiangular tight frames, a problem that has ap-

plications in various scientific fields like sparse approxima-

tions, coding, and communications. In this paper, we employ

frame theory and propose an algorithm for the optimization

of the projection matrix that improves sparse signal recovery.

Index Terms— Compressed sensing, tight frames, Grass-

mannian frames

1. INTRODUCTION

The conventional approach to sampling signals or images fol-

lows the Shannon sampling theorem, that is, the sampling rate

must be at least twice the maximum frequency present in the

signal (the so-called Nyquist rate). Compressed sensing (CS)

theory [1, 2], asserts that one can recover certain signals from

far fewer samples.

Let x ∈ R
K be a vector representing a signal of length

K. We want the number of available measurements, m, to

be much smaller than the dimension, K, of the signal. We

need a linear sensing mechanism described by the following

equation

y = Px, (1)

with y ∈ R
m and P ∈ R

m×K , a proper sensing or projection

matrix.

The reconstruction of the original signal x from m ≪ K
measurements leads to an underdetermined linear system of

m equations and K unknowns. The question that arises is
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under what conditions would such a system have a unique so-

lution and how it could be obtained. An important result is

that uniqueness is guaranteed for the sparsest possible solu-

tion [3]. Obviously, CS can be applied to signals with sparse

representations. We expand x in a basis or dictionary D ∈
R

KXN , K ≤ N , such that the number T of the most signifi-

cant coefficients, carrying the useful information of the signal,

is much smaller than the signal length. Therefore, we obtain

a T -sparse representation of the original signal x

x = Dα, (2)

with α ∈ R
N and ‖α‖

0
= T . We denote by ‖·‖

0
the so-called

ℓ0-norm (which is actually not a norm) counting the nonzero

coefficients of the respective signal.

According to equations (1) and (2), the sensing process of

a signal x ∈ R
K , with a sparse representation α ∈ R

N , can

be described by the following equation:

y = PDα, or y = Fα, (3)

with F = PD, F ∈ R
m×N .

Considering the recovery process, seeking the sparsest so-

lution leads to the ℓ0-minimization problem,

min
α∈RN

‖α‖
0

subject to y = Fα, (4)

which is known to be NP-hard. Approximate methods of

solving (4) have been proposed and appropriate algorithms

such as BP, OMP [4, 5] exist. The efficiency of these algo-

rithms depends on the properties of the matrix F ; incoher-

ence, which expresses a low correlation between the projec-

tion matrix P and the representation matrixD, is an important

one. A matrix drawn randomly from a suitable distribution is

incoherent with any arbitrary orthonormal basis [6].

The idea that non-random matrices could be more effec-

tive than random projections has been expressed only recently

with a few publications [7, 8, 9, 10, 11, 12]. An optimally

designed projection matrix could improve the reconstruction

accuracy or further reduce the necessary number of samples.

Thus, designing a projection matrix is a challenge.

In this paper, we borrow some concepts from frame the-

ory and propose a method for optimizing the projection ma-

trix based on the work of [7]. The rest of the paper is or-

ganized as follows: In Section 2 we discuss the impact of
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incoherent matrices in CS and survey previous work on the

optimization of projection matrices. Section 3 reviews some

basic concepts of frame theory. In Section 4 we summarize

the basic steps of the algorithm proposed in [7] and explain

the proposed modifications for its improvement. Finally, in

Section 5 experimental results are presented, and conclusions

are drawn in Section 6.

2. INCOHERENCE

In order to acquire maximal signal information with an un-

dersampled set of measurements, CS theory requires that the

projection matrix P and the representation matrix D must be

incoherent. Let P = [p1, p2, . . . , pm]T , pi ∈ R
K , 1 ≤ i ≤ m

andD = [d1, d2, . . . , dN ] , dj ∈ R
K , 1 ≤ j ≤ N . Coherence

measures the maximal correlation between the two matrices,

that is

µ(P,D) = max
1≤i≤m
1≤j≤N

∣∣pTi dj
∣∣

‖pi‖2 ‖dj‖2
, (5)

and must be as small as possible. The necessary number of

measurements m depends on this property. Considering an

orthonormal basis D, a T -sparse signal of length N can be

reconstructed exactly with overwhelming probability fromm
measurements, if

m ≥ C · µ2(P,D) · T · logN, (6)

where C is some positive constant [6]. Similar results for

redundant dictionaries can be found in [13].

An equivalent analysis that takes into consideration noisy

measurements utilizes the correlation between the columns of

the matrix F = PD. Considering the underdetermined linear

system (3), it would be desirable that F had properties similar

to an orthonormal basis. This concept is expressed by the

Restricted Isometry Property (RIP) [6]. We will loosely say

that when a matrix F obeys RIP of order s, then all subsets of
s columns of F are nearly orthogonal.

A more convenient way of analyzing the recovery abilities

of the matrix F is the mutual coherence that measures the

maximal correlation between different columns of F , that is

µ{F} = max
1≤i,j≤N

i6=j

∣∣fT
i fj

∣∣
‖fi‖2 ‖fj‖2

. (7)

It is known [3] that if the representation satisfies the fol-

lowing condition,

‖α‖
0
<

1

2

(
1 +

1

µ{F}

)
, (8)

then α is the sparsest solution to (4) and, therefore, it is

unique. The above relation implies that smaller values of

mutual coherence enable CS reconstruction of signals with

denser representations.

It is evident from (6) that optimizing the choice of the

projection and the representation matrix, in a way to mini-

mize the coherence between the two matrices, would offer

higher quality signal recovery with reduced number of mea-

surements. However, direct optimization of these matrices

would be prohibitive as it involves combinatorial search. Re-

cently, some algorithms for indirect design of incoherent ma-

trices have been proposed. In [7] Elad presents an algorithm

to optimize the choice of the projection matrix P , which de-

creases the average coherence of the matrix F = PD, keep-

ing fixed the dictionaryD. In [9] the authors aim at producing

a matrix F approximate to the identity matrix by introducing

a training based framework for the joint design and optimiza-

tion of the representation dictionary and the projection matrix.

Similar treatment can be found in [10, 11, 12].

The minimization of the maximal correlation between the

columns of anm×N matrix, withm < N , is a problem that

arises in numerous other contexts, besides CS. In the present

work, we address this problem as a finite-dimensional frame

design problem and borrow ideas from numerical linear alge-

bra for its solution. Next, we will discuss some basic concepts

of frame theory and explain our contribution to the optimiza-

tion of projection matrices.

3. FRAMES

Viewing the problem of incoherent matrices from a theoret-

ical perspective, we are led to Grassmannian frames [14].

Frames are a generalization of the idea of bases to sets that

may be linearly dependent. A finite frame FN
m in the complex

Hilbert space Cm is a sequence of N ≥ m vectors {fk}Nk=1
,

fk ∈ C
m satisfying the following condition

α ‖f‖2
2
≤

N∑

k=1

|〈f, fk〉|2 ≤ β ‖f‖2
2

∀f ∈ C
m, (9)

where α, β are positive constants, called the lower and upper

frame bounds, respectively. The redundancy of the frame is

defined by ρ = N/m.

When constructing a frame, our goal is to combine the ad-

vantages of orthonormal bases with the advantages provided

by the frame redundancy. Compared to the expansion of a sig-

nal in an orthonormal basis, a representation in an overcom-

plete or redundant frame can reveal certain signal character-

istics such as its sparsity. However, the representation is not

unique as the frame elements may be linearly dependent. On

the other hand, the zero correlation between the basis vectors

is the main advantage of an orthonormal basis. Let {ek}mk=1

be an orthonormal basis in Cm. Then 〈ek, eℓ〉 = 0, for k 6= ℓ,
which expresses the linear independence between the basis

vectors, responsible for the unique representation of every el-

ement f ∈ C
m as a linear combination of the ek’s. Searching

for frames “as close as possible” to orthonormal bases, we

focus on unit norm frames with minimal cross-correlation.
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3.1. Unit norm tight frames

Let FN
m = {fk}Nk=1

be a finite redundant frame in C
m. Then

it is possible to take α = β such that

f =
1

α

N∑

k=1

〈f, fk〉 fk, ∀f ∈ C
m. (10)

We call these frames α-tight frames. If, moreover, ‖fk‖2 = 1
for all k, then we obtain a unit norm tight frame. Considering

the matrix formed by the vectors {fk}Nk=1
of an α-tight frame

as its columns, the rows of this matrix have norms equal to√
α and form an orthogonal family. It is obvious that we can-

not design a unit norm tight frame with an arbitrary tightness

parameter. For α-tight frames the following relation holds

N∑

k=1

‖fk‖22 = αm. (11)

Thus, a unit norm tight frame FN
m exists only for α = N/m.

3.2. Equiangular frames

Orthonormal bases exhibit equal correlation between column

vectors. Considering a redundant frame FN
m , we want

|〈fk, fℓ〉| = c, for k 6= ℓ. (12)

For a unit norm frame, the absolute value of the inner prod-

uct between two frame vectors equals the cosine of the acute

angle between the two vectors. For this reason, frames satis-

fying (12) are called equiangular.

The maximal correlation between columns depends on the

frame dimensions m,N . The lower bound on the minimal

achievable correlation for equiangular frames is known [14]

to be

µ{FN
m } ≥

√
N −m

m(N − 1)
. (13)

Equiangular frames are important in applications like CS

because they minimize the correlation between columns, a

property that plays significant role in the performance of the

reconstruction algorithms (OMP, BP) used in signal recovery.

3.3. Grassmannian frames

Among all unit norm frames with the same redundancy,

the ones characterized by the property of minimal cross-

correlation between their elements are called Grassmannian

frames [14]. If minimal cross-correlation is the lowest achiev-

able, as (13) implies, then we obtain an optimal Grassman-

nian frame. According to [14], an equiangular unit norm tight

frame is an optimal Grassmannian frame.

The construction of optimal Grassmannian frames is not

trivial. Actually, optimal Grassmannian frames exist only for

a few frame dimensions. Therefore, our research focuses on

frames that have properties similar to optimal Grassmannian.

3.4. Nearest tight frames

As unit norm tight frames with dimensions m,N exist for

specific tightness parameters (α = N/m), constructing

an optimal Grassmannian frame equals to constructing an

equiangular N/m-tight frame [14]. However, there is no

explicit way of constructing such frames, even if we know

that they exist. In this paper, we propose a construction that

combines the minimization of frame correlation with the

computation of an N/m-tight frame. The following theorem

of numerical linear algebra [15] will help us to obtain an

N/m-tight frame that is closest to a matrix with desirable

properties.

Theorem 1: Given a matrix F ∈ R
m×N , N ≥ m, sup-

pose F has singular value decomposition UΣV ∗. With re-

spect to the Frobenius norm, a nearest α-tight frame F ′ to

F is given by αUV ∗. Assume in addition that F has full

low-rank. Then αUV ∗ is the unique α-tight frame closest

to F . Moreover, one may compute UV ∗ using the formula

F ′ = α(FF ∗)−1/2.

4. CONSTRUCTING A TIGHT FRAME NEAREST

TO OPTIMIZED PROJECTIONS

It is common practice in designing matrices with low column

correlation to work with the Gram matrix [16, 7]. Given a

matrix F ∈ R
m×N , formed by the frame vectors {fk}Nk=1

as

its columns, the Gram matrix is the Hermitian matrix of the

column inner products, that is G = FTF . Having computed

the Gram matrix of the normalized F , the maximal correla-

tion is obtained as the off-diagonal entry ofG with the largest

absolute value.

In [7] Elad proposed an algorithm for the optimization of

the Gram matrix leading to optimized projections. The al-

gorithm uses a “shrinkage” process to optimize the values of

the off-diagonal elements of the Gram matrix. Entries in G
with magnitude above a threshold t are “shrunk” by a factor

γ. Entries with magnitude below t but above γt are “shrunk”
by a smaller amount. The new Gram matrix elements, ĝij , are
obtained according to

ĝij =





γgij , |gij | ≥ t,

γt · sign(gij), t > |gij | ≥ γt,

gij , γt > |gij | .
(14)

We propose to combine the above “shrinkage” process

with Theorem 1 to improve the optimization results. Start-

ing from a projection matrix P ∈ R
m×K and a fixed dic-

tionary D ∈ R
K×N , the “shrinkage” aims at derceasing the

mutual coherence of the effective dictionary F = PD, F ∈
R

m×N . Based on the observation that optimal Grassman-

nian frames not only exhibit minimal mutual coherence but

N/m-tightness as well, we propose to apply Theorem 1 to

the effective dictionary produced by “shrinkage” to obtain an

N/m-tight frame.
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Fig. 1. Average reconstruction MSE as a function of the num-

ber of measurements.

Let S be the square root of the “shrunk” Gram matrix Ĝ,

i.e., STS = Ĝ. We expect S to have lower mutual coher-

ence compared to the initial matrix. We obtain an N/m-tight

frame S′ that is nearest to S according to S′ = (N/m) ·
(SS∗)−1/2. The new matrix S′ preserves low correlation be-

tween its columns as it is close to S, while it also exhibits

N/m-tightness.

The optimization algorithm we propose is iterative. We

choose the initial P to be a random Gaussian matrix and D
an arbitrary fixed dictionary. First, we apply Theorem 1 to

the initial F0 = PD, obtaining an N/m-tight frame F ′
0 as

input frame. After column normalization we obtain F̂0. The

q-th iteration involves “shrinkage” and tightness including the
following steps:

1. Obtain the matrix F̂q , after column normalization of F ′
q .

2. Apply (14) to the off-diagonal elements of the GramGq =

F̂q
T
F̂q , to produce a “shrunk” Gram matrix Ĝq .

3. Apply SVD to Ĝq to force the matrix rank to be m.

4. Amatrix Sq ∈ R
m×N is obtained as the square root of Ĝq ,

i.e., ST
q Sq = Ĝq .

5. Obtain the nearest N/m-tight frame S′
q according to S

′
q =

(N/m) · (SqS
∗
q )

−1/2. Set F ′
q = S′

q .

The projection matrix Pq+1 is obtained as a solution to

minP
∥∥F ′

q − PD
∥∥.

Regarding convergence, there is no theoretical guarantee

that the above algorithm will converge as the problem is not

convex. In practice, the algorithm behaves well, especially

when the parameter γ is chosen close to 1 (see also [7]).

5. EXPERIMENTAL RESULTS

In order to test the proposed method in CS, we deploy the

proposed optimized tight frames to acquire sparse synthetic

signals. The reconstruction process involves solving a convex

optimization problem, with a pursuit algorithm like OMP.

In every experiment, we generate a T -sparse vector of

length N , α ∈ R
N , which constitutes a sparse representation

of the K-length synthetic signal x = Dα, x ∈ R
K , K ≤ N .
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Fig. 2. Average mutual coherence for m × N matrices, with

m ∈ [15, 40] and N = 120.

We choose the dictionary D ∈ R
K×N to be a random Gaus-

sian matrix. The nonzero coefficients’ locations of the sparse

vector are chosen at random. Besides the effectiveness of the

projection matrix P , the reconstruction results also depend

on the number of measurements m and the sparsity level of

the representation T . Thus, our experiments include varying

values of these parameters. For a specified number of mea-

surements m ≪ K, we create a random projection matrix

P ∈ R
m×K . We obtain m projections of the original signal

according to (3). The approximation α̂ of the original sparse

representation is obtained by solving (4).

In all experiments presented here, the synthetic signals

were of length K = 80 and the respective sparse represen-

tations, under the dictionary D, of length N = 120. The

execution of the optimization algorithm included up to 50 it-

erations, with parameters γ = 0.95 and t = 0.2, which are

also used in [7]. Two sets of experiments have been consid-

ered; the first one includes varying values of the number of

measurements and the second one includes varying values of

the number of sparsity level of the signals under testing. For

every value of the aforementioned parameters we made 300

experiments.

Figure 1 presents the reconstruction results as a function

of the number of measurements m, for a fixed sparsity level

(T = 4) of the treated signal, by means of average recon-

struction MSE. In Fig. 2 we can see the average mutual co-

herence of the matrix F used in these experiments. The av-

erage mutual coherence and MSE were calculated for every

measurement value, m, over 300 experiments. Figures 3 and

4 present the results for reconstruction and mutual coherence,

respectively, for a fixed number of measurements (m = 25)
and varying values of the sparsity level of the signal.

It is clear that regarding the reconstruction results of the

acquired signal, the matrix produced by the proposed algo-

rithm leads to a smaller reconstruction error compared to ran-

dom matrices and to matrices produced by [7]. We see that

trying to make a construction that is closer to Grassmannian

frames yields an implicit substantial improvement of the mu-

tual coherence of the effective dictionary F , which is respon-
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Fig. 3. Average reconstruction MSE as a function of the sig-

nal sparsity level.
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Fig. 4. Average mutual coherence for 25× 120 matrices used

in the experiments with varying signal sparsity level.

sible for the better reconstruction results we observe.

6. CONCLUSIONS

According to CS theory, it is possible to recover a sparse sig-

nal from incomplete measurements as far as the sensing ma-

trix columns exhibit minimal correlation, a property that can

be measured by mutual coherence. Based on an existing al-

gorithm for minimizing the mutual coherence of a given ma-

trix, we introduce into the minimization process the concept

of tightness, towards a construction that is close to Grassman-

nian frames. The produced matrix yields better results re-

garding mutual coherence and reconstruction quality as well,

advocating that any progress in the construction of Grassman-

nian frames would be an important contribution to CS.
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